Virtual Screening of Small Molecules Targeting BCL2 with Machine Learning, Molecular Docking, and MD Simulation
Abstract
:1. Introduction
2. Methods
2.1. Activity Dataset
2.2. Ligand Library for Screening
2.3. Deep Neural Network (DNN) Machine Learning Models
2.4. Random Forest (RF) Machine Learning Model
2.5. Homology Modeling of BCL2
2.6. AutoDock Vina (Vina) Molecular Docking
2.7. Molecular Dynamics (MD) Simulations
3. Results
3.1. Activity Dataset
3.2. Ligand Library for Screening
3.3. Deep Neural Network (DNN) Machine Learning Models
3.4. Random Forest (RF) Machine Learning Model
3.5. Screening Small Molecules Using the RF Model
3.6. Vina Molecular Docking
3.7. Molecular Docking Simulations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, T.Z.; Hasan, M.; Capelluto, D.G.S. Phafins are more than Phosphoinositide-Binding proteins. J. Mol. Sci. 2023, 24, 8096. [Google Scholar] [CrossRef]
- Chipuk, J.E.; Moldoveanu, T.; Llambi, F.; Parsons, M.J.; Green, D.R. The BCL-2 Family Reunion. Mol. Cell 2010, 37, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, D.; Sivaraman, T. A Review on Structures and Functions of Bcl-2 Family Proteins from Homo sapiens. Protein Pept. Lett. 2016, 23, 932–941. Available online: https://www.ingentaconnect.com/contentone/ben/ppl/2016/00000023/00000010/art00011 (accessed on 22 March 2024). [CrossRef] [PubMed]
- Qian, S.; Wei, Z.; Yang, W.; Huang, J.; Yang, Y.; Wang, J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 2022, 12, 985363, Frontiers Media S.A.. [Google Scholar] [CrossRef]
- Thomas, L.W.; Lam, C.; Edwards, S.W. Mcl-1; the molecular regulation of protein function. FEBS Lett. 2010, 584, 2981–2989. [Google Scholar] [CrossRef] [PubMed]
- Shamas-Din, A.; Brahmbhatt, H.; Leber, B.; Andrews, D.W. BH3-only proteins: Orchestrators of apoptosis. Biochim. Et Biophys. Acta (BBA)—Mol. Cell Res. 2011, 1813, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Hahn, P.; Lindsten, T.; Ying, G.-S.; Bennett, J.; Milam, A.H.; Thompson, C.B.; Dunaief, J.L. Proapoptotic bcl-2 family members, Bax and Bak, are essential for developmental photoreceptor apoptosis. Investig. Opthalmology Vis. Sci. 2003, 44, 3598. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.C. Proapoptotic multidomain Bcl-2/Bax-family proteins: Mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ. 2006, 13, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Sekar, G.; Ojoawo, A.; Moldoveanu, T. Protein–protein and protein–lipid interactions of pore-forming BCL-2 family proteins in apoptosis initiation. Biochem. Soc. Trans. 2022, 50, 1091–1103. [Google Scholar] [CrossRef]
- Rodriguez, J.M.; Glozak, M.A.; Ma, Y.; Cress, W.D. Bok, Bcl-2-related Ovarian Killer, Is Cell Cycle-regulated and Sensitizes to Stress-induced Apoptosis. J. Biol. Chem. 2006, 281, 22729–22735. [Google Scholar] [CrossRef]
- Kunac, N.; Filipović, N.; Kostić, S.; Vukojević, K. The Expression Pattern of Bcl-2 and Bax in the Tumor and Stromal Cells in Colorectal Carcinoma. Medicina 2022, 58, 1135. [Google Scholar] [CrossRef] [PubMed]
- Kawiak, A.; Kostecka, A. Regulation of Bcl-2 Family Proteins in Estrogen Receptor-Positive Breast Cancer and Their Impli-cations in Endocrine Therapy. Cancers 2022, 14, 279. [Google Scholar] [CrossRef]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided-Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Valentini, E.; D’Aguanno, S.; Di Martile, M.; Montesano, C.; Ferraresi, V.; Patsilinakos, A.; Sabatino, M.; Antonini, L.; Chiacchiarini, M.; Valente, S.; et al. Targeting the anti-apoptotic Bcl-2 family proteins: Machine learning virtual screening and biological evaluation of new small molecules. Theranostics 2022, 12, 2427–2444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, R.; Chang, J.; Song, J.; Fan, Z.; Zhang, Y.; Lu, C.; Jiang, H.; Zheng, M.; Zhang, S. Discovery and identification of a novel small molecule BCL-2 inhibitor that binds to the BH4 domain. Acta Pharmacol. Sin. 2023, 44, 475–485. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V. Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships. J. Chem. Inf. Model. 2015, 55, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.B.; Hodas, N.O.; Vishnu, A. Deep learning for computational chemistry. J. Comput. Chem. 2017, 38, 1291–1307. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Dai, W.; Lv, Q.; Chen, C.Y. Artificial intelligence approach to find lead compounds for treating tumors. J. Phys. Chem. Lett. 2019, 10, 4382–4400. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, J.; Han, D.; Zhu, H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov. Today 2017, 22, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev. 2022, 55, 1947–1999. [Google Scholar] [CrossRef] [PubMed]
- Parvatikar, P.P.; Patil, S.; Khaparkhuntikar, K.; Patil, S.; Singh, P.K.; Sahana, R.; Kulkarni, R.V.; Raghu, A.V. Artificial intel-ligence: Machine learning approach for screening large database and drug discovery. Antivir. Res. 2023, 220, 105740. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, C.; Das, B.; Rawat, V.S.; Wahlang, J.B.; Nongpiur, A.; Tiewsoh, I.; Lyngdoh, N.M.; Das, D.; Bidarolli, M.; Sony, H.T. Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development. Int. J. Mol. Sci. 2023, 24, 2026. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.; Kim, Y.; Cho, E.Y.; Han, J.; Shim, Y.M.; Park, J.; Kim, D.-H. Synergistic Effect of Bcl-2 and Cyclin A2 on Adverse Recurrence-Free Survival in Stage I Non-small Cell Lung Cancer. Ann. Surg. Oncol. 2013, 20, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Derenzini, E.; Mazzara, S.; Melle, F.; Motta, G.; Fabbri, M.; Bruna, R.; Agostinelli, C.; Cesano, A.; Corsini, C.A.; Pileri, S.; et al. A three-gene signature based on MYC, BCL-2 and NFKBIA improves risk stratification in diffuse large B-cell lymphoma. Haematologica 2020, 106, 2405–2416. [Google Scholar] [CrossRef]
- Urban, A.; Hermansen, J.; Yin, Y.; Kong, W.; Teglgaard, R.; Brieghel, C.; Kersting, S.; Tjønnfjord, G.E.; Levin, M.-D.; Tran, H.T.T.; et al. s144: Btk and bcl-2 activity at baseline predicts mrd status for chronic lymphocytic leukemia patients treated with ibrutinib + venetoclax in the hovon 141/vision trial. HemaSphere 2023, 7, e92046ec. [Google Scholar] [CrossRef]
- Talevi, A.; Morales, J.F.; Hather, G.; Podichetty, J.T.; Kim, S.; Bloomingdale, P.C.; Kim, S.; Burton, J.; Brown, J.D.; Winterstein, A.G.; et al. Machine Learning in Drug Discovery and Development Part 1: A Primer. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 129–142. [Google Scholar] [CrossRef]
- Tsou, L.K.; Yeh, S.-H.; Ueng, S.-H.; Chang, C.-P.; Song, J.-S.; Wu, M.-H.; Chang, H.-F.; Chen, S.-R.; Shih, C.; Chen, C.-T.; et al. Comparative study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery. Sci. Rep. 2020, 10, 16771. [Google Scholar] [CrossRef]
- Ahn, S.; Lee, S.E.; Kim, M. Random-forest model for drug–target interaction prediction via Kullback–Leibler divergence. J. Cheminformatics 2022, 14, 67. [Google Scholar] [CrossRef]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Lind, A.P.; Anderson, P.C. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS ONE 2019, 14, e0219774. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Bragina, M.E.; Daina, A.; Perez, M.A.S.; Michielin, O.; Zoete, V. The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience. Int. J. Mol. Sci. 2022, 23, 811. [Google Scholar] [CrossRef]
- Pedregosa Fabianpedregosa, F.; Michel, V.; Grisel Oliviergrisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Vanderplas, J.; Cournapeau, D.; Pedregosa, F.; Varoquaux, G.; et al. Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. J. Mach. Learn. Res. 2011, 12, 2825–2830. Available online: http://scikit-learn.sourceforge.net (accessed on 15 March 2024).
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for large-scale machine learning. arXiv 2016, arXiv:1605.08695. Available online: https://arxiv.org/abs/1605.08695 (accessed on 22 March 2024).
- Kluyver, T.; Ragan-Kelley, B.; Pé Rez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter Notebooks – A Publishing Format for Reproducible Computational Workflows; Ebooks.iospress.nl; IOS Press: Amsterdam, The Netherlands, 2016; Available online: https://ebooks.iospress.nl/publication/42900 (accessed on 22 March 2024).
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminformatics 2011, 3, 33. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Samdani, A.; Vetrivel, U. POAP: A GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening. Comput. Biol. Chem. 2018, 74, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Bepari, A.K.; Shatabda, S.; Reza, H.M. Virtual screening of flavonoids as potential RIPK1 inhibitors for neurodegeneration therapy. PeerJ 2024, 12, e16762. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Singh, N.; Villoutreix, B.O. A Hybrid Docking and Machine Learning Approach to Enhance the Performance of Virtual Screening Carried out on Protein–Protein Interfaces. Int. J. Mol. Sci. 2022, 23, 14364. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Deng, Z.K.; Jiang, S.L.; Guan, Y.; Di Wu, H.Z.; Wang, X.L.; Xiao, S.S.; Zhang, Y.; Yang, J.M.; Cao, D.S.; et al. Identification of a Novel Bcl-2 Inhibitor by Ligand-Based Screening and Investigation of Its Anti-cancer Effect on Human Breast Cancer Cells. Front. Pharmacol. 2019, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Laraia, L.; Robke, L.; Waldmann, H. Bioactive Compound Collections: From Design to Target Identification. Chem 2018, 4, 705–730. [Google Scholar] [CrossRef]
- Pan, Y.; Huang, N.; Cho, S.; MacKerell, A.D. Consideration of molecular weight during compound selection in virtual tar-get-based database screening. J. Chem. Inf. Comput. Sci. 2003, 43, 267–272. [Google Scholar] [CrossRef]
- Lachowiez, C.; DiNardo, C.D.; Konopleva, M. Venetoclax in acute myeloid leukemia–current and future directions. Leuk. Lymphoma 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.S.; Liang, Y.Z.; Xu, Q.S.; Zhang, L.X.; Hu, Q.N.; Li, H.D. Feature importance sampling-based adaptive random forest as a useful tool to screen underlying lead compounds. J. Chemom. 2011, 25, 201–207. [Google Scholar] [CrossRef]
PDB ID | Ligand ID | Ligand Formula | Ligand MW | Ligand SMILES |
---|---|---|---|---|
4LVT | 1XJ | C47 H55 Cl F3 N5 O6 S3 | 974.613 | CC1(CCC(=C(C1)CN2CCN(CC2)c3ccc(cc3)C(=O)NS(=O)(=O)c4ccc(c(c4)S(=O)(=O)C(F)(F)F)NC(CCN5CCOCC5)CSc6ccccc6)c7ccc(cc7)Cl)C |
4LXD | 1XV | C34 H38 Cl N5 O7 S | 696.213 | c1cc(ccc1C2=C(COCC2)CN3CCN(CC3)c4ccc(cc4)C(=O)NS(=O)(=O)c5ccc(c(c5)[N+](=O)[O-])NC6CCOCC6)Cl |
4MAN | 1Y1 | C48 H52 Cl N7 O8 S | 922.487 | CN(C)CCOc1cccc(c1CN2CCN(CC2)c3ccc(c(c3)Oc4ccc5c(c4)cc[nH]5)C(=O)NS(=O)(=O)c6ccc(c(c6)[N+](=O)[O-])NCC7CCOCC7)c8ccc(cc8)Cl |
4AQ3 | 398 | C40 H41 Cl I N5 O5 S | 866.21 | CCCCN(CCCC)C(=O)c1c(c(n(n1)c2ccc(cc2C(=O)N3CCc4ccccc4C3)C(=O)NS(=O)(=O)c5ccc6ccc(cc6c5)I)C)Cl |
1YSW | 43B | C36 H30 N4 O5 S3 | 694.842 | c1ccc(cc1)CCc2nc3cc(ccc3s2)c4ccc(cc4)C(=O)NS(=O)(=O)c5ccc(c(c5)[N+](=O)[O-])NCCSc6ccccc6 |
2W3L | DRO | C34 H30 Cl N5 O2 | 576.087 | Cc1c(c(nn1c2ccccc2C(=O)N3Cc4ccccc4CC3CN)C(=O)N(c5ccccc5)c6ccccc6)Cl |
6GL8 | F3Q | C43 H42 N4 O6 | 710.817 | c1ccc(cc1)N(c2ccc(cc2)O)C(=O)c3cc(n4c3CCCC4)c5cc6c(cc5C(=O)N7Cc8ccccc8CC7CN9CCOCC9)OCO6 |
6QGG | J1H | C44 H48 Cl N6 O7 S2 | 872.471 | C[N+](C)(CCC(CSc1ccccc1)Nc2ccc(cc2[N+](=O)[O-])S(=O)(=O)NC(=O)c3ccc(cc3)N4CCN(CC4)Cc5ccccc5c6ccc(cc6)Cl)CC(=O)O |
6QGK | J1Q | C30 H39 N5 O2 | 501.663 | CCCCN(CCCC)C(=O)c1cc(n(n1)c2ccccc2C(=O)N3Cc4ccccc4CC3CN)C |
6QGJ | J1T | C48 H51 F3 N4 O9 S3 | 981.13 | COc1cc2c(cc1C(CN3CCCC3)c4ccc(cc4)c5ccc(cc5)C(=O)NS(=O)(=O)c6ccc(c(c6)S(=O)(=O)C(F)(F)F)NC(CCN7CCOCC7)CSc8ccccc8)OCO2 |
6O0K | LBM | C45 H50 Cl N7 O7 S | 868.439 | CC1(CCC(=C(C1)c2ccc(cc2)Cl)CN3CCN(CC3)c4ccc(c(c4)Oc5cc6cc[nH]c6nc5)C(=O)NS(=O)(=O)c7ccc(c(c7)[N+](=O)[O-])NCC8CCOCC8)C |
2O2F | LI0 | C36 H40 N4 O6 S2 | 688.856 | CC(C)(CSc1ccccc1)Nc2ccc(cc2[N+](=O)[O-])S(=O)(=O)NC(=O)c3ccc(cc3)N4CCC(CC4)(Cc5ccccc5)OC |
2O22 | LIU | C30 H36 N4 O5 S2 | 596.761 | CC1(CCN(CC1)c2ccc(cc2)C(=O)NS(=O)(=O)c3ccc(c(c3)[N+](=O)[O-])NC(C)(C)CSc4ccccc4)C |
8U27 | ULL | C26 H24 Br N3 O3 | 506.391 | CC(C)OC(=O)Nc1ccc(cc1)C2=NN(C(C2)c3ccccc3)C(=O)c4ccc(cc4)Br |
7LHB | XZD | C46 H53 Cl N7 O11 P S | 978.445 | CC1(CCC(=C(C1)c2ccc(cc2)Cl)CN3CCN(CC3)c4ccc(c(c4)Oc5cc-6ccnc6n(c5)COP(=O)(O)O)C(=O)NS(=O)(=O)c7ccc(c(c7)[N+](=O)[O-])NCC8CCOCC8)C |
ID | Docking Score | SMILES | MW |
---|---|---|---|
CHEMBL3940231 | −11 | CCCCN(C(=O)C1=NN(C(C)=C1Cl)C1=CC=C(C=C1C(=O)N1CCC2=CC=CC=C2C1)C(=O)NS(=O)(=O)C1=CC2=CC=CC=C2C=C1)C1=CC=CC(=C1)C1=CC=CC(Cl)=C1 | 870.86 |
CHEMBL3938023 | −10.9 | CC1(C)CCC(CN2CCN(CC2)C2=CC=C(C(=O)NS(=O)(=O)C3=CC4=CC=CC=C4C=C3)C(OC3=CN=C4NC=CC4=C3)=C2)=C(C1)C1=CC=C(Cl)C=C1 | 760.36 |
CHEMBL3947358 | −10.8 | [O-][N+](=O)C1=CC(=CC=C1NC1CCN(CC1)S(=O)(=O)C1=CC=CC2=CC=CN=C12)S(=O)(=O)NC(=O)C1=CC=C(C=C1OC1=CC=CC=C1)N1CCN(CC2=CC=CC=C2C2=CC=C(Cl)C=C2)CC1 | 972.55 |
CHEMBL3983989 | −10.6 | CC1(C)CCC(CN2CCN(CC2)C2=CC=C(C(=O)NS(=O)(=O)C3=CN=C(OCC4(F)CCOCC4)C(=C3)C(F)(F)F)C(OC3=CN=C4NC=CC4=C3)=C2)=C(C1)C1=CC=C(Cl)C=C1 | 911.42 |
CHEMBL2031007 | −10.6 | CCCN(CCC)C1=NC(=CC=N1)C1=CC=C(C=C1C(=O)N1CCC2=C(C1)C=CC=C2)C(=O)NS(=O)(=O)C1=CC2=CC=CC=C2C=C1 | 647.80 |
CHEMBL3958123 | −10.6 | CC1(C)CCC(CN2CCN(CC2)C2=CC=C(C(=O)NS(=O)(=O)C3=CC=C(NC4CCN(CC4)C4CC5=CC=CC=C5C4)C(=C3)[N+]([O-])=O)C(OC3=CC=C4NC=CC4=C3)=C2)=C(C1)C1=CC=C(Cl)C=C1 | 968.62 |
CHEMBL3654087 | −10.5 | CC1(C)CCC(CN2CCN(CC2)C2=CC=C(C(=O)NS(=O)(=O)C3=CC=C(N[C@H]4CCCN(C4)C4CCOCC4)C(=C3)[N+]([O-])=O)C(OC3=C(F)C=C4NC=CC4=C3)=C2)=C(C1)C1=CC=C(Cl)C=C1 | 954.57 |
CHEMBL2431929 | −10.5 | OC(=O)C1=C(O)C=C(C=C1)N(CC1=CC=C(C=C1)C1CCCCC1)C(=O)CN(CC1=CC=CC=C1C#N)S(=O)(=O)C1=C(F)C(F)=C(F)C(F)=C1F | 727.71 |
DB03063 | −10.5 | COC1=CC(=CC(OC)=C1OCC1=CC=CC=C1)C(=O)N[C@@H](CC1=CC=CC=C1)[C@@H](O)CN(CC[C@@H]1CCC2OCOC2C1)C(=O)CCN1C(=O)C2=C(C=CC=C2)C1=O | 805.92 |
CHEMBL2030847 | −10.4 | CCCCC1=C(C(CO)=NN1C1=CC=CC=C1)C1=C(C=C(C=C1)C(=O)NS(=O)(=O)C1=CC2=CC=CC=C2C=C1)C(=O)N1CCC2=C(C1)C=CC=C2 | 698.84 |
CHEMBL3137309(Venetoclax) | −9.8 | CC1(C)CCC(CN2CCN(CC2)C2=CC=C(C(=O)NS(=O)(=O)C3=CC=C(NCC4CCOCC4)C(=C3)[N+]([O-])=O)C(OC3=CN=C4NC=CC4=C3)=C2)=C(C1)C1=CC=C(Cl)C=C1 | 868.45 |
Ligand | Donor | Acceptor | Occupancy |
---|---|---|---|
CHEMBL3940231 | ASN78-Side-ND2 | LIG143-Side-O4 | 0.15% |
ASN78-Side-ND2 | LIG143-Side-O5 | 0.20% | |
TYR43-Side-OH | LIG143-Side-O3 | 0.10% | |
CHEMBL3938023 | LIG143-Side-N4 | ASP38-Side-OD1 | 2.40% |
ASN78-Side-ND2 | LIG143-Side-O2 | 5.09% | |
ARG42-Side-NH1 | LIG143-Side-N3 | 32.87% | |
LIG143-Side-N2 | ASP46-Side-OD2 | 8.09% | |
TYR43-Side-OH | LIG143-Side-O1 | 1.00% | |
LIG143-Side-N2 | ASP46-Side-OD1 | 14.89% | |
LIG143-Side-N4 | ASP38-Side-OD2 | 3.75% | |
ASN78-Side-ND2 | LIG143-Side-O3 | 0.95% | |
ARG42-Side-NH2 | LIG143-Side-N3 | 0.75% | |
ARG42-Side-NE | LIG143-Side-N3 | 0.05% | |
LIG143-Side-C30 | ASP38-Side-OD1 | 0.05% | |
LIG143-Side-N4 | ARG142-Side-OT2 | 0.25% | |
LIG143-Side-N4 | ARG142-Side-OT1 | 0.15% | |
CHEMBL3947358 | ASN78-Side-ND2 | LIG143-Side-O8 | 0.05% |
ASN78-Side-ND2 | LIG143-Side-O2 | 2.50% | |
ARG81-Side-NE | LIG143-Side-O1 | 0.05% | |
ASN78-Side-ND2 | LIG143-Side-O1 | 0.20% | |
ASN78-Side-ND2 | LIG143-Side-O3 | 6.99% | |
TYR43-Side-OH | LIG143-Side-O1 | 23.53% | |
ASN78-Side-ND2 | LIG143-Side-C47 | 0.05% | |
TYR43-Side-OH | LIG143-Side-O4 | 0.05% | |
TYR43-Side-OH | LIG143-Side-O5 | 0.10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tondar, A.; Sánchez-Herrero, S.; Bepari, A.K.; Bahmani, A.; Calvet Liñán, L.; Hervás-Marín, D. Virtual Screening of Small Molecules Targeting BCL2 with Machine Learning, Molecular Docking, and MD Simulation. Biomolecules 2024, 14, 544. https://doi.org/10.3390/biom14050544
Tondar A, Sánchez-Herrero S, Bepari AK, Bahmani A, Calvet Liñán L, Hervás-Marín D. Virtual Screening of Small Molecules Targeting BCL2 with Machine Learning, Molecular Docking, and MD Simulation. Biomolecules. 2024; 14(5):544. https://doi.org/10.3390/biom14050544
Chicago/Turabian StyleTondar, Abtin, Sergio Sánchez-Herrero, Asim Kumar Bepari, Amir Bahmani, Laura Calvet Liñán, and David Hervás-Marín. 2024. "Virtual Screening of Small Molecules Targeting BCL2 with Machine Learning, Molecular Docking, and MD Simulation" Biomolecules 14, no. 5: 544. https://doi.org/10.3390/biom14050544
APA StyleTondar, A., Sánchez-Herrero, S., Bepari, A. K., Bahmani, A., Calvet Liñán, L., & Hervás-Marín, D. (2024). Virtual Screening of Small Molecules Targeting BCL2 with Machine Learning, Molecular Docking, and MD Simulation. Biomolecules, 14(5), 544. https://doi.org/10.3390/biom14050544