Association of Serum Extracellular Vesicle miRNAs with Cognitive Functioning and Quality of Life in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants/Study Cohort
2.2. Psychological Assessment
2.3. Neurological Evaluation
2.4. Blood Sample Collection
miRNA Isolation and cDNA Synthesis
2.5. miRNA Expression Analysis
2.6. Statistical Analysis
3. Results
3.1. Patients’ Population and miRNA Expression
3.2. Relationship between miRNA and Neurological Functioning
3.3. Relationship between miRNA and Cognitive Functioning
3.4. Relationship between miRNA and Patient-Reported Health-Related Quality of Life
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulisevsky Bojarski, J. Tratamiento farmacológico de los síntomas motores de la enfermedad de Parkinson: Actualización y recomendaciones de un experto. Rev. Neurol. 2022, 75, S1. [Google Scholar] [CrossRef]
- Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023, 14, 176. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Chaudhuri, K.R.; Weintraub, D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 2021, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Gupta, S.; Khan, J.; Ghosh, S. Molecular mechanism of cognitive impairment associated with Parkinson’s disease: A stroke perspective. Life Sci. 2024, 337, 122358. [Google Scholar] [CrossRef]
- Foltynie, T.; Bruno, V.; Fox, S.; Kuhn, A.A.; Lindop, F.; Lees, A.J. Medical, surgical, and physical treatments for Parkinson’s disease. Lancet 2024, 403, 305–324. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Xu, L.; Liu, J.; Huang, P.; Tan, Y.; Chen, S. Cell–Cell Communication Alterations via Intercellular Signaling Pathways in Substantia Nigra of Parkinson’s Disease. Front. Aging Neurosci. 2022, 14, 828457. [Google Scholar] [CrossRef]
- Mouradian, M.M. MicroRNAs in Parkinson’s disease. Neurobiol. Dis. 2012, 46, 279–284. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Z. MicroRNAs: Game Changers in the Regulation of α-Synuclein in Parkinson’s Disease. Parkinson’s Dis. 2019, 2019, 1743183. [Google Scholar] [CrossRef]
- Santos-Lobato, B.L.; Vidal, A.F.; Ribeiro-dos-Santos, Â. Regulatory miRNA–mRNA Networks in Parkinson’s Disease. Cells 2021, 10, 1410. [Google Scholar] [CrossRef]
- Leggio, L.; Vivarelli, S.; L’Episcopo, F.; Tirolo, C.; Caniglia, S.; Testa, N.; Marchetti, B.; Iraci, N. microRNAs in Parkinson’s Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches. Int. J. Mol. Sci. 2017, 18, 2698. [Google Scholar] [CrossRef]
- Pistono, C.; Bister, N.; Stanová, I.; Malm, T. Glia-Derived Extracellular Vesicles: Role in Central Nervous System Communication in Health and Disease. Front. Cell Dev. Biol. 2021, 8, 623771. [Google Scholar] [CrossRef] [PubMed]
- Manna, I.; Quattrone, A.; De Benedittis, S.; Vescio, B.; Iaccino, E.; Quattrone, A. Exosomal miRNA as peripheral biomarkers in Parkinson’s disease and progressive supranuclear palsy: A pilot study. Park. Relat. Disord. 2021, 93, 77–84. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.C.T.; Barreto-Sanz, M.A.; Correia, B.R.S.; Bell, R.; Windnall, C.; Perez, L.T.; Berteau, C.; Schulte, C.; Scheller, D.; Berg, D.; et al. miRNA-based signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson’s disease. Oncotarget 2018, 9, 17455–17465. [Google Scholar] [CrossRef]
- Van Giau, V.; Bagyinszky, E.; An, S.S.A. Potential Fluid Biomarkers for the Diagnosis of Mild Cognitive Impairment. Int. J. Mol. Sci. 2019, 20, 4149. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-F.; Lin, S.-P.; Chu, Y.-T.; Tsai, Y.-T.; Huang, J.-W.; Phoa, F.K.H.; Wu, R.-M. Plasma miR-203a-3p as a Novel Predictor of Dementia in Patients with Parkinson’s Disease. Int. J. Mol. Sci. 2024, 25, 3554. [Google Scholar] [CrossRef]
- Han, L.; Tang, Y.; Bai, X.; Liang, X.; Fan, Y.; Shen, Y.; Huang, F.; Wang, J. Association of the serum microRNA-29 family with cognitive impairment in Parkinson’s disease. Aging 2020, 12, 13518–13528. [Google Scholar] [CrossRef]
- Doxakis, E. Post-transcriptional Regulation of α-Synuclein Expression by mir-7 and mir-153. J. Biol. Chem. 2010, 285, 12726–12734. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Zhang, J.-L.; Duan, Y.-L.; Zhang, Q.-S.; Li, G.-F.; Zheng, D.-L. MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed. Pharmacother. 2015, 74, 252–256. [Google Scholar] [CrossRef]
- Thome, A.D.; Harms, A.S.; Volpicelli-Daley, L.A.; Standaert, D.G. microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease. J. Neurosci. 2016, 36, 2383–2390. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Yang, X.; Lou, J. Geniposide reduces α-synuclein by blocking microRNA-21/lysosome-associated membrane protein 2A interaction in Parkinson disease models. Brain Res. 2016, 1644, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Peng, L.; Tao, T.; Chen, Y.; Li, Z.; Li, J. Regulatory roles of the miR-200 family in neurodegenerative diseases. Biomed. Pharmacother. 2019, 119, 109409. [Google Scholar] [CrossRef] [PubMed]
- Army Individual Test Battery. Manual of Directions and Scoring; War Department, Adjutant General’s Office: Washington, DC, USA, 1944. [Google Scholar]
- Reitan, R.M. Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Percept. Mot. Skills 2016, 8, 271–276. [Google Scholar] [CrossRef]
- Rey, A. L’examen psychologique dans les cas d’encephopathie traumatique (The psychological examination of cases of traumatic encephalopathy). Arch. Psychol. 1941, 28, 286–340. [Google Scholar]
- Lezak, M.D. Neuropsychological Assessment, 2nd ed.; Oxford University Press: New York, NY, USA, 1983. [Google Scholar]
- Carone, D.A.; Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. Appl. Neuropsychol. 2007, 14, 62–63. [Google Scholar] [CrossRef]
- Pranckevičienė, A.; Mirklytė, A.; Liesienė, V. Kalbos sklandumo testo psichometrinių charakteristikų analizė neurologinių sutrikimų neturinčių suaugusiųjų imtyje. Neurol. Semin. 2012, 16, 324–334. [Google Scholar]
- Wechsler, D. WAIS-III: Administration and Scoring Manual: Wechsler Adult Intelligence Scale, 3rd ed.; Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar] [CrossRef]
- Regard, M.; Strauss, E.; Knapp, P. Children’s Production on Verbal and Non-Verbal Fluency Tasks. Percept. Mot. Skills 1982, 55, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. Wechsler Abbreviated Scale of Intelligence (WASI) Manual; Psychological Corporation: San Antonio, TX, USA, 1999. [Google Scholar]
- Peto, V.; Jenkinson, C.; Fitzpatrick, R.; Greenhall, R. The development and validation of a short measure of functioning and well being for individuals with Parkinson’s disease. Qual. Life Res. 1995, 4, 241–248. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martin, P.-M.; Poewe, W.; Sampaio, C.; Stern, M.B.; Doel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Stocchi, F.; Radicati, F.G.; Chaudhuri, K.R.; Johansson, A.; Padmakumar, C.; Falup-Pecurariu, C.; Martinez-Martin, P. The Parkinson’s Disease Composite Scale: Results of the first validation study. Eur. J. Neurol. 2018, 25, 503–511. [Google Scholar] [CrossRef]
- Pavlou, M.A.S.; Outeiro, T.F. Epigenetics in Parkinson’s Disease. Adv. Exp. Med. Biol. 2017, 978, 363–390. [Google Scholar] [PubMed]
- Ye, J.; Xu, M.; Tian, X.; Sheng, C.; Zeng, S. Research advances in the detection of miRNA. J. Pharm. Anal. 2019, 9, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, M.; Yan, R.; Liu, J.; Maddila, S.; Junn, E.; Mouradian, M.M. MicroRNA-7 Protects Against Neurodegeneration Induced by α-Synuclein Preformed Fibrils in the Mouse Brain. Neurotherapeutics 2021, 18, 2529–2540. [Google Scholar] [CrossRef]
- Je, G.; Kim, Y.-S. Mitochondrial ROS-mediated post-transcriptional regulation of α-synuclein through miR-7 and miR-153. Neurosci. Lett. 2017, 661, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Xiao, Y.; Huang, S.; Cen, L.; Chen, X.; Zhang, L.; Luo, Q.; Li, S.; Yang, X.; Lin, X.; et al. MicroRNA expressing profiles in A53T mutant alpha-synuclein transgenic mice and Parkinsonian. Oncotarget 2017, 8, 15–28. [Google Scholar] [CrossRef]
- Yao, Y.F.; Qu, M.W.; Li, G.C.; Zhang, F.-B.; Rui, H.-C. Circulating exosomal miRNAs as diagnostic biomarkers in Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5278–5283. [Google Scholar] [PubMed]
- Schiess, M.; Suescun, J.; Block, K.; Tharp, E.; Ellmore, T.; Shahnawaz, M.; Adams, C. Blood microRNA-7 as a Progression Biomarker in men with Parkinson’s disease. Neurology 2023, 100, 3939. [Google Scholar] [CrossRef]
- Citterio, L.A.; Mancuso, R.; Agostini, S.; Meloni, M.; Clerici, M. Serum and Exosomal miR-7-1-5p and miR-223-3p as Possible Biomarkers for Parkinson’s Disease. Biomolecules 2023, 13, 865. [Google Scholar] [CrossRef]
- Li, S.; Bi, G.; Han, S.; Huang, R. MicroRNAs Play a Role in Parkinson’s Disease by Regulating Microglia Function: From Pathogenetic Involvement to Therapeutic Potential. Front. Mol. Neurosci. 2022, 14, 744942. [Google Scholar] [CrossRef]
- Wu, L.; Xu, Q.; Zhou, M.; Chen, Y.; Jiang, C.; Jiang, Y.; Lin, Y.; He, Q.; Zhao, L.; Dong, Y.; et al. Plasma miR-153 and miR-223 Levels as Potential Biomarkers in Parkinson’s Disease. Front. Neurosci. 2022, 16, 865139. [Google Scholar] [CrossRef]
- Gui, Y.; Liu, H.; Zhang, L.; Lv, W.; Hu, X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015, 6, 37043–37053. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Yan, J.; Huang, P.; Wang, X.; Zhang, R.; Zhang, C.; Wang, W.; Qian, W.; Zhou, J.; Zhao, Y.; et al. miR-214-3p promotes the pathogenesis of Parkinson’s disease by inhibiting autophagy. Biomed. Pharmacother. 2024, 171, 116123. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ren, J.; Pan, C.; Li, Y.; Xu, J.; Dong, H.; Chen, Y.; Liu, W. Serum miR-214 Serves as a Biomarker for Prodromal Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 700959. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.; Zhang, P.; Hu, W.; Zhang, K.; Chen, X. Diagnostic Test to Identify Parkinson’s Disease from the Blood Sera of Chinese Population: A Cross-Sectional Study. Park. Dis. 2022, 2022, 8683877. [Google Scholar] [CrossRef] [PubMed]
- Martinez, B.; Peplow, P. MicroRNAs in Parkinson’s disease and emerging therapeutic targets. Neural Regen. Res. 2017, 12, 1945–1959. [Google Scholar]
- Anastasi, F.; Masciandaro, S.M.; Carratore, R.D.; Dell’Anno, M.T.; Signore, G.; Falleni, A.; McDonnel, L.A.; Bongioanni, P. Proteomics Profiling of Neuron-Derived Small Extracellular Vesicles from Human Plasma: Enabling Single-Subject Analysis. Int. J. Mol. Sci. 2021, 22, 2951. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wu, R.; Li, L.; Shen, L.; Gu, Y.; Sun, C. Exosomes from Inflamed Macrophages Promote the Progression of Parkinson’s Disease by Inducing Neuroinflammation. Mol. Neurobiol. 2023, 60, 1914–1928. [Google Scholar] [CrossRef] [PubMed]
- Caggiu, E.; Paulus, K.; Mameli, G.; Arru, G.; Sechi, G.P.; Sechi, L.A. Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. eNeurologicalSci 2018, 13, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Nies, Y.H.; Mohamad Najib, N.H.; Lim, W.L.; Kamaruzzaman, M.A.; Yahaya, M.F.; Heoh, S.L. MicroRNA Dysregulation in Parkinson’s Disease: A Narrative Review. Front. Neurosci. 2021, 15, 660379. [Google Scholar] [CrossRef]
- Shakespear, N.; Ogura, M.; Yamaki, J.; Homma, Y. Astrocyte-Derived Exosomal microRNA miR-200a-3p Prevents MPP+-Induced Apoptotic Cell Death through Down-Regulation of MKK4. Neurochem. Res. 2020, 45, 1020–1033. [Google Scholar] [CrossRef]
Characteristic | N (%) | |
---|---|---|
Gender | Male | 41 (44.1%) |
Female | 52 (55.9%) | |
Education | Without university degree | 48 (51.6%) |
With university degree | 45 (48.4%) | |
Type of treatment | Conservative | 37 (39.8%) |
Deep Brain Stimulation | 39 (41.9%) | |
Gamma Knife Stereotactic Radiosurgery | 11 (11.8%) | |
Radio Frequency Ablation | 6 (6.5%) | |
Mean (SD) | Min.–Max. | |
Age at time of the assessment | 62.14 (8.90) | 39–82 |
Age at onset of first symptoms | 53.21 (9.56) | 29–75 |
Illness duration | 8.93 (5.07) | 1–20 |
miR-7 | miR-21 | miR-153 | miR-155 | miR-200a | miR-214 | ||
---|---|---|---|---|---|---|---|
Age | Correlation Coefficient | 0.214 * | −0.264 * | 0.048 | 0.325 ** | 0.300 ** | 0.224 * |
Sig. (two-tailed) | 0.04 | 0.011 | 0.652 | 0.002 | 0.004 | 0.033 | |
N | 93 | 93 | 91 | 92 | 91 | 91 | |
Illness duration | Correlation Coefficient | 0.330 ** | 0.021 | 0.141 | 0.169 | 0.233 * | 0.16 |
Sig. (two-tailed) | 0.001 | 0.839 | 0.183 | 0.107 | 0.027 | 0.129 | |
N | 93 | 93 | 91 | 92 | 91 | 91 | |
Age at symptoms onset | Correlation Coefficient | 0.019 | −0.266 ** | −0.027 | 0.199 | 0.125 | 0.141 |
Sig. (two-tailed) | 0.857 | 0.01 | 0.797 | 0.057 | 0.238 | 0.183 | |
N | 93 | 93 | 91 | 92 | 91 | 91 |
miR-7 | miR-21 | miR-153 | miR-155 | miR-200a | miR-214 | ||
---|---|---|---|---|---|---|---|
Bradykinesia | Pearson’s r | 0.271 * | −0.195 | 0.109 | 0.333 ** | 0.382 ** | 0.447 ** |
Sig. (two-tailed) | 0.028 | 0.117 | 0.392 | 0.006 | 0.002 | 0.000 | |
N | 66 | 66 | 64 | 66 | 65 | 64 | |
Tremor | Pearson’s r | 0.194 | −0.204 | −0.081 | 0.18 | 0.291 * | 0.285 * |
Sig. (two-tailed) | 0.118 | 0.1 | 0.527 | 0.149 | 0.019 | 0.023 | |
N | 66 | 66 | 64 | 66 | 65 | 64 | |
Gait | Pearson’s r | 0.213 | 0.207 | −0.081 | 0.07 | 0.043 | 0.139 |
Sig. (two-tailed) | 0.086 | 0.095 | 0.525 | 0.576 | 0.735 | 0.273 | |
N | 66 | 66 | 64 | 66 | 65 | 64 | |
Balance | Pearson’s r | 0.474 ** | −0.244 * | 0.049 | 0.248 * | 0.334 ** | 0.234 |
Sig. (two-tailed) | 0 | 0.048 | 0.7 | 0.044 | 0.007 | 0.062 | |
N | 66 | 66 | 64 | 66 | 65 | 64 | |
Freezing | Pearson’s r | 0.173 | −0.112 | −0.041 | 0.05 | 0.017 | 0.084 |
Sig. (two-tailed) | 0.164 | 0.37 | 0.748 | 0.692 | 0.895 | 0.51 | |
N | 66 | 66 | 64 | 66 | 65 | 64 | |
Hallucinations | Pearson’s r | 0.065 | −0.175 | −0.075 | −0.062 | −0.029 | 0.107 |
Sig. (two-tailed) | 0.608 | 0.166 | 0.565 | 0.627 | 0.824 | 0.409 | |
N | 64 | 64 | 62 | 64 | 63 | 62 | |
Dyskinesia | Pearson’s r | 0.252 * | 0.089 | 0.098 | 0.11 | 0.259 * | −0.092 |
Sig. (two-tailed) | 0.041 | 0.476 | 0.443 | 0.378 | 0.037 | 0.471 | |
N | 66 | 66 | 64 | 66 | 65 | 64 | |
ON/OFF | Pearson’s r | 0.123 | −0.340 ** | 0.012 | 0.03 | 0.226 | 0.253 * |
Sig. (two-tailed) | 0.324 | 0.005 | 0.924 | 0.809 | 0.07 | 0.044 | |
N | 66 | 66 | 64 | 66 | 65 | 64 |
miR-7 | miR-21 | miR-153 | miR-155 | miR-200a | miR-214 | ||
---|---|---|---|---|---|---|---|
WASI Verbal IQ | Pearson’s r | −0.175 | −0.056 | −0.434 ** | −0.159 | −0.304 | 0.019 |
Sig. (two-tailed) | 0.286 | 0.733 | 0.006 | 0.334 | 0.06 | 0.909 | |
N | 39 | 39 | 38 | 39 | 39 | 38 | |
WASI Nonverbal IQ | Pearson’s r | −0.055 | −0.138 | −0.255 | −0.135 | −0.234 | 0.157 |
Sig. (two-tailed) | 0.756 | 0.436 | 0.153 | 0.445 | 0.182 | 0.382 | |
N | 34 | 34 | 33 | 34 | 34 | 33 | |
WASI General IQ | Pearson’s r | −0.22 | −0.092 | −0.433 ** | −0.227 | −0.308 | 0.144 |
Sig. (two-tailed) | 0.198 | 0.592 | 0.009 | 0.182 | 0.067 | 0.409 | |
N | 36 | 36 | 35 | 36 | 36 | 35 | |
Psychomotor speed (Trail making, Part A) | Pearson’s r | −0.19 | −0.113 | −0.222 | −0.289 * | −0.297 * | −0.277 * |
Sig. (two-tailed) | 0.105 | 0.339 | 0.061 | 0.013 | 0.011 | 0.019 | |
N | 74 | 74 | 72 | 73 | 73 | 72 | |
Mental flexibility (Trail Making, Part B) | Pearson’s r | −0.183 | 0.031 | −0.218 | −0.212 | −0.270 * | −0.155 |
Sig. (two-tailed) | 0.121 | 0.796 | 0.068 | 0.073 | 0.022 | 0.196 | |
N | 73 | 73 | 71 | 72 | 72 | 71 | |
Non-verbal fluency | Pearson’s r | −0.222 | −0.082 | −0.291 * | −0.302 * | −0.271 * | −0.384 ** |
Sig. (two-tailed) | 0.064 | 0.499 | 0.016 | 0.012 | 0.025 | 0.001 | |
N | 70 | 70 | 68 | 69 | 69 | 68 | |
Attention span/working memory (WAIS-III, Digit span) | Pearson’s r | −0.013 | −0.049 | −0.216 * | 0.047 | −0.039 | 0.092 |
Sig. (two-tailed) | 0.903 | 0.656 | 0.05 | 0.669 | 0.727 | 0.407 | |
N | 85 | 85 | 83 | 84 | 84 | 83 | |
Psychomotor speed with learning (WAIS-III, Digit Symbol Coding) | Pearson’s r | −0.129 | −0.169 | −0.305 * | −0.135 | −0.079 | −0.039 |
Sig. (two-tailed) | 0.308 | 0.182 | 0.015 | 0.289 | 0.538 | 0.759 | |
N | 64 | 64 | 63 | 64 | 63 | 63 |
miR-7 | miR-21 | miR-153 | miR-155 | miR-200a | miR-214 | ||
---|---|---|---|---|---|---|---|
PDQ_Mobility | Pearson’s r | 0.117 | −0.148 | −0.121 | −0.062 | 0.124 | −0.037 |
Sig. (two-tailed) | 0.301 | 0.189 | 0.292 | 0.589 | 0.276 | 0.746 | |
N | 80 | 80 | 78 | 79 | 79 | 78 | |
PDQ_ADL | Pearson’s r | 0.159 | −0.214 | −0.09 | −0.067 | 0.068 | −0.002 |
Sig. (two-tailed) | 0.16 | 0.057 | 0.433 | 0.559 | 0.55 | 0.985 | |
N | 80 | 80 | 78 | 79 | 79 | 78 | |
PDQ_Emotional | Pearson’s r | −0.298 ** | 0.09 | −0.196 | −0.1 | −0.104 | −0.132 |
Sig. (two-tailed) | 0.007 | 0.428 | 0.086 | 0.378 | 0.363 | 0.251 | |
N | 80 | 80 | 78 | 79 | 79 | 78 | |
PDQ_Stigma | Pearson’s r | −0.153 | 0.043 | −0.086 | −0.064 | −0.096 | −0.071 |
Sig. (two-tailed) | 0.176 | 0.706 | 0.452 | 0.574 | 0.398 | 0.536 | |
N | 80 | 80 | 78 | 79 | 79 | 78 | |
PDQ_Social_support | Pearson’s r | −0.343 ** | 0.299 ** | −0.221 | −0.101 | −0.236 * | −0.044 |
Sig. (two-tailed) | 0.002 | 0.007 | 0.051 | 0.377 | 0.036 | 0.705 | |
N | 80 | 80 | 78 | 79 | 79 | 78 | |
PDQ_Cognition | Pearson’s r | −0.137 | 0.212 | −0.047 | 0.098 | −0.083 | 0.002 |
Sig. (two-tailed) | 0.224 | 0.059 | 0.681 | 0.39 | 0.465 | 0.989 | |
N | 80 | 80 | 78 | 79 | 79 | 78 | |
PDQ_Communication | Pearson’s r | −0.106 | 0.12 | −0.091 | −0.107 | −0.089 | −0.18 |
Sig. (two-tailed) | 0.349 | 0.289 | 0.43 | 0.347 | 0.433 | 0.115 | |
N | 80 | 80 | 78 | 79 | 79 | 78 | |
PDQ_Bodily_discomfort | Pearson’s r | −0.026 | −0.197 | −0.024 | 0.064 | 0.155 | 0.024 |
Sig. (two-tailed) | 0.82 | 0.08 | 0.834 | 0.578 | 0.174 | 0.835 | |
N | 80 | 80 | 78 | 79 | 79 | 78 | |
PDQ39_Summary_Index | Pearson’s r | −0.146 | −0.017 | −0.193 | −0.089 | −0.018 | −0.086 |
Sig. (two-tailed) | 0.196 | 0.883 | 0.091 | 0.434 | 0.875 | 0.453 | |
N | 80 | 80 | 78 | 79 | 79 | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaitkienė, P.; Pranckevičienė, A.; Radžiūnas, A.; Mišeikaitė, A.; Miniotaitė, G.; Belickienė, V.; Laucius, O.; Deltuva, V. Association of Serum Extracellular Vesicle miRNAs with Cognitive Functioning and Quality of Life in Parkinson’s Disease. Biomolecules 2024, 14, 1000. https://doi.org/10.3390/biom14081000
Vaitkienė P, Pranckevičienė A, Radžiūnas A, Mišeikaitė A, Miniotaitė G, Belickienė V, Laucius O, Deltuva V. Association of Serum Extracellular Vesicle miRNAs with Cognitive Functioning and Quality of Life in Parkinson’s Disease. Biomolecules. 2024; 14(8):1000. https://doi.org/10.3390/biom14081000
Chicago/Turabian StyleVaitkienė, Paulina, Aistė Pranckevičienė, Andrius Radžiūnas, Augustina Mišeikaitė, Giedrė Miniotaitė, Violeta Belickienė, Ovidijus Laucius, and Vytenis Deltuva. 2024. "Association of Serum Extracellular Vesicle miRNAs with Cognitive Functioning and Quality of Life in Parkinson’s Disease" Biomolecules 14, no. 8: 1000. https://doi.org/10.3390/biom14081000
APA StyleVaitkienė, P., Pranckevičienė, A., Radžiūnas, A., Mišeikaitė, A., Miniotaitė, G., Belickienė, V., Laucius, O., & Deltuva, V. (2024). Association of Serum Extracellular Vesicle miRNAs with Cognitive Functioning and Quality of Life in Parkinson’s Disease. Biomolecules, 14(8), 1000. https://doi.org/10.3390/biom14081000