New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis
Abstract
:1. Introduction
2. The Needs: True (Clonal) Seeds and a Reproductively More Flexible Potato Crop
3. The Genome: Sequences of Opportunities
4. The Genes: The Search for Key Changes in Reproductive Modules
4.1. Genes Modifying Pollen–Pistil Interaction
4.2. Genes Modifying the Formation of Gametes and Associated Apomixis Traits
5. Breeding Strategies and Challenges to Using Apomixis in Potato
5.1. Synthetic Apomixis
5.1.1. Mimicking Apomeiosis
5.1.2. Mimicking Parthenogenesis
5.2. Endosperm Formation
6. Genebanks—An Active, Central Role in Next-Generation Breeding
7. The Technology: Advances and Applications
8. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2023. Revealing the True Cost of Food to Transform Agrifood Systems; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Bradshaw, J.E. Potato Breeding: Theory and Practice; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Lindhout, P.; Meijer, D.; Schotte, T.; Hutten, R.C.B.; Visser, R.G.F.; van Eck, H.J. Towards F1 Hybrid Seed Potato Breeding. Potato Res. 2011, 54, 301–312. [Google Scholar] [CrossRef]
- Monneveux, P.; Ramírez, D.A.; Pino, M.-T. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Sci. 2013, 205–206, 76–86. [Google Scholar] [CrossRef]
- Bradshaw, J.E. Potato-Breeding Strategy. In Potato Biology and Biotechnology; Vreugdenhil, D., Bradshaw, J., Gebhardt, C., Govers, F., Mackerron, D.K.L., Taylor, M.A., Ross, H.A., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2007; Chapter 8; pp. 157–177. [Google Scholar]
- Haverkort, A.J.; Franke, A.C.; Steyn, J.M.; Pronk, A.A.; Caldiz, D.O.; Kooman, P.L. A Robust Potato Model: LINTUL-POTATO-DSS. Potato Res. 2015, 58, 313–327. [Google Scholar] [CrossRef]
- Dadrasi, A.; Torabi, B.; Rahimi, A.; Soltani, A.; Zeinali, E. Modeling Potential production and yield gap of potato using modelling and GIS approaches. Ecol. Model. 2022, 471, 110050. [Google Scholar] [CrossRef]
- Bradshaw, J.E. Plant Breeding: Past, Present and Future; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Du, M.; Wang, T.; Lian, Q.; Zhang, X.; Xin, G.; Pu, Y.; Bryan, G.J.; Qi, J. Developing a new model system for potato genetics by androgenesis. J. Integr. Plant Biol. 2021, 63, 628–633. [Google Scholar] [CrossRef]
- Dewitte, A.; Van Laere, K.; Van Huylenbroeck, J. Use of 2n Gametes in Plant Breeding. In Plant Breeding; Abdurakhmonov, I., Ed.; InTech.: Riejeka, Croatia, 2012; pp. 59–81. [Google Scholar] [CrossRef]
- Haynes, K.G.; Potts, W.E. Minimizing inbreeding in tetraploids derived through sexual polyploidization. Am. Potato J. 1993, 70, 617–624. [Google Scholar] [CrossRef]
- Ortiz, R. Potato breeding via ploidy manipulations. Plant Breed. Rev. 1998, 16, 15–86. [Google Scholar]
- Carputo, D.; Barone, A.; Frusciante, L. 2n gametes in the potato: Essential ingredients for breeding and germplasm transfer. Theor. Appl. Genet. 2000, 101, 805–813. [Google Scholar] [CrossRef]
- Ortiz, R.; Mihovilovich, E. Genetics and Cytogenetics of the Potato. In The Potato Crop; Campos, H., Ortiz, O., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Andino, M.; Gaiero, P.; González-Barrios, P.; Galván, G.; Vilaró, F.; Speranza, P. Potato Introgressive Hybridisation Breeding for Bacterial Wilt Resistance Using Solanum commersonii Dun. As Donor: Genetic and Agronomic Characterisation of a Backcross 3 Progeny. Potato Res. 2022, 65, 119–136. [Google Scholar] [CrossRef]
- Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature 2011, 475, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Hoopes, G.; Meng, X.; Hamilton, J.P.; Achakkagari, S.R.; de Alves, F.; Guesdes, F.; Bolger, M.E.; Coombs, J.J.; Esselink, D.; Kaiser, N.R.; et al. Phased, chromosome scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Mol. Plant 2022, 15, 520–536. [Google Scholar] [CrossRef]
- Hosaka, K.; Hanneman, R.E. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S-locus inhibitor (Sli) gene. Euphytica 1998, 99, 191–197. [Google Scholar] [CrossRef]
- Hosaka, K.; Hanneman, R.E. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S-locus inhibitor (Sli) gene on the potato genome using DNA markers. Euphytica 1998, 103, 265–271. [Google Scholar] [CrossRef]
- Eggers, E.-J.; van der Burgt, A.; van Heusden, S.A.W.; de Vries, M.E.; Visser, R.G.F.; Bachem, C.W.B.; Lindhout, P. Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato. Nat. Commun. 2021, 12, 4141. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, C.; Zhang, B.; Tang, F.; Li, F.; Liao, Q.; Tang, D.; Peng, Z.; Jia, Y.; Gao, M.; et al. A non S-locus F-box gene breaks self-incompatibility in diploid potatoes. Nat. Commun. 2021, 12, 4142. [Google Scholar] [CrossRef]
- Ye, M.; Peng, Z.; Tang, D.; Yang, Z.; Li, D.; Xu, Y.; Zhang, C.; Huang, S. Generation of self-compatible diploid potato by knockout of S-RNase. Nat. Plants 2018, 4, 651–654. [Google Scholar] [CrossRef]
- Enciso-Rodriguez, F.; Manrique-Carpintero, N.C.; Nadakuduti, S.S.; Buell, C.R.; Zarka, D.; Douches, D. Overcoming Self-Incompatibility in Diploid Potato Using CRISPR-Cas9. Front. Plant Sci. 2019, 10, 376. [Google Scholar] [CrossRef]
- Bradshaw, J.E. Breeding Diploid F1 Hybrid Potatoes for Propagation from Botanical Seed (TPS): Comparisons with Theory and Other Crops. Plants 2022, 11, 1121. [Google Scholar] [CrossRef]
- van Dijk, P.J.; Rigola, D.; Schauer, S.E. Plant breeding: Surprisingly, less sex is better. Curr. Biol. 2016, 26, R122–R124. [Google Scholar] [CrossRef] [PubMed]
- Hojsgaard, D.; Pullaiah, T. Apomixis in Angiosperms: Mechanisms, Occurrences, and Biotechnology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar] [CrossRef]
- Hand, M.L.; Koltunow, A.M. The genetic control of apomixis: Asexual seed formation. Genetics 2014, 197, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Hörandl, E. The evolution of self-fertility in apomictic plants. Sex. Plant Reprod. 2010, 23, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Hojsgaard, D.H.; Martínez, E.J.; Quarin, C.L. Competition between meiotic and apomictic pathways during ovule and seed development results in clonality. New Phytol. 2013, 197, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Karunarathne, P.; Reutemann, A.V.; Schedler, M.; Gluecksberg, A.; Martinez, E.J.; Honfi, A.I.; Hojsgaard, D.H. Sexual modulation in a polyploid grass: A reproductive contest between environmentally inducible sexual and genetically dominant apomictic pathways. Sci. Rep. 2020, 10, 8319. [Google Scholar] [CrossRef] [PubMed]
- Hojsgaard, D. Apomixis Technology: Separating the Wheat from the Chaff. Genes 2020, 11, 411. [Google Scholar] [CrossRef]
- Conner, J.A.; Mookkan, M.; Huo, H.; Chae, K.; Ozias-Akins, P. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc. Natl. Acad. Sci. USA 2015, 112, 11205–11210. [Google Scholar] [CrossRef]
- Underwood, C.J.; Vijverberg, K.; Rigola, D.; Okamoto, S.; Oplaat, C.; Camp, R.H.M.O.D.; Radoeva, T.; Schauer, S.E.; Fierens, J.; Jansen, K.; et al. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat. Genet. 2022, 54, 84–93. [Google Scholar] [CrossRef]
- Mahlandt, A.; Singh, D.K.; Mercier, R. Engineering apomixis in crops. Theor. Appl. Genet. 2023, 136, 131. [Google Scholar] [CrossRef]
- Forbes, G.A.; Charkowski, A.; Andrade-Piedra, J.; Parker, M.L.; Schulte-Geldermann, E. Potato seed systems. In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Campos, H., Ortiz, O., Eds.; ebook; Springer: Berlin/Heidelberg, Germany, 2020; pp. 431–447. [Google Scholar]
- Lindhout, P.; de Vries, M.; ter Maat, M.; Ying, S.; Viquez-Zamora, M.; van Heusden, S. Hybrid potato breeding for improved varieties. In Achieving Sustainable Cultivation of Potatoes Volume 1: Breeding Improved Varieties; Wang-Pruski, G., Ed.; Burleigh Dodds: Cambridge, UK, 2018; pp. 99–122. [Google Scholar]
- Towill, L.E. Longevity of true seed from tuber-bearing and closely related non-tuber-bearing Solanum species. Am. Potato J. 1983, 60, 75–83. [Google Scholar] [CrossRef]
- Walters, C.; Wheeler, L.M.; Grotenhuis, J.M. Longevity of seeds stored in a genebank: Species characteristics. Seed Sci. Res. 2005, 15, 1–20. [Google Scholar] [CrossRef]
- Bamberg, J. Diurnal alternating temperature improves germination of some wild potato (Solanum) botanical seedlots. Am. J. Potato Res. 2018, 95, 368–373. [Google Scholar] [CrossRef]
- Simmonds, N.W. A review of potato propagation by means of seed, as distinct from clonal propagation by tubers. Potato Res. 1997, 40, 191–214. [Google Scholar] [CrossRef]
- Chujoy, E.; Cabello, R. The canon of potato science: The true potato seed (TPS). Potato Res. 2007, 50, 323–325. [Google Scholar] [CrossRef]
- Snowdon, R.J.; Abbadi, A.; Kox, T.; Schmutzer, T.; Leckband, G. Heterotic Haplotype Capture: Precision breeding for hybrid performance. Trends Plant Sci. 2015, 20, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Krenzer, D.; Frisch, M.; Beckmann, K.; Kox, T.; Flachenecker, C.; Abbadi, A.; Snowdon, R.; Herzoget, E. Simulation-based establishment of base pools for a hybrid breeding program in winter rapeseed. Theor. Appl. Genet. 2024, 137, 16. [Google Scholar] [CrossRef] [PubMed]
- Mascher, M.; Jayakodi, M.; Stein, N. The reinvention of potato. Cell Res. 2021, 31, 1144–1145. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, J.; Lu, H.; Huang, Y.; Yan, H.; Liang, H.; Wang, C.; Wang, K. Engineering synthetic apomixis in different hybrid rice varieties using the Fix strategy. New Crops 2023, 1, 100003. [Google Scholar] [CrossRef]
- Hermsen, J.G.T. Breeding for apomixis in potato: Pursuing a utopian scheme. Euphytica 1980, 29, 595–607. [Google Scholar] [CrossRef]
- Taylor, L.M. Variation patterns of parthenogenetic plants derived from ‘unreduced’ embryo-sacs of Solanum tuberosum ssp. andigena (Juz. et Buk.) Hawkes. Theor. Appl. Genet. 1978, 52, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Jongedijk, E. The pattern of megasporogenesis and megagametogenesis in diploid Solanum species hybrids: Its relevance to the origin of 2n-eggs and the induction of apomixis. Euphytica 1985, 34, 599–611. [Google Scholar] [CrossRef]
- Hils, U.; Pieterse, L. (Eds.) World Catalogue of Potato Varieties 2007; AgriMedia GmbH: Clenze, Germany; Allentown, PA, USA, 2007. [Google Scholar]
- Haverkort, A.J.; Struik, P.C. Yield levels of potato crops: Recent achievements and future prospects. Field Crops Res. 2015, 182, 76–85. [Google Scholar] [CrossRef]
- Mendiburu, A.O.; Peloquin, S.J. The significance of 2n gametes in potato breeding. Theor. Appl. Genet. 1977, 49, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Golmirzaie, A.M.; Malagamba, P.; Pallais, N. Breeding potatoes based on true seed propagation. In Potato Genetics; Bradshaw, J.E., Mackay, G.R., Eds.; CAB International: Wallingford, UK, 1994; pp. 499–513. [Google Scholar]
- Lyzenga, W.J.; Pozniak, C.J.; Kagale, S. Advanced domestication: Harnessing the precision of gene editing in crop breeding. Plant Biotechnol. J. 2021, 19, 660–670. [Google Scholar] [CrossRef]
- Zhou, Q.; Tang, D.; Huang, W.; Yang, Z.; Zhang, Y.; Hamilton, J.P.; Visser, R.G.F.; Bachem, C.W.B.; Buell, C.R.; Zhang, Z.; et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat. Genet. 2020, 52, 1018–1023. [Google Scholar] [CrossRef]
- Sun, H.; Jiao, W.-B.; Krause, K.; Campoy, J.A.; Goel, M.; Folz-Donahue, K.; Kukat, C.; Huettel, B.; Schneeberger, K. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nat. Genet. 2022, 54, 342–348. [Google Scholar] [CrossRef]
- Gutaker, R.M.; Weiß, C.L.; Ellis, D.; Anglin, N.L.; Knapp, S.; Fernández-Alonso, J.L.; Prat, S.; Burbano, H.A. The origins and adaptation of European potatoes reconstructed from historical genomes. Nat. Ecol. Evol. 2019, 3, 1093–1101. [Google Scholar] [CrossRef]
- Li, Y.; Colleoni, C.; Zhang, J.; Liang, Q.; Hu, Y.; Ruess, H.; Simon, R.; Liu, Y.; Liu, H.; Yu, G.; et al. Genomic Analyses Yield Markers for Identifying Agronomically Important Genes in Potato. Mol. Plant 2018, 11, 473–484. [Google Scholar] [CrossRef]
- Tang, R.; Dong, H.; He, L.; Li, P.; Shi, Y.; Yang, Q.; Jia, X.; Li, X.-Q. Genome-wide identification, evolutionary and functional analyses of KFB family members in potato. BMC Plant Biol. 2022, 22, 226. [Google Scholar] [CrossRef]
- Sharma, N.; Siddappa, S.; Malhotra, N.; Thakur, K.; Salaria, N.; Sood, S.; Bhardwaj, V. Advances in potato functional genomics: Implications for crop improvement. Plant Cell Tissue Organ Cult. 2022, 148, 447–464. [Google Scholar] [CrossRef]
- Zhang, F.; Qu, L.; Gu, Y.; Xu, Z.-H.; Xue, H.-W. Resequencing and genome-wide association studies of autotetraploid potato. Mol. Hortic. 2022, 2, 6. [Google Scholar] [CrossRef]
- Lin, X.; Jia, Y.; Heal, R.; Prokchorchik, M.; Sindalovskaya, M.; Olave-Achury, A.; Makechemu, M.; Fairhead, S.; Noureen, A.; Heo, J.; et al. Solanum americanum genome-assisted discovery of immune receptors that detect potato late blight pathogen effectors. Nat. Genet. 2023, 55, 1579–1588. [Google Scholar] [CrossRef]
- Pacheco-Moreno, A.; Stefanato, F.L.; Ford, J.J.; Trippel, C.; Uszkoreit, S.; Ferrafiat, L.; Grenga, L.; Dickens, R.; Kelly, N.; Kingdon, A.D.H.; et al. Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. eLife 2021, 10, e71900. [Google Scholar] [CrossRef]
- Kadiri, M.; Sevugapperumal, N.; Nallusamy, S.; Ragunathan, J.; Ganesan, M.V.; Alfarraj, S.; Ansari, M.J.; Sayyed, R.Z.; Lim, H.R.; Show, P.L. Pan-genome analysis and molecular docking unveil the biocontrol potential of Bacillus velezensis VB7 against Phytophthora infestans. Microbiol. Res. 2023, 268, 127277. [Google Scholar] [CrossRef]
- Ge, T.; Jiang, H.; Tan, E.H.; Johnson, S.B.; Larkin, R.P.; Charkowski, A.O.; Secor, G.; Hao, J. Pangenomic Analysis of Dickeya dianthicola Strains Related to the Outbreak of Blackleg and Soft Rot of Potato in the United States. Plant Dis. 2021, 105, 3946–3955. [Google Scholar] [CrossRef]
- Feingold, S.E.; Massa, G.A.; Norero, N.S.; Lorenzen, J. Initiatives on potato functional genetics. Am. J. Plant Sci. Biotechnol. 2010, 4, 79–89. [Google Scholar]
- Chincinska, I.A.; Miklaszewska, M.; Sołtys-Kalina, D. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing. Planta 2023, 257, 25. [Google Scholar] [CrossRef]
- Wijnker, E.; Schnittger, A. Control of the meiotic cell division program in plants. Plant Reprod. 2013, 26, 143–158. [Google Scholar] [CrossRef]
- Khanday, I.; Sundaresan, V. Plant zygote development: Recent insights and applications to clonal seeds. Curr. Opin. Plant Biol. 2021, 59, 101993. [Google Scholar] [CrossRef]
- Cigliano, R.A.; Sanseverino, W.; Cremona, G.; Consiglio, F.M.; Conicella, C. Evolution of Parallel Spindles Like genes in plants and highlight of unique domain architecture. BMC Evol. Biol. 2011, 11, 78. [Google Scholar] [CrossRef]
- Mok, D.W.S.; Peloquin, S.J. The inheritance of three mechanisms of diploandroid (2n pollen) formation in diploid potatoes. Heredity 1975, 35, 295–302. [Google Scholar] [CrossRef]
- Mok, D.W.S.; Peloquin, S.J. Breeding value of 2n pollen (diplandroids) in tetraploid × diploid crosses in potatoes. Theor. Appl. Genet. 1975, 46, 307–314. [Google Scholar] [CrossRef]
- Douches, D.S.; Quiros, C.F. Genetic strategies to determine the mode of 2n egg formation in diploid potatoes. Euphytica 1988, 38, 247–260. [Google Scholar] [CrossRef]
- Jongedijk, E.; Ramanna, M.S.; Sawor, Z.; Hermsen, J.G.T. Formation of first division restitution (FDR) 2n-megaspores through pseudohomotypic division in ds-1 (desynapsis) mutants of diploid potato: Routine production of tetraploid progeny from 2x FDR × 2x FDR crosses. Theor. Appl. Genet. 1991, 82, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Siddappa, S.; Bhardwaj, V.; Dalamu Singh, B.; Sharma, N.; Dipta, B.; Kumar, V.; Goutam, U.; Sood, S. Generation of Asynaptic Mutants in Potato by Disrupting StDMC1 Gene Using RNA Interference Approach. Life 2023, 13, 174. [Google Scholar] [CrossRef] [PubMed]
- Clot, C.R.; Klein, D.; Koopman, J.; Schuit, C.; Engelen, C.J.M.; Hutten, R.C.B.; Brouwer, M.; Visser, R.G.F.; Juranić, M.; van Eck, H.J. Crossover shortage in potato is caused by StMSH4 mutant alleles and leads to either highly uniform unreduced pollen or sterility. Genetics 2024, 226, iyad194. [Google Scholar] [CrossRef]
- Hougas, R.W.; Peloquin, S.J.; Ross, R.W. Haploids of the common potato. J. Hered. 1958, 49, 103–107. [Google Scholar] [CrossRef]
- Hermsen, J.G.T.; Verdenius, J. Selection from Solanum tuberosum group Phureja of genotypes combining high frequency haploid induction with homozygosity for embryo spot. Euphytica 1973, 22, 244–259. [Google Scholar] [CrossRef]
- Grun, P.; Ochoa, C.; Capage, D. Evolution of cytoplasmic factors in tetraploid cultivated potato (Solanaceae). Am. J. Bot. 1977, 64, 412–420. [Google Scholar] [CrossRef]
- Iwanaga, M.; Ortiz, R.; Cipar, M.S.; Peloquin, S.J. A restorer gene for genetic-cytoplasmic male sterility in cultivated potatoes. Am. Potato J. 1991, 68, 19–28. [Google Scholar] [CrossRef]
- Anisimova, I.N.; Alpatieva, N.V.; Karabitsina, Y.I.; Gavrilenko, T.A. Nucleotide Sequence Polymorphism in the RFL-PPR Genes of Potato. J. Genet. 2019, 98, 87. [Google Scholar] [CrossRef]
- Johnston, S.A.; den Nijs, T.P.M.; Peloquin, S.J.; Hanneman, R.E., Jr. The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 1980, 57, 5–9. [Google Scholar] [CrossRef]
- Cipar, M.S.; Peloquin, S.J.; Hougas, R.W. Inheritance of incompatibility in hybrids between Solanum tuberosum haploids and diploid species. Euphytica 1964, 13, 163–172. [Google Scholar] [CrossRef]
- Dodds, K.S. The history and relationships of cultivated potatoes. In Essays in Crop Plant Evolution; Hutchinson, J.B., Ed.; Cambridge University Press: Cambridge, UK, 1965; pp. 123–141. [Google Scholar]
- Gebhardt, C.; Ritter, E.; Barone, A.; Debener, T.; Walkemeier, B.; Schachtschabel, U.; Kaufmann, H.; Thompson, R.D.; Bonierbale, M.W.; Ganal, M.W.; et al. RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor. Appl. Genet. 1991, 83, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, H.; Salamini, F.; Thompson, R.D. Sequence variability and gene structure at the self-incompatibility locus of Solanum tuberosum. Mol. Gen. Genet. 1991, 226, 457–466. [Google Scholar] [CrossRef]
- McClure, B.; Cruz-García, F.; Romero, C. Compatibility and incompatibility in S-RNase-based systems. Ann. Bot. 2011, 108, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Huang, S.; Kao, T. S Proteins Control Rejection of Incompatible Pollen in Petunia inflata. Nature 1994, 367, 560–563. [Google Scholar] [CrossRef]
- Murfett, J.; Atherton, T.L.; Mou, B.; Gassert, C.S.; McClure, B.A. S-RNase Expressed in Transgenic Nicotiana Causes S-Allele-Specific Pollen Rejection. Nature 1994, 367, 563–566. [Google Scholar] [CrossRef]
- Sijacic, P.; Wang, X.; Skirpan, A.L.; Wang, Y.; Dowd, P.E.; McCubbin, A.G.; Huang, S.; Kao, T.-H. Identification of the Pollen Determinant of S-RNase-Mediated Self-Incompatibility. Nature 2004, 429, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Entani, T.; Takara, A.; Wang, N.; Fields, A.M.; Hua, Z.; Toyoda, M.; Kawashima, S.; Ando, T.; Isogai, A.; et al. Collaborative Non-Self Recognition System in S-RNase-Based Self-Incompatibility. Science 2010, 330, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.-I.; Paape, T.; Hatakeyama, M.; Entani, T.; Takara, A.; Kajihara, K.; Tsukahara, M.; Shimizu-Inatsugi, R.; Shimizu, K.K.; Takayama, S. Gene Duplication and Genetic Exchange Drive the Evolution of S-RNase-Based Self-Incompatibility in Petunia. Nat. Plants 2015, 1, 14005. [Google Scholar] [CrossRef]
- Sun, L.; Williams, J.S.; Li, S.; Wu, L.; Khatri, W.A.; Stone, P.G.; Keebaugh, M.D.; Kaoa, T.H. S-Locus F-Box Proteins Are Solely Responsible for S-RNase-Based Self-Incompatibility of Petunia Pollen. Plant Cell 2018, 30, 2959–2972. [Google Scholar] [CrossRef]
- Dzidzienyo, D.K.; Bryan, G.J.; Wilde, G.; Robbins, T.P. Allelic Diversity of S-Rnase Alleles in Diploid Potato Species. Theor. Appl. Genet. 2016, 129, 1985–2001. [Google Scholar] [CrossRef]
- Baek, Y.S.; Covey, P.A.; Petersen, J.J.; Chetelat, R.T.; McClure, B.; Bedinger, P.A. Testing the SI × SC rule: Pollen–pistil interactions in interspecific crosses between members of the tomato clade (Solanum section Lycopersicon, Solanaceae). Am. J. Bot. 2015, 102, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Méndez, A.; Lu, L.; McClure, B. HT proteins contribute to S-RNase-independent pollen rejection in Solanum. Plant J. 2017, 89, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Behling, W.L.; Douches, D.S. The effect of self-compatibility factors on interspecific compatibility in Solanum Section Petota. Plants 2023, 12, 1709. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D. The physiology of incompatibility in plants. III. Autopolyploids. J. Genet. 1943, 44, 171–185. [Google Scholar] [CrossRef]
- Lewis, D. Comparative incompatibility in angiosperms and fungi. Adv. Genet. 1954, 6, 235–285. [Google Scholar] [PubMed]
- Kardile, H.B.; Yilma, S.; Sathuvalli, V. Molecular approaches to overcome self-incompatibility. Plants 2022, 11, 1328. [Google Scholar] [CrossRef] [PubMed]
- Hanneman, R.E., Jr. Self fertility in Solanum chacoense. Am. Potato J. 1985, 62, 428–429. [Google Scholar]
- Bedinger, P.A.; Chetelat, R.T.; McClure, B.; Moyle, L.C.; Rose, J.K.; Stack, S.M.; Kumar, A.; Van Der Knaap, E.; Baek, Y.S.; Lopez-Casado, G.; et al. Interspecific reproductive barriers in the tomato clade: Opportunities to decipher mechanisms of reproductive isolation. Sex. Plant Reprod. 2011, 24, 171–187. [Google Scholar] [CrossRef]
- Lewis, D.; Crowe, L. Unilateral interspecific incompatibility in flowering plants. Heredity 1958, 12, 233–256. [Google Scholar] [CrossRef]
- Tovar-Méndez, A.; Kumar, A.; Kondo, K.; Ashford, A.; Baek, Y.S.; Welch, L.; Bedinger, P.A.; McClure, B.A. Restoring pistil-side self-incompatibility factors recapitulates an interspecific reproductive barrier between tomato species. Plant J. 2014, 77, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Hermsen, J.T. General considerations on interspecific hybridization. In Proceedings of the 8th Congress of Eucarpia, Madrid, Spain, 23–25 May 1977; pp. 299–304. [Google Scholar]
- Aversano, R.; Contaldi, F.; Ercolano, M.R.; Grosso, V.; Iorizzo, M.; Tatino, F.; Xumerle, L.; Molin, A.D.; Avanzato, C.; Ferrarini, A.; et al. The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 2015, 27, 954–968. [Google Scholar] [CrossRef] [PubMed]
- Hosaka, A.J.; Sanetomo, R.; Hosaka, K. A de novo genome assembly of Solanum verrucosum Schlechtendal, a Mexican diploid species geographically isolated from other diploid A-genome species of potato relatives. G3 2022, 12, jkac166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peloquin, S.J.; Yerk, G.L.; Werner, J.E.; Darmo, E. Potato breeding with haploids and 2n gametes. Genome 1989, 31, 1000–1004. [Google Scholar] [CrossRef]
- Ortiz, R.; Simon, P.; Jansky, S.; Stelly, D. Ploidy manipulation of the gametophyte, endosperm and sporophyte in nature and for crop improvement: A tribute to Professor Stanley J. Peloquin (1921–2008). Ann. Bot. 2009, 104, 795–807. [Google Scholar] [CrossRef]
- Fukuda, Y. Cytological studies on the development of pollen-grain in different races of Solanum tuberosum L., with special reference to sterility. Bot. Mag. Tokyo 1927, 41, 459–474. [Google Scholar] [CrossRef]
- Paparo, R.; Termolino, P.; De Palma, M.; Cremona, G.; Consiglio, M.F.; Conicella, C. Functional characterization of Parallel Spindles Like (PSL) genes in potato. In Proceedings of the 18th Joint Meeting of the EAPR Breeding and Varietal Assessment Section and the EUCARPIA Section Potatoes, Vico Equense (Na), Italy, 15–18 November 2015. [Google Scholar]
- Cromer, L.; Heyman, J.; Touati, S.; Harashima, H.; Araou, E.; Girard, C.; Horlow, C.; Wassmann, K.; Schnittger, A.; De Veylder, L.; et al. OSD1 Promotes Meiotic Progression via APC/C Inhibition and Forms a Regulatory Network with TDM and CYCA1;2/TAM. PloS Genet. 2012, 8, e1002865. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, H.S.-U.; Shafiq, M.; Ali, H.; Ashfaq, M.; Anwar, A.; Tabassum, J.; Ali, Q.; Jilani, G.; Awais, M.; Sahu, R.; et al. Genome-Wide Identification, and In-Silico Expression Analysis of YABBY Gene Family in Response to Biotic and Abiotic Stresses in Potato (Solanum tuberosum). Genes 2023, 14, 824. [Google Scholar] [CrossRef] [PubMed]
- Brownfield, L.; Kölher, C. Unreduced gamete formation in plants: Mechanisms and prospects. J. Exp. Bot. 2011, 62, 1659–1668. [Google Scholar] [CrossRef]
- De Storme, N.; Geelen, D. Sexual polyploidization in plants—Cytological mechanisms and molecular regulation. New Phytol. 2013, 198, 670–684. [Google Scholar] [CrossRef]
- Stelly, D.M.; Peloquin, S.J. Formation of 2N Megagametophytes in Diploid Tuber-Bearing Solanums. Am. J. Bot. 1986, 73, 1351–1363. [Google Scholar] [CrossRef]
- Werner, J.E.; Peloquin, S.J. Inheritance and two mechanisms of 2n egg formation in 2x potatoes. J. Hered. 1990, 81, 371–374. [Google Scholar]
- Peloquin, S.J.; Boiteux, L.S.; Simon, P.W.; Jansky, S.H. A Chromosome-Specific Estimate of Transmission of Heterozygosity by 2n Gametes in Potato, J. Hered. 2008, 99, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Chochlov, S.S.; Zajceva, M.I.; Kutrijanov, P.G. Vyjavlenie Apomiktichiykh Form vo Flore Cvetkovykh Rastenij SSSR. Programma, Metodika, Rezul’taty (Revelation of the Apomictic Forms in the Flora of the Angiosperms of USSR. Programs, Methods and Results); Saratovskogo Universiteta: Saratov, Russia, 1978. (In Russian) [Google Scholar]
- Hojsgaard, D. Transient activation of apomixis in sexual neotriploids may retain genomically altered states and enhance polyploid establishment. Front. Plant Sci. 2018, 9, 230. [Google Scholar] [CrossRef]
- Jongedijk, E.; Ramanna, M.S. Synaptic mutants in potato, Solanum tuberosum L. I. Expression and identity of genes for desynapsis. Genome 1988, 30, 664–670. [Google Scholar] [CrossRef]
- Hermundstad, S.; Peloquin, S. Breeding at the 2x level and sexual polyploidization. In The Production of New Potato Varieties: Technological Advances; Jellis, G., Richardson, D., Eds.; Cambridge University Press: Cambridge, UK, 1987; pp. 197–210. [Google Scholar] [CrossRef]
- Okwuagwu, C.O.; Peloquin, S.J. A method of transferring the intact parental genotype to the offspring via meiotic mutants. Am. Potato J. 1981, 58, 512–513. [Google Scholar]
- Scheben, A.; Hojsgaard, D. Can We Use Gene-Editing to Induce Apomixis in Sexual Plants? Genes 2020, 11, 781. [Google Scholar] [CrossRef]
- Vernet, A.; Meynard, D.; Lian, Q.; Mieulet, D.; Gibert, O.; Bissah, M.; Rivallan, R.; Autran, D.; Leblanc, O.; Meunier, A.C.; et al. High-frequency synthetic apomixis in hybrid rice. Nat. Commun. 2022, 13, 7963. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Xing, H.-L.; Dong, L.; Zhang, H.-Y.; Han, C.-Y.; Wang, X.-C.; Chen, Q.-J. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 2015, 16, 144. [Google Scholar] [CrossRef]
- Toda, E.; Kato, N.; Higashiyama, T.; Takashi, O. Genome editing approaches using reproductive cells/tissues in flowering plants. Front. Genome Ed. 2023, 4, 1085023. [Google Scholar] [CrossRef]
- Nagle, M.F.; Nahata, S.S.; Zahl, B.; Niño de Rivera, A.; Tacker, X.V.; Elorriaga, E.; Ma, C.; Goralogia, G.S.; Klocko, A.L.; Gordon, M.; et al. Knockout of floral and meiosis genes using CRISPR/Cas9 produces male-sterility in Eucalyptus without impacts on vegetative growth. Plant Direct 2023, 7, e507. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, Q.; Shen, Y.; Hua, Y.; Wang, J.; Lin, J.; Wu, M.; Sun, T.; Cheng, Z.; Mercier, R.; et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat. Biotechnol. 2019, 37, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Ozias-Akins, P.; van Dijk, P.J. Mendelian genetics of apomixis in plants. Annu. Rev. Genet. 2007, 41, 509–537. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, W.P.; Wang, C.-J.R.; Golubovskaya, I.N.; Szymaniak, J.M.; Shi, L.; Hamant, O.; Zhu, T.; Harper, L.; Sheridan, W.F.; Cande, W.Z. Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis. Proc. Natl. Acad. Sci. USA 2009, 106, 3603–3608. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hamamura, Y.; Sofroni, K.; Böwer, F.; Stolze, S.C.; Nakagami, H.; Schnittger, A. SWITCH 1/DYAD is a WINGS APART-LIKE antagonist that maintains sister chromatid cohesion in meiosis. Nat. Commun. 2019, 10, 1755. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.W.; Albertsen, M.C.; Williams, M.E.; Lawit, S.J.; Chamberlin, M.A.; Grossniklaus, U.; Brunner, G.A.; Chumak, N.; De Asis, J.B.; Pasquer, F. Methods and Compositions for the Production of Unreduced, Non-Recombined Gametes and Clonal Offspring. Patent No. WO 2016/179522 A1, 2016. Available online: https://lens.org/010-079-811-462-856 (accessed on 2 April 2024).
- Grossniklaus, U. The Quest for Clonal Seeds: Towards Engineering Apomixis in Maize; NAIST Seminar; Nara Institute of Science and Technology: Nara, Japan, 2019. [Google Scholar]
- Underwood, C.J.; Mercier, R. Engineering Apomixis: Clonal Seeds Approaching the Fields. Annu. Rev. Plant Biol. 2022, 73, 201–225. [Google Scholar] [CrossRef] [PubMed]
- Vrielynck, N.; Schneider, K.; Rodriguez, M.; Sims, J.; Chambon, A.; Hurel, A.; De Muyt, A.; Ronceret, A.; Krsicka, O.; Mézard, C.; et al. Conservation and divergence of meiotic DNA double strand break forming mechanisms in Arabidopsis thaliana. Nucleic Acids Res. 2021, 49, 9821–9835. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Dong, F.; Edelmann, R.E.; Makaroff, C.A. The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J. Cell Sci. 2003, 116, 2999–3007. [Google Scholar] [CrossRef]
- Mieulet, D.; Jolivet, S.; Rivard, M.; Cromer, L.; Vernet, A.; Mayonove, P.; Pereira, L.; Droc, G.; Courtois, B.; Guiderdoni, E.; et al. Turning rice meiosis into mitosis. Cell Res. 2016, 26, 1242–1254. [Google Scholar] [CrossRef]
- Thangavel, G.; Hofstatter, P.G.; Mercier, R.; Marques, A. Tracing the evolution of the plant meiotic molecular machinery. Plant Reprod. 2023, 36, 73–95. [Google Scholar] [CrossRef]
- Bastiaanssen, H.J.M.; Berg, P.M.M.M.V.D.; Lindhout, P.; Jacobsen, E.; Ramanna, M.S. Postmeiotic restitution in 2n-egg formation of diploid potato. Heredity 1998, 81, 20–27. [Google Scholar] [CrossRef]
- Vijverberg, K.; Ozias-Akins, P.; Schranz, M.E. Identifying and Engineering Genes for Parthenogenesis in Plants. Front. Plant Sci. 2019, 10, 128. [Google Scholar] [CrossRef]
- Boutilier, K.; Oringa, R.; Sharma, V.K.; Kieft, H.; Ouellet, T.; Zhang, L.; Hattori, J.; Liu, C.-M.; van Lammeren, A.A.M.; Miki, B.L.A.; et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 2002, 14, 1737–1749. [Google Scholar] [CrossRef]
- Conner, J.A.; Podio, M.; Ozias-Akins, P. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. Plant Reprod. 2017, 30, 41–52. [Google Scholar] [CrossRef]
- Zhang, Z.; Conner, J.; Guo, Y.; Ozias-Akins, P. Haploidy in tobacco induced by PsASGR-BBML transgenes via parthenogenesis. Genes 2020, 11, 1072. [Google Scholar] [CrossRef]
- Catanach, A.S.; Erasmuson, S.K.; Podivinsky, E.; Jordan, B.R.; Bicknell, R. Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc. Natl. Acad. Sci. USA 2006, 103, 18650–18655. [Google Scholar] [CrossRef]
- Xu, Y.; Jia, H.; Wu, X.; Koltunow, A.M.G.; Deng, X.; Xu, X. Regulation of nucellar embryony, a mode of sporophytic apomixis in Citrus resembling somatic embryogenesis. Curr. Opin. Plant Biol. 2021, 59, 101984. [Google Scholar] [CrossRef]
- Koszegi, D.; Johnston, A.J.; Rutten, T.; Czihal, A.; Altschmied, L.; Kumlehn, J.; Wust, S.E.J.; Kirioukhova, O.; Gheyselinck, J.; Grossniklaus, U.; et al. Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J. 2011, 67, 280–291. [Google Scholar] [CrossRef]
- Waki, T.; Hiki, T.; Watanabe, R.; Hashimoto, T.; Nakajima, K. The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Curr. Biol. 2011, 21, 1277–1281. [Google Scholar] [CrossRef]
- Ravi, M.; Chan, S.W.L. Haploid plants produced by centromere-mediated genome elimination. Nature 2010, 464, 615–618. [Google Scholar] [CrossRef]
- Marimuthu, M.P.A.; Jolivet, S.; Ravi, M.; Pereira, L.; Davda, J.N.; Cromer, L.; Wang, L.; Nogué, F.; Chan, S.W.L.; Siddiqi, I.; et al. Synthetic clonal reproduction through seeds. Science 2011, 331, 876. [Google Scholar] [CrossRef]
- Gilles, L.M.; Khaled, A.; Laffaire, J.B.; Chaignon, S.; Gendrot, G.; Laplaige, J.; Berges, H.; Beydon, G.; Bayle, V.; Barret, P.; et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 2017, 36, 707–717. [Google Scholar] [CrossRef]
- Kelliher, T.; Starr, D.; Richbourg, L.; Chintamanani, S.; Delzer, B.; Nuccio, M.L.; Green, J.; Chen, Z.; McCuiston, J.; Wang, W.; et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 2017, 542, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, X.; Meng, D.; Zhong, Y.; Chen, C.; Dong, X.; Xu, X.; Chen, B.; Li, W.; Li, L.; et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol. Plant 2017, 10, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhang, Y.; Liu, C.; Liu, Y.; Wang, Y.; Liang, D.; Liu, J.; Sahoo, G.; Kelliher, T. OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants 2018, 4, 530–533. [Google Scholar] [CrossRef]
- Liu, C.; Zhong, Y.; Qi, X.; Chen, M.; Liu, Z.; Chen, C.; Tian, X.; Li, J.; Jiao, Y.; Wang, D.; et al. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol. J. 2020, 18, 316–318. [Google Scholar] [CrossRef]
- Hanneman, R.E., Jr. The reproductive biology of the potato and its implication for breeding. Potato Res. 1999, 42, 283–312. [Google Scholar] [CrossRef]
- Nishiyama, I.; Yabuno, T. Interspecific cross-incompatibility due to disturbed activation of the polar nuclei by the male nucleus. Breed. Sci. (Ikushugaku Zasshi) 1978, 28, 71–80. [Google Scholar] [CrossRef]
- Quarin, C.L. Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum. Sex. Plant Reprod. 1999, 11, 331–335. [Google Scholar] [CrossRef]
- Talent, N.; Dickinson, T.A. Endosperm formation in aposporous Crataegus (Rosaceae, Spiraeoideae, tribe Pyreae): Parallels to Ranunculaceae and Poaceae. New Phytol. 2007, 173, 231–249. [Google Scholar] [CrossRef]
- Bellucci, M.; Cáceres, M.E.; Paolocci, F.; Vega, J.M.; Ortiz, J.P.A.; Ceccarelli, M.; De Marchis, F.; Pupilli, F. ORIGIN OF RECOGNITION COMPLEX 3 controls the development of maternal excess endosperm in the Paspalum simplex agamic complex (Poaceae). J. Exp. Bot. 2023, 74, 3074–3093. [Google Scholar] [CrossRef]
- Grossniklaus, U.; Paro, R. Transcriptional silencing by polycomb-group proteins. Cold Spring Harb. Perspect. Biol. 2014, 6, a019331. [Google Scholar] [CrossRef]
- Hawkes, J.G.; Jackson, M.T. Taxonomic and evolutionary implications of the Endosperm Balance Number hypothesis in potatoes. Theor. Appl. Genet. 1992, 84, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K. Potato genetics, genomics, and applications. Breed. Sci. 2015, 65, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Ehlenfeldt, M.K.; Hanneman, R.E., Jr. Genetic control of endosperm balance number (EBN): Three additive loci in a thresholdlike system. Theor. Appl. Genet. 1988, 75, 825–832. [Google Scholar] [CrossRef]
- Bamberg, J.B. Allelism of endosperm balance number (EBN) in Solanum acaule Bitt. and other wild potato species. Theor. Appl. Genet. 1994, 89, 682–686. [Google Scholar] [CrossRef]
- Eijlander, R.; Stiekema, W.J. Biological containment of potato (Solanum tuberosum): Outcrossing to the related wild species black nightshade (Solanum nigrum) and bittersweet (Solanum dulcamara). Sex. Plant Reprod. 1994, 7, 29–40. [Google Scholar] [CrossRef]
- Ortiz, R. The state of the use of potato genetic diversity. In Broadening the Genetic Base of Crop Production; CABI Publishing: Wallingford, UK, 2001; pp. 181–200. [Google Scholar]
- Carputo, D.; Barone, A. Ploidy level manipulations in potato through sexual hybridization. Ann. Appl. Biol. 2005, 146, 71–79. [Google Scholar] [CrossRef]
- Jansky, S. Overcoming hybridization barriers in potato. Plant Breed. 2006, 125, 1–12. [Google Scholar] [CrossRef]
- Behling, W.; Coombs, J.; Collins, P.; Douches, D. An Analysis of Inter-Endosperm Balance Number Crosses with the Wild Potato Solanum verrucosum. Am. J. Potato Res. 2024, 101, 34–44. [Google Scholar] [CrossRef]
- Hosaka, K.; Sanetomo, R. Creation of a highly homozygous diploid potato using the S locus inhibitor (Sli) gene. Euphytica 2020, 216, 169. [Google Scholar] [CrossRef]
- Bohórquez-Quintero, M.A.; Galvis-Tarazona, D.Y.; Arias-Moreno, D.M.; Ojeda-Peréz, Z.Z.; Ochatt, S.; Rodríguez-Molano, L.E. Morphological and anatomical characterization of yellow diploid potato flower for effective breeding program. Sci. Rep. 2022, 12, 16402. [Google Scholar] [CrossRef]
- Rabinowitz, D.; Linder, C.R.; Ortega, R.; Begazo, D.; Murguia, H.; Douches, D.S.; Quiros, C.F. High levels of interspecific hybridization between Solanum sparsipilum and S. stenotomum in experimental plots in the Andes. Am. Potato J. 1990, 67, 73–81. [Google Scholar] [CrossRef]
- Quiros, C.F.; Ortega, R.; Van Raamsdonk, L.; Herrera-Montoya, M.; Cisneros, P.; Schmidt, E.; Brush, S.B. Increase of potato genetic resources in their center of diversity: The role of natural outcrossing and selection by the Andean farmer. Genet. Resour. Crop Evol. 1992, 39, 107–112. [Google Scholar] [CrossRef]
- Nagel, M.; Dulloo, E.; Bissessur, P.; Gavrilenko, T.; Bamberg, J.; Ellis, D.; Giovannini, P. Global Strategy for the Conservation of Potato; Global Crop Diversity Trust: Bonn, Germany, 2022. [Google Scholar] [CrossRef]
- Hawkes, J.G. The Potato: Evolution, Biodiversity & Genetic Resources; Belhaven Press: London, UK, 1990; 259p. [Google Scholar]
- Spooner, D.M.; Ghislain, M.; Simon, R.; Jansky, S.H.; Gavrilenko, T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot. Rev. 2014, 80, 283–383. [Google Scholar] [CrossRef]
- Quinn, A.A.; Mok, D.W.S.; Peloquin, S.J. Distribution and significance of diplandroids among the diploid Solanums. Am. Potato J. 1974, 51, 16–21. [Google Scholar] [CrossRef]
- Camadro, E.L.; Peloquin, S.J. The occurrence and frequency of 2n pollen in three diploid solanums from Northwest Argentina. Theor. Appl. Genet. 1980, 56, 11–15. [Google Scholar] [CrossRef]
- Conicella, C.; Barone, A.; Del Giudice, A.; Frusciante, L.; Monti, L.M. Cytological evidences of SDR-FDR mixture in the formation of 2n eggs in a potato diploid clone. Theor. Appl. Genet. 1991, 81, 59–63. [Google Scholar] [CrossRef]
- Correll, D.S. The Potato and Its Wild Relatives: Section Tuberarium of the Genus Solanum; Texas Research Foundation: Renner, TX, USA, 1962. [Google Scholar]
- Dodds, K.S. Classification of cultivated potatoes. In The Potato and Its Wild Relatives; Correll, D.S., Ed.; Texas Research Foundation: Renner, TX, USA, 1962; pp. 517–539. [Google Scholar]
- Ellis, D.; Salas, A.; Chavez, O.; Gomez, R.; Anglin, N. Ex situ conservation of potato [Solanum section Petota (Solanaceae)] genetic resources in genebanks. In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Campos, H., Ortiz, O., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 109–138. [Google Scholar] [CrossRef]
- Nahirñak, V.; Almasia, N.I.; González, M.N.; Massa, G.A.; Oneto, C.A.D.; Feingold, S.E.; Hopp, H.E.; Rovere, C.V. State of the Art of Genetic Engineering in Potato: From the First Report to Its Future Potential. Front. Plant Sci. 2022, 12, 3181. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Challam, C.; Chakrabarti, S.K.; Feingold, S.E. Climate Smart Potato: An integrated breeding, genomics and phenomics approach. In Genomic Designing of Climate Smart Vegetable Crops; Springer Nature: Cham, Switzerland, 2019; pp. 1–46. ISBN 978-3-319-97414-9. [Google Scholar]
- Raman, R. The impact of Genetically Modified (GM) crops in modern agriculture: A review. GM Crops Food 2017, 8, 195–208. [Google Scholar] [CrossRef]
- González, M.N.; Massa, G.A.; Andersson, M.; Décima Oneto, C.A.; Turesson, H.; Storani, L.; Olsson, N.; Fält, A.-S.; Hofvander, P.; Feingold, S.E. Comparative potato genome editing: Agrobacterium tumefaciens-mediated transformation and protoplasts transfection delivery of CRISPR/Cas9 components directed to StPPO2 gene. Plant Cell Tissue Organ Cult. 2021, 145, 291–305. [Google Scholar] [CrossRef]
- Zhu, H.; Li, C.; Gao, C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 2020, 21, 661–677. [Google Scholar] [CrossRef]
- Touzdjian Pinheiro Kohlrausch Távora, F.; de Assis dos Santos Diniz, F.; de Moraes Rêgo-Machado, C.; Chagas Freitas, N.; Barbosa Monteiro Arraes, F.; Chumbinho de Andrade, E.; Furtado, L.L.; Osiro, K.O.; Lima de Sousa, N.; Cardoso, T.B.; et al. CRISPR/Cas- and Topical RNAi-Based Technologies for Crop Management and Improvement: Reviewing the Risk Assessment and Challenges Towards a More Sustainable Agriculture. Front. Bioeng. Biotechnol. 2022, 10, 913728. [Google Scholar] [CrossRef]
- Gonzalez, M.N.; Messa, G.A.; Andersson, M.; Turesson, H.; Olsson, N.; Falt, A.-S.; Storani, L.; Oneto, C.A.D.; Hofvander, P.; Feingold, S.E. Reduced Enzymatic Browning in Potato Tubers by Specific Editing of a Polyphenol Oxidase Gene via Ribonucleoprotein Complexes Delivery of the CRISPR/Cas9 System. Front. Plant Sci. 2020, 10, 1649. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Buckseth, T.; Challam, C.; Zinta, R.; Bhatia, N.; Dalamu, D.; Naik, S.; Poonia, A.K.; Singh, R.K.; Luthra, S.K.; et al. CRISPR/Cas genome editing in potato: Current status and future perspectives. Front. Genet. 2022, 13, 827808. [Google Scholar] [CrossRef]
- Andersson, M.; Turesson, H.; Nicolia, A.; Fält, A.S.; Samuelsson, M.; Hofvander, P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 2017, 36, 117–128. [Google Scholar] [CrossRef]
- Ly, D.N.P.; Iqbal, S.; Fosu-Nyarko, J.; Milroy, S.; Jones, M.G.K. Multiplex CRISPR-Cas9 Gene-Editing Can Deliver Potato Cultivars with Reduced Browning and Acrylamide. Plants 2023, 12, 379. [Google Scholar] [CrossRef]
- Kieu, N.P.; Lenman, M.; Wang, E.S.; Petersen, B.L.; Andreasson, E. Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci. Rep. 2021, 11, 4487. [Google Scholar] [CrossRef]
- Zhan, X.; Zhang, F.; Zhong, Z.; Chen, R.; Wang, Y.; Chang, L.; Bock, R.; Nie, B.; Zhang, J. Generation of virus-resistant potato plants by RNA genome targeting. Plant Biotechnol. J. 2019, 17, 1814–1822. [Google Scholar] [CrossRef]
- Massa, G.A.; Décima Oneto, C.A.; González, M.N.; Sucar, S.; Nadakuduti, S.S.; Arizmendi, A.; Poulsen Hornum, A.; Douches, D.; Feingold, S.E. Papa cv. Atlantic Tolerante al Endulzamiento Inducido por frío Desarrollada por Edición Génica via CRISPR/Cas9. XIV Simposio REDBIO Argentina. Abstract book. 2023, p. 119. Available online: https://www.redbioargentina.org.ar/simposio-2023/ (accessed on 1 April 2024).
- Zsogon, A.; Cermak, T.; Naves, E.R.; Notini, M.M.; Edel, K.H.; Weinl, S.; Freschi, L.; Voytas, D.F.; Kudla, J.; Peres, L.E.P. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 2018, 36, 1211–1216. [Google Scholar] [CrossRef]
- Debernardi, J.M.; Tricoli, D.M.; Ercoli, M.F.; Hayta, S.; Ronald, P.; Palatnik, J.F.; Dubcovsky, J. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 2020, 38, 1274–1279. [Google Scholar] [CrossRef]
Mutant | Mechanism Involved | Phenotype | Gene(s) 1 | References 2 |
---|---|---|---|---|
ps | Spindle orientation | FDR, 2n gametes, avr. 80% parental heterozygosity transmission | Parallel Spindles Like loci (PSL1-3)? | [69] |
pc/os | Cell division progression | SDR, 2n gametes, avr. 40% parental heterozygosity transmission | unknown | [70,71] |
Sy-1/4 | Chromosome pairing | Asynapsis, reduced fertility, 2n gametes | unknown | [72] |
Ds-1 | Chromosome pairing | Desynapsis, reduced fertility, 2n gametes | unknown | [73] |
DMC1 | Crossing over | Asynapsis, reduced pollen viability | StDMC1 | [74] |
MSH4 | Crossing over | Desynapsis, sterility, 2n gametes | StMSH4 | [75] |
Hi3 | Pseudogametic parthenogenesis | Haploid induction | unknown | [76,77] |
Ms | Plasmon factors | Male sterility 4 | unknown | [78] |
Rf | Inhibits expression of Ms genes | Male fertility restorer | RFL-PPR | [79,80] |
S-locus | Gametophytic self-incompatibility system | Self-incompatibility breakdown | S-RNase5, SLF6 (and HT modifier genes) | [22,23] |
Sli | Self-incompatibility inhibition | Self-compatible plants | S-locus inhibitor | [18,19] |
EBN | Genome dosage | Aberrant endosperm development | unknown | [81] |
Species Sensu Hawkes [175] | Taxonomy Accepted by Spooner et al. [176] | Ploidy | CIP | USDA | VIR | IPK | CGN | All Genebanks |
---|---|---|---|---|---|---|---|---|
S. ajanhuiri | Solanum ajanhuiri Juz. & Bukasov | 2x (2EBN) | 14 | 1 | 9 | 8 | 98 | |
S. chacoense | Solanum chacoense Bitter | 2x (2EBN), 3x | 18 | 167 | 212 | 111 | 72 | 717 |
S. infundibuliforme | Solanum infundibuliforme Phil. | 2x (2EBN) | 9 | 127 | 60 | 4 | 41 | 262 |
S. kurtzianum | Solanum kurtzianum Bitter & Wittm. | 2x (2EBN) | 3 | 94 | 117 | 13 | 34 | 290 |
S. microdontum | Solanum microdontum Bitter | 2x (2EBN), 3x | 14 | 114 | 34 | 44 | 41 | 307 |
S. phureja | S. tuberosum ‘Andigenum group’ diploids | 2x (2EBN) | 197 | 88 | 1 | 350 | ||
S. spegazzini | Solanum brevicaule Bitter | 2x (2EBN), 4x (4EBN), 6x (4EBN) | 3 | n.a. | 74 | 57 | 40 | 195 |
S. stenotomum | S. tuberosum ‘Andigenum group’ diploids | 2x (2EBN) | 110 | n.a. | 108 | 14 | 454 | |
S. sucrense | Solanum brevicaule Bitter | 2x (2EBN), 4x (4EBN), 6x (4EBN) | 13 | n.a. | 26 | 10 | 41 | 101 |
S. tarijense | Solanum berthaultii Hawkes | 2x (2EBN) | 18 | n.a. | 95 | 19 | 27 | 186 |
S. vernei | Solanum vernei Bitter & Wittm. | 2x (2EBN) | 10 | 35 | 36 | 24 | 22 | 192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hojsgaard, D.; Nagel, M.; Feingold, S.E.; Massa, G.A.; Bradshaw, J.E. New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis. Biomolecules 2024, 14, 614. https://doi.org/10.3390/biom14060614
Hojsgaard D, Nagel M, Feingold SE, Massa GA, Bradshaw JE. New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis. Biomolecules. 2024; 14(6):614. https://doi.org/10.3390/biom14060614
Chicago/Turabian StyleHojsgaard, Diego, Manuela Nagel, Sergio E. Feingold, Gabriela A. Massa, and John E. Bradshaw. 2024. "New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis" Biomolecules 14, no. 6: 614. https://doi.org/10.3390/biom14060614
APA StyleHojsgaard, D., Nagel, M., Feingold, S. E., Massa, G. A., & Bradshaw, J. E. (2024). New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis. Biomolecules, 14(6), 614. https://doi.org/10.3390/biom14060614