Role of Specificity Protein 1 (SP1) in Cardiovascular Diseases: Pathological Mechanisms and Therapeutic Potentials
Abstract
:1. Introduction
2. SP1 Gene and Protein Structure
3. Distribution and Biological Functions of SP1
4. SP1 in Cardiac Diseases
4.1. Myocardial Ischemia-Reperfusion Injury
4.2. Coronary Atherosclerotic Heart Disease
4.3. Myocardial Hypertrophy and Cardiomyopathy
4.4. Vascular Disorders
4.5. Arrhythmia
4.6. Others
5. Perspective and Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Liu, S.; Li, Y.; Zeng, X.; Wang, H.; Yin, P.; Wang, L.; Liu, Y.; Liu, J.; Qi, J.; Ran, S.; et al. Burden of Cardiovascular Diseases in China, 1990–2016: Findings from the 2016 Global Burden of Disease Study. JAMA Cardiol. 2019, 4, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Ritchey, M.D.; Wall, H.K.; George, M.G.; Wright, J.S. US trends in premature heart disease mortality over the past 50 years: Where do we go from here? Trends Cardiovasc. Med. 2020, 30, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Murry, C.E.; Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell 2008, 132, 661–680. [Google Scholar] [CrossRef] [PubMed]
- Vaquerizas, J.M.; Kummerfeld, S.K.; Teichmann, S.A.; Luscombe, N.M. A census of human transcription factors: Function, expression and evolution. Nat. Rev. Genet. 2009, 10, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.; Khan, N.A.; Uddin, S.; Khan, A.Q.; Steinhoff, M. Deregulated transcription factors in the emerging cancer hallmarks. Semin. Cancer Biol. 2024, 98, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Fuxman Bass, J.I.; Sahni, N.; Shrestha, S.; Garcia-Gonzalez, A.; Mori, A.; Bhat, N.; Yi, S.; Hill, D.E.; Vidal, M.; Walhout, A.J.M. Human gene-centered transcription factor networks for enhancers and disease variants. Cell 2015, 161, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Gilbertson, S.E.; Weinmann, A.S. Discovering effector domains in human transcription factors. Trends Immunol. 2023, 44, 493–495. [Google Scholar] [CrossRef]
- O’Connor, L.; Gilmour, J.; Bonifer, C. The Role of the Ubiquitously Expressed Transcription Factor Sp1 in Tissue-specific Transcriptional Regulation and in Disease. Yale J. Biol. Med. 2016, 89, 513–525. [Google Scholar]
- Black, A.R.; Black, J.D.; Azizkhan-Clifford, J. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J. Cell. Physiol. 2001, 188, 143–160. [Google Scholar] [CrossRef]
- Vizcaíno, C.; Mansilla, S.; Portugal, J. Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol. Ther. 2015, 152, 111–124. [Google Scholar] [CrossRef]
- Gao, Y.; Gan, K.; Liu, K.; Xu, B.; Chen, M. SP1 Expression and the Clinicopathological Features of Tumors: A Meta-Analysis and Bioinformatics Analysis. Pathol. Oncol. Res. 2021, 27, 581998. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Li, Y.; Jin, X.; Lu, J.; Wu, M. Role of emodin in atherosclerosis and other cardiovascular diseases: Pharmacological effects, mechanisms, and potential therapeutic target as a phytochemical. Biomed. Pharmacother. 2023, 161, 114539. [Google Scholar] [CrossRef]
- Zhang, X.; Li, R.; Qin, X.; Wang, L.; Xiao, J.; Song, Y.; Sheng, X.; Guo, M.; Ji, X. Sp1 Plays an Important Role in Vascular Calcification Both In Vivo and In Vitro. J. Am. Heart Assoc. 2018, 7, e007555. [Google Scholar] [CrossRef] [PubMed]
- Gaynor, R.B.; Shieh, B.H.; Klisak, I.; Sparkes, R.S.; Lusis, A.J. Localization of the transcription factor SP1 gene to human chromosome 12q12→q13.2. Cytogenet. Cell Genet. 1993, 64, 210–212. [Google Scholar] [CrossRef]
- Athanikar, J.N.; Sanchez, H.B.; Osborne, T.F. Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1: A critical role for the Btd domain of Sp1. Mol. Cell. Biol. 1997, 17, 5193–5200. [Google Scholar] [CrossRef]
- Mastrangelo, I.A.; Courey, A.J.; Wall, J.S.; Jackson, S.P.; Hough, P.V. DNA looping and Sp1 multimer links: A mechanism for transcriptional synergism and enhancement. Proc. Natl. Acad. Sci. USA 1991, 88, 5670–5674. [Google Scholar] [CrossRef] [PubMed]
- Suske, G.; Bruford, E.; Philipsen, S. Mammalian SP/KLF transcription factors: Bring in the family. Genomics 2005, 85, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Beishline, K.; Azizkhan-Clifford, J. Sp1 and the ‘hallmarks of cancer’. FEBS J. 2015, 282, 224–258. [Google Scholar] [CrossRef]
- Marin, M.; Karis, A.; Visser, P.; Grosveld, F.; Philipsen, S. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell 1997, 89, 619–628. [Google Scholar] [CrossRef]
- Solomon, S.S.; Majumdar, G.; Martinez-Hernandez, A.; Raghow, R. A critical role of Sp1 transcription factor in regulating gene expression in response to insulin and other hormones. Life Sci. 2008, 83, 305–312. [Google Scholar] [CrossRef]
- Grinstein, E.; Jundt, F.; Weinert, I.; Wernet, P.; Royer, H.D. Sp1 as G1 cell cycle phase specific transcription factor in epithelial cells. Oncogene 2002, 21, 1485–1492. [Google Scholar] [CrossRef]
- Deniaud, E.; Baguet, J.; Mathieu, A.L.; Pagès, G.; Marvel, J.; Leverrier, Y. Overexpression of Sp1 transcription factor induces apoptosis. Oncogene 2006, 25, 7096–7105. [Google Scholar] [CrossRef]
- Pauklin, S.; Madrigal, P.; Bertero, A.; Vallier, L. Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin, D. Genes Dev. 2016, 30, 421–433. [Google Scholar] [CrossRef]
- Li, T.; Chen, Y.H.; Liu, T.J.; Jia, J.; Hampson, S.; Shan, Y.X.; Kibler, D.; Wang, P.H. Using DNA microarray to identify Sp1 as a transcriptional regulatory element of insulin-like growth factor 1 in cardiac muscle cells. Circ. Res. 2003, 93, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, S.K.; Sheikh, F.; Jin, Y.; Detillieux, K.A.; Dhaliwal, J.; Kardami, E.; Cattini, P.A. Transcriptional regulation of FGF-2 gene expression in cardiac myocytes. Cardiovasc. Res. 2004, 62, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Dellow, K.A.; Bhavsar, P.K.; Brand, N.J.; Barton, P.J. Identification of novel, cardiac-restricted transcription factors binding to a CACC-box within the human cardiac troponin I promoter. Cardiovasc. Res. 2001, 50, 24–33. [Google Scholar] [CrossRef]
- Hasegawa, K.; Wakino, S.; Tanaka, T.; Kimoto, M.; Tatematsu, S.; Kanda, T.; Yoshioka, K.; Homma, K.; Sugano, N.; Kurabayashi, M.; et al. Dimethylarginine dimethylaminohydrolase 2 increases vascular endothelial growth factor expression through Sp1 transcription factor in endothelial cells. Arter. Thromb. Vasc. Biol. 2006, 26, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Ferro, T.J. Sp1: Regulation of gene expression by phosphorylation. Gene 2005, 348, 1–11. [Google Scholar] [CrossRef]
- Li, F.; Gao, J.; Kohls, W.; Geng, X.; Ding, Y. Perspectives on benefit of early and prereperfusion hypothermia by pharmacological approach in stroke. Brain Circ. 2022, 8, 69–75. [Google Scholar]
- Liu, Z.; Ni, J.; Li, L.; Sarhene, M.; Guo, R.; Bian, X.; Liu, X.; Fan, G. SERCA2a: A key protein in the Ca2+ cycle of the heart failure. Heart Fail. Rev. 2020, 25, 523–535. [Google Scholar]
- Hu, Y.; Zhang, C.; Zhu, H.; Wang, S.; Zhou, Y.; Zhao, J.; Xia, Y.; Li, D. Luteolin modulates SERCA2a via Sp1 upregulation to attenuate myocardial ischemia/reperfusion injury in mice. Sci Rep. 2020, 10, 15407. [Google Scholar] [CrossRef] [PubMed]
- Banavath, H.N.; Roman, B.; Mackowski, N.; Biswas, D.; Afzal, J.; Nomura, Y.; Solhjoo, S.; O’Rourke, B.; Kohr, M.; Murphy, E.; et al. miR-181c Activates Mitochondrial Calcium Uptake by Regulating MICU1 in the Heart. J. Am. Heart Assoc. 2019, 8, e012919. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.P.; Irani, K.; Mattagajasingh, S.; Dipaula, A.; Khanday, F.; Ozaki, M.; Fox-Talbot, K.; Baldwin, W.M., 3rd; Becker, L.C. Signal transducer and activator of transcription 3alpha and specificity protein 1 interact to upregulate intercellular adhesion molecule-1 in ischemic-reperfused myocardium and vascular endothelium. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1395–1400. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wang, Z.; Liu, X.; Han, S.; Li, J.; Zhang, Y.; Zhao, L. Identification of brain endothelial cell-specific genes and pathways in ischemic stroke by integrated bioinformatical analysis. Brain Circ. 2023, 9, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Eltzschig, H.K.; Köhler, D.; Eckle, T.; Kong, T.; Robson, S.C.; Colgan, S.P. Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood 2009, 113, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Mauro, S.; Gévry, N.; Lis, J.T.; Kraus, W.L. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 2004, 119, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, B.; Liu, X.; Deng, Y.; Zhu, Y.; Zhu, F.; Liang, Y.; Li, H. Sp1 Targeted PARP1 Inhibition Protects Cardiomyocytes from Myocardial Ischemia-Reperfusion Injury via Downregulation of Autophagy. Front. Cell Dev. Biol. 2021, 9, 621906. [Google Scholar] [CrossRef] [PubMed]
- Bir, S.C.; Kelley, R.E. Carotid atherosclerotic disease: A systematic review of pathogenesis and management. Brain Circ. 2022, 8, 127–136. [Google Scholar]
- Pan, H.; Guo, Z.; Lv, P.; Hu, K.; Wu, T.; Lin, Z.; Xue, Y.; Zhang, Y.; Guo, Z. Proline/serine-rich coiled-coil protein 1 inhibits macrophage inflammation and delays atherosclerotic progression by binding to Annexin A2. Clin. Transl. Med. 2023, 13, e1220. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Y.; Guo, Z.; Zhou, L.; Okoro, E.U.; Yang, H. Transcriptional regulation of ATP-binding cassette transporter A1 expression by a novel signaling pathway. J. Biol. Chem. 2011, 286, 8917–8923. [Google Scholar] [CrossRef]
- Wu, J.F.; Wang, Y.; Zhang, M.; Tang, Y.Y.; Wang, B.; He, P.P.; Lv, Y.C.; Ouyang, X.P.; Yao, F.; Tan, Y.L.; et al. Growth differentiation factor-15 induces expression of ATP-binding cassette transporter A1 through PI3-K/PKCζ/SP1 pathway in THP-1 macrophages. Biochem. Biophys. Res. Commun. 2014, 444, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, H.; Yang, A.; Ma, P.; Sun, L.; Deng, M.; Mao, C.; Xiong, J.; Sun, J.; Wang, N.; et al. Homocysteine accelerates atherosclerosis by inhibiting scavenger receptor class B member1 via DNMT3b/SP1 pathway. J. Mol. Cell. Cardiol. 2020, 138, 34–48. [Google Scholar] [CrossRef]
- Li, L.; Cai, X.J.; Feng, M.; Rong, Y.Y.; Zhang, Y.; Zhang, M. Effect of adiponectin overexpression on stability of preexisting plaques by inducing prolyl-4-hydroxylase expression. Circ. J. 2010, 74, 552–559. [Google Scholar] [CrossRef]
- Annunen, P.; Autio-Harmainen, H.; Kivirikko, K.I. The novel type II prolyl 4-hydroxylase is the main enzyme form in chondrocytes and capillary endothelial cells, whereas the type I enzyme predominates in most cells. J. Biol. Chem. 1998, 273, 5989–5992. [Google Scholar] [CrossRef]
- Liu, P.; Wang, S.; Wang, G.; Zhao, M.; Du, F.; Li, K.; Wang, L.; Wu, H.; Chen, J.; Yang, Y.; et al. Macrophage-derived exosomal miR-4532 promotes endothelial cells injury by targeting SP1 and NF-κB P65 signalling activation. J. Cell. Mol. Med. 2022, 26, 5165–5180. [Google Scholar] [CrossRef]
- Jia, C.; Chen, H.; Zhang, J.; Zhou, K.; Zhuge, Y.; Niu, C.; Qiu, J.; Rong, X.; Shi, Z.; Xiao, J.; et al. Role of pyroptosis in cardiovascular diseases. Int. Immunopharmacol. 2019, 67, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yan, J.H.; Ge, Z.W.; Fei, A.H.; Zhang, Y.C. LncRNA Gaplinc promotes the pyroptosis of vascular endothelial cells through SP1 binding to enhance NLRP3 transcription in atherosclerosis. Cell. Signal. 2022, 99, 110420. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Geng, H.H.; Xiao, J.; Qin, X.T.; Wang, F.; Xing, J.H.; Xia, Y.F.; Mao, Y.; Liang, J.W.; Ji, X.P. miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1. Sci Rep. 2016, 6, 29082. [Google Scholar] [CrossRef]
- Li, R.; Xiao, J.; Qing, X.; Xing, J.; Xia, Y.; Qi, J.; Liu, X.; Zhang, S.; Sheng, X.; Zhang, X.; et al. Sp1 Mediates a Therapeutic Role of MiR-7a/b in Angiotensin II-Induced Cardiac Fibrosis via Mechanism Involving the TGF-β and MAPKs Pathways in Cardiac Fibroblasts. PLoS ONE. 2015, 10, e0125513. [Google Scholar] [CrossRef]
- Sun, S.; Li, T.; Jin, L.; Piao, Z.H.; Liu, B.; Ryu, Y.; Choi, S.Y.; Kim, G.R.; Jeong, J.E.; Wi, A.J.; et al. Dendropanax morbifera Prevents Cardiomyocyte Hypertrophy by Inhibiting the Sp1/GATA4 Pathway. Am. J. Chin. Med. 2018, 46, 1021–1044. [Google Scholar] [CrossRef] [PubMed]
- Azakie, A.; Fineman, J.R.; He, Y. Sp3 inhibits Sp1-mediated activation of the cardiac troponin T promoter and is downregulated during pathological cardiac hypertrophy in vivo. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H600–H611. [Google Scholar] [CrossRef] [PubMed]
- Meng, G.; Xiao, Y.; Ma, Y.; Tang, X.; Xie, L.; Liu, J.; Gu, Y.; Yu, Y.; Park, C.M.; Xian, M.; et al. Hydrogen Sulfide Regulates Krüppel-Like Factor 5 Transcription Activity via Specificity Protein 1 S-Sulfhydration at Cys664 to Prevent Myocardial Hypertrophy. J. Am. Heart Assoc. 2016, 5, e004160. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; He, S.; Hu, Y.; Liu, J.; Chen, X. Sp1-induced LncRNA CTBP1-AS2 is a novel regulator in cardiomyocyte hypertrophy by interacting with FUS to stabilize TLR4. Cardiovasc. Pathol. 2019, 42, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, R.; Yang, W.; Qi, B. SP1-SYNE1-AS1-miR-525-5p feedback loop regulates Ang-II-induced cardiac hypertrophy. J. Cell. Physiol. 2019, 234, 14319–14329. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Wang, L.; Li, Z. SP1-induced SNHG14 aggravates hypertrophic response in vitro model of cardiac hypertrophy via up-regulation of PCDH17. J. Cell. Mol. Med. 2020, 24, 7115–7126. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, H.; Xin, X.; Yang, J.; Hou, Y.; Fang, M.; Lu, X.; Xu, Y. An MRTF-A-Sp1-PDE5 Axis Mediates Angiotensin-II-Induced Cardiomyocyte Hypertrophy. Front. Cell Dev. Biol. 2020, 8, 839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhou, H.; Xue, J.; Zhang, Y.; Zhou, L.; Leng, J.; Fang, G.; Liu, Y.; Wang, Y.; Liu, H.; et al. Deficiency of Transcription Factor Sp1 Contributes to Hypertrophic Cardiomyopathy. Circ. Res. 2024, 134, 290–306. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, S.; Li, H.; Yin, Z.; Fan, J.; Zhao, Y.; Gong, W.; Yan, M.; Wang, D.W. Mir30c Is Involved in Diabetic Cardiomyopathy through Regulation of Cardiac Autophagy via BECN1. Mol. Ther. Nucleic Acids 2017, 7, 127–139. [Google Scholar] [CrossRef]
- Ji, L.; Liu, F.; Jing, Z.; Huang, Q.; Zhao, Y.; Cao, H.; Li, J.; Yin, C.; Xing, J.; Li, F. MICU1 Alleviates Diabetic Cardiomyopathy through Mitochondrial Ca2+-Dependent Antioxidant Response. Diabetes 2017, 66, 1586–1600. [Google Scholar] [CrossRef]
- Roman, B.; Kaur, P.; Ashok, D.; Kohr, M.; Biswas, R.; O’Rourke, B.; Steenbergen, C.; Das, S. Nuclear-mitochondrial communication involving miR-181c plays an important role in cardiac dysfunction during obesity. J. Mol. Cell. Cardiol. 2020, 144, 87–96. [Google Scholar] [CrossRef]
- Du, J.K.; Yu, Q.; Liu, Y.J.; Du, S.F.; Huang, L.Y.; Xu, D.H.; Ni, X.; Zhu, X.Y. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis. Theranostics 2021, 11, 4207–4231. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, M.; Jin, J.; Zhang, D.; Zhang, S.; Bai, Y.; Xu, J. Interaction of Sp1 and Setd8 promotes vascular smooth muscle cells apoptosis by activating Mark4 in vascular calcification. Aging 2024, 16, 2438–2456. [Google Scholar] [CrossRef] [PubMed]
- Di Bartolo, B.A.; Schoppet, M.; Mattar, M.Z.; Rachner, T.D.; Shanahan, C.M.; Kavurma, M.M. Calcium and osteoprotegerin regulate IGF1R expression to inhibit vascular calcification. Cardiovasc. Res. 2011, 91, 537–545. [Google Scholar] [CrossRef]
- Arumadi, A.; Hrishi, A.P.; Prathapadas, U.; Sethuraman, M.; Venket, E.H. Evaluation of markers of cerebral oxygenation and metabolism in patients undergoing clipping of cerebral aneurysm under total intravenous anesthesia versus inhalational anesthesia: A prospective randomized trial (COM-IVIN trial). Brain Circ. 2023, 9, 251–257. [Google Scholar] [CrossRef]
- Xu, Q.; Ji, Y.S.; Schmedtje, J.F., Jr. Sp1 increases expression of cyclooxygenase-2 in hypoxic vascular endothelium. Implications for the mechanisms of aortic aneurysm and heart failure. J. Biol. Chem. 2000, 275, 24583–24589. [Google Scholar] [CrossRef]
- Tang, Y.; Yu, S.; Liu, Y.; Zhang, J.; Han, L.; Xu, Z. MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H641–H649. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Zhang, D.; Song, Y.; Kong, J.; Mu, C.; Shen, P.; Gui, W. miR-335-5p regulates the proliferation, migration and phenotypic switching of vascular smooth muscle cells in aortic dissection by directly regulating SP1. Acta Biochim. Biophys. Sin. 2022, 54, 961–973. [Google Scholar] [CrossRef] [PubMed]
- DeVallance, E.R.; Dustin, C.M.; de Jesus, D.S.; Ghouleh, I.A.; Sembrat, J.C.; Cifuentes-Pagano, E.; Pagano, P.J. Specificity Protein 1-Mediated Promotion of CXCL12 Advances Endothelial Cell Metabolism and Proliferation in Pulmonary Hypertension. Antioxidants 2022, 12, 71. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, J.; Li, X.; Liu, X.; Zheng, T.; Zhao, Y.; Li, X.; Zhong, H.; Liu, D.; Zhang, W.; et al. Upregulation of Endothelial DKK1 (Dickkopf 1) Promotes the Development of Pulmonary Hypertension through the Sp1 (Specificity Protein 1)/SHMT2 (Serine Hydroxymethyltransferase 2) Pathway. Hypertension 2022, 79, 960–973. [Google Scholar] [CrossRef]
- Roychoudhury, R.; Ma, S.; Qian, C. Stroke prevention and intracranial hemorrhage risk in atrial fibrillation management: A mini review. Brain Circ. 2023, 9, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Hammerer-Lercher, A.; Namdar, M.; Vuilleumier, N. Emerging biomarkers for cardiac arrhythmias. Clin. Biochem. 2020, 75, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.A.; Schuessler, R.B.; Berul, C.I.; Beardslee, M.A.; Beyer, E.C.; Mendelsohn, M.E.; Saffitz, J.E. Disparate effects of deficient expression of connexin43 on atrial and ventricular conduction: Evidence for chamber-specific molecular determinants of conduction. Circulation 1998, 97, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Linhares, V.L.; Almeida, N.A.; Menezes, D.C.; Elliott, D.A.; Lai, D.; Beyer, E.C.; Campos de Carvalho, A.C.; Costa, M.W. Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovasc. Res. 2004, 64, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, T.; Han, Z.; Wang, R.; Hu, Y.; Yang, Z.; Shen, T.; Zheng, Y.; Luo, J.; Ma, Y.; et al. Explore the role of long noncoding RNAs and mRNAs in intracranial atherosclerotic stenosis: From the perspective of neutrophils. Brain Circ. 2023, 9, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Li, Z.; Ding, W.M.; Yan, L.; Zhao, Q.Y. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation. Mol. Med. 2019, 25, 7. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, Z.; Jin, L.; Zhang, K.; Zhao, X.; Fu, J.; Gong, Y.; Sun, M.; Yang, B.; Li, B. Arsenic trioxide-induced hERG K(+) channel deficiency can be rescued by matrine and oxymatrine through up-regulating transcription factor Sp1 expression. Biochem. Pharmacol. 2013, 85, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.; Wang, F.; Ding, Y.Q.; Li, X.H.; Li, Y.X.; Zhao, Z.R.; Li, J.X.; Liu, Y.; Zhao, X.; Yan, C.C.; et al. Rutaecarpine targets hERG channels and participates in regulating electrophysiological properties leading to ventricular arrhythmia. J. Cell. Mol. Med. 2021, 25, 4938–4949. [Google Scholar] [CrossRef] [PubMed]
- Lifton, R.P.; Gharavi, A.G.; Geller, D.S. Molecular mechanisms of human hypertension. Cell 2001, 104, 545–556. [Google Scholar] [CrossRef]
- Van Loo, P.F.; Mahtab, E.A.; Wisse, L.J.; Hou, J.; Grosveld, F.; Suske, G.; Philipsen, S.; Gittenberger-de Groot, A.C. Transcription factor Sp3 knockout mice display serious cardiac malformations. Mol. Cell. Biol. 2007, 27, 8571–8582. [Google Scholar] [CrossRef]
- Lu, H.; Jiang, X.; He, L.; Ji, X.; Li, X.; Liu, S.; Sun, Y.; Qin, X.; Xiong, X.; Philipsen, S.; et al. Endothelial Sp1/Sp3 are essential to the effect of captopril on blood pressure in male mice. Nat. Commun. 2023, 14, 5891. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.H.; Huang, X.R.; Zhang, Y.; Li, Y.Q.; Chen, H.Y.; Yan, B.P.; Yu, C.M.; Lan, H.Y. Smad7 inhibits angiotensin II-induced hypertensive cardiac remodelling. Cardiovasc. Res. 2013, 99, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Li, Y.; Yang, M.S.; Chen, R.; Cen, C.Q. SP1-induced ZFAS1 aggravates sepsis-induced cardiac dysfunction via miR-590-3p/NLRP3-mediated autophagy and pyroptosis. Arch. Biochem. Biophys. 2020, 695, 108611. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.J.; Yang, Y.; Yuan, L.F.; Liu, H.; Xu, N.P.; Yang, Y.; Huang, L. SP1-stimulated miR-208a-5p aggravates sepsis-induced myocardial injury via targeting XIAP. Exp. Cell Res. 2024, 435, 113905. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Huang, Z.; Huang, W.; Lin, M.; Liu, W.; Liu, K.; Li, C. microRNA-124-3p attenuates myocardial injury in sepsis via modulating SP1/HDAC4/HIF-1α axis. Cell Death Discov. 2022, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Lin, X.; Chen, K. Specificity protein 1-mediated ACSL4 transcription promoted the osteoarthritis progression through suppressing the ferroptosis of chondrocytes. J. Orthop. Surg. Res. 2023, 18, 188. [Google Scholar] [CrossRef] [PubMed]
- Afify, A.Y. A miRNA’s insight into the regenerating heart: A concise descriptive analysis. Heart Fail. Rev. 2020, 25, 1047–1061. [Google Scholar] [CrossRef] [PubMed]
- Seyed, M.; Dimario, J.X. Sp1 is required for transcriptional activation of the fibroblast growth factor receptor 1 gene in neonatal cardiomyocytes. Gene 2007, 400, 150–157. [Google Scholar] [CrossRef]
- Tang, W.; Pan, Q.; Sun, F.; Ma, J.; Tang, S.; Le, K.; Wan, Y.; Chen, Q.; Liu, P. Involvement of Sp1 binding sequences in basal transcription of the rat fibroblast growth factor-2 gene in neonatal cardiomyocytes. Life Sci. 2009, 84, 421–427. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Fayyaz, A.I.; Ding, Y.; Liang, D.; Luo, M. Role of Specificity Protein 1 (SP1) in Cardiovascular Diseases: Pathological Mechanisms and Therapeutic Potentials. Biomolecules 2024, 14, 807. https://doi.org/10.3390/biom14070807
Ding J, Fayyaz AI, Ding Y, Liang D, Luo M. Role of Specificity Protein 1 (SP1) in Cardiovascular Diseases: Pathological Mechanisms and Therapeutic Potentials. Biomolecules. 2024; 14(7):807. https://doi.org/10.3390/biom14070807
Chicago/Turabian StyleDing, Jie, Aminah I. Fayyaz, Yuchuan Ding, Dandan Liang, and Ming Luo. 2024. "Role of Specificity Protein 1 (SP1) in Cardiovascular Diseases: Pathological Mechanisms and Therapeutic Potentials" Biomolecules 14, no. 7: 807. https://doi.org/10.3390/biom14070807
APA StyleDing, J., Fayyaz, A. I., Ding, Y., Liang, D., & Luo, M. (2024). Role of Specificity Protein 1 (SP1) in Cardiovascular Diseases: Pathological Mechanisms and Therapeutic Potentials. Biomolecules, 14(7), 807. https://doi.org/10.3390/biom14070807