Effects of Interrupting Prolonged Sitting with Light-Intensity Physical Activity on Inflammatory and Cardiometabolic Risk Markers in Young Adults with Overweight and Obesity: Secondary Outcome Analyses of the SED-ACT Randomized Controlled Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Study Design
2.3. Screening Visit
2.4. Trial Visits
2.5. Blood Sampling
2.6. Inflammatory and Cardiometabolic Risk Markers
2.7. Statistics
3. Results
3.1. Results of the Screening Visit
3.2. Results of the Trial Visits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128.9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide Trends in Insufficient Physical Activity from 2001 to 2016: A Pooled Analysis of 358 Population-Based Surveys with 1·9 Million Participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The Anti-Inflammatory Effects of Exercise: Mechanisms and Implications for the Prevention and Treatment of Disease. Nat. Rev. Immunol. 2011, 11, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Phelps, N.H.; Singleton, R.K.; Zhou, B.; Heap, R.A.; Mishra, A.; Bennett, J.E.; Paciorek, C.J.; Lhoste, V.P.; Carrillo-Larco, R.M.; Stevens, G.A.; et al. Worldwide Trends in Underweight and Obesity from 1990 to 2022: A Pooled Analysis of 3663 Population-Representative Studies with 222 Million Children, Adolescents, and Adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef] [PubMed]
- Lobstein, T.; Jackson-Leach, R.; Powis, J.; Brinsden, H.; Gray, M. World Obesity Atlas 2023; World Obesity Federation: London, UK, 2023. [Google Scholar]
- Mathis, D.; Shoelson, S.E. Immunometabolism: An Emerging Frontier. Nat. Rev. Immunol. 2011, 11, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.L.; Donohoe, C.L.; Lysaght, J.; Reynolds, J.V. Visceral Obesity, Metabolic Syndrome, Insulin Resistance and Cancer. Proc. Nutr. Soc. 2012, 71, 181–189. [Google Scholar] [CrossRef]
- Silveira, E.A.; Kliemann, N.; Noll, M.; Sarrafzadegan, N.; de Oliveira, C. Visceral Obesity and Incident Cancer and Cardiovascular Disease: An Integrative Review of the Epidemiological Evidence. Obes. Rev. 2021, 22, e13088. [Google Scholar] [CrossRef] [PubMed]
- Riaz, H.; Khan, M.S.; Siddiqi, T.J.; Usman, M.S.; Shah, N.; Goyal, A.; Khan, S.S.; Mookadam, F.; Krasuski, R.A.; Ahmed, H. Association Between Obesity and Cardiovascular Outcomes. JAMA Netw. Open 2018, 1, e183788. [Google Scholar] [CrossRef] [PubMed]
- Aparecida Silveira, E.; Vaseghi, G.; de Carvalho Santos, A.S.; Kliemann, N.; Masoudkabir, F.; Noll, M.; Mohammadifard, N.; Sarrafzadegan, N.; de Oliveira, C. Visceral Obesity and Its Shared Role in Cancer and Cardiovascular Disease: A Scoping Review of the Pathophysiology and Pharmacological Treatments. Int. J. Mol. Sci. 2020, 21, 9042. [Google Scholar] [CrossRef] [PubMed]
- Gkavogiannakis, N.A.; Tsoporis, J.N.; Drosatos, I.-A.; Tsirebolos, G.; Izhar, S.; Sakadakis, E.; Triantafyllis, A.S.; Parker, T.G.; Kalogiros, L.A.; Leong-Poi, H.; et al. Emergent Inflammatory Markers and Echocardiographic Indices in Patients with Bronchial Asthma. Biomolecules 2023, 13, 955. [Google Scholar] [CrossRef]
- Greenberg, A.S.; McDaniel, M.L. Identifying the Links between Obesity, Insulin Resistance and Β-cell Function: Potential Role of Adipocyte-derived Cytokines in the Pathogenesis of Type 2 Diabetes. Eur. J. Clin. Investig. 2002, 32, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Henson, J.; Yates, T.; Edwardson, C.L.; Khunti, K.; Talbot, D.; Gray, L.J.; Leigh, T.M.; Carter, P.; Davies, M.J. Sedentary Time and Markers of Chronic Low-Grade Inflammation in a High Risk Population. PLoS ONE 2013, 8, e78350. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, E.G.; Edwardson, C.L.; Achana, F.A.; Davies, M.J.; Gorely, T.; Gray, L.J.; Khunti, K.; Yates, T.; Biddle, S.J.H. Sedentary Time in Adults and the Association with Diabetes, Cardiovascular Disease and Death: Systematic Review and Meta-Analysis. Diabetologia 2012, 55, 2895–2905. [Google Scholar] [CrossRef] [PubMed]
- Rodas, L.; Riera-Sampol, A.; Aguilo, A.; Martínez, S.; Tauler, P. Effects of Habitual Caffeine Intake, Physical Activity Levels, and Sedentary Behavior on the Inflammatory Status in a Healthy Population. Nutrients 2020, 12, 2325. [Google Scholar] [CrossRef] [PubMed]
- Saunders, T.J.; Larouche, R.; Colley, R.C.; Tremblay, M.S. Acute Sedentary Behaviour and Markers of Cardiometabolic Risk: A Systematic Review of Intervention Studies. J. Nutr. Metab. 2012, 2012, 712435. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M.; Participants, S.T.C.P. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project Process and Outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.; McNamara, E.; Tainio, M.; de Sá, T.H.; Smith, A.D.; Sharp, S.J.; Edwards, P.; Woodcock, J.; Brage, S.; Wijndaele, K. Sedentary Behaviour and Risk of All-Cause, Cardiovascular and Cancer Mortality, and Incident Type 2 Diabetes: A Systematic Review and Dose Response Meta-Analysis. Eur. J. Epidemiol. 2018, 33, 811–829. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.; Lee, I.M.; Lancet Physical Activity Series 2 Executive, C.; Lancet Sedentary Behaviour Working, G. Does Physical Activity Attenuate, or Even Eliminate, the Detrimental Association of Sitting Time with Mortality? A Harmonised Meta-Analysis of Data from More than 1 Million Men and Women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, D.W.; Dogra, S.; Carter, S.E.; Owen, N. Sit Less and Move More for Cardiovascular Health: Emerging Insights and Opportunities. Nat. Rev. Cardiol. 2021, 18, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Bennie, J.A.; Chau, J.Y.; van der Ploeg, H.P.; Stamatakis, E.; Do, A.; Bauman, A. The Prevalence and Correlates of Sitting in European Adults—A Comparison of 32 Eurobarometer-Participating Countries. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Edelmann, D.; Pfirrmann, D.; Heller, S.; Dietz, P.; Reichel, J.L.; Werner, A.M.; Schäfer, M.; Tibubos, A.N.; Deci, N.; Letzel, S.; et al. Physical Activity and Sedentary Behavior in University Students-The Role of Gender, Age, Field of Study, Targeted Degree, and Study Semester. Front. Public Health 2022, 10, 821703. [Google Scholar] [CrossRef] [PubMed]
- Castro, O.; Bennie, J.; Vergeer, I.; Bosselut, G.; Biddle, S.J.H. How Sedentary Are University Students? A Systematic Review and Meta-Analysis. Prev. Sci. 2020, 21, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, S.W.; Schierbauer, J.; Zimmermann, P.; Voit, T.; Grothoff, A.; Wachsmuth, N.; Rössler, A.; Lackner, H.K.; Moser, O. Effects of Light-intensity Physical Activity on Cardiometabolic Parameters in Young Adults with Overweight and Obesity: The SED-ACT Randomized Controlled Crossover Trial. Diabetes Obes. Metab. 2024, 26, 3849–3859. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Fischer, C.P. Beneficial Health Effects of Exercise—The Role of IL-6 as a Myokine. Trends Pharmacol. Sci. 2007, 28, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Mujumdar, P.P.; Duerksen-Hughes, P.J.; Firek, A.F.; Hessinger, D.A. Long-Term, Progressive, Aerobic Training Increases Adiponectin in Middle-Aged, Overweight, Untrained Males and Females. Scand. J. Clin. Lab. Investig. 2011, 71, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Zunner, B.E.M.; Wachsmuth, N.B.; Eckstein, M.L.; Scherl, L.; Schierbauer, J.R.; Haupt, S.; Stumpf, C.; Reusch, L.; Moser, O. Myokines and Resistance Training: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 3501. [Google Scholar] [CrossRef] [PubMed]
- Plomgaard, P.; Bouzakri, K.; Krogh-Madsen, R.; Mittendorfer, B.; Zierath, J.R.; Pedersen, B.K. Tumor Necrosis Factor-α Induces Skeletal Muscle Insulin Resistance in Healthy Human Subjects via Inhibition of Akt Substrate 160 Phosphorylation. Diabetes 2005, 54, 2939–2945. [Google Scholar] [CrossRef]
- Balder, J.W.; de Vries, J.K.; Nolte, I.M.; Lansberg, P.J.; Kuivenhoven, J.A.; Kamphuisen, P.W. Lipid and Lipoprotein Reference Values from 133,450 Dutch Lifelines Participants: Age- and Gender-Specific Baseline Lipid Values and Percentiles. J. Clin. Lipidol. 2017, 11, 1055–1064.e6. [Google Scholar] [CrossRef]
- Kannel, W.B.; Vasan, R.S.; Keyes, M.J.; Sullivan, L.M.; Robins, S.J. Usefulness of the Triglyceride–High-Density Lipoprotein Versus the Cholesterol–High-Density Lipoprotein Ratio for Predicting Insulin Resistance and Cardiometabolic Risk (from the Framingham Offspring Cohort). Am. J. Cardiol. 2008, 101, 497–501. [Google Scholar] [CrossRef]
- Stadler, J.T.; Marsche, G. Obesity-Related Changes in High-Density Lipoprotein Metabolism and Function. Int. J. Mol. Sci. 2020, 21, 8985. [Google Scholar] [CrossRef] [PubMed]
- Nussbaumerova, B.; Rosolova, H. Obesity and Dyslipidemia. Curr. Atheroscler. Rep. 2023, 25, 947–955. [Google Scholar] [CrossRef] [PubMed]
- van Mil, D.; Kieneker, L.M.; Evers-Roeten, B.; Thelen, M.H.M.; de Vries, H.; Hemmelder, M.H.; Dorgelo, A.; van Etten, R.W.; Heerspink, H.J.L.; Gansevoort, R.T. Participation Rate and Yield of Two Home-Based Screening Methods to Detect Increased Albuminuria in the General Population in the Netherlands (THOMAS): A Prospective, Randomised, Open-Label Implementation Study. Lancet 2023, 402, 1052–1064. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Quan, J.; Xiong, L.; Luo, Y.; Yi, B. Probiotics Improve Renal Function, Glucose, Lipids, Inflammation and Oxidative Stress in Diabetic Kidney Disease: A Systematic Review and Meta-Analysis. Ren. Fail. 2022, 44, 862–880. [Google Scholar] [CrossRef] [PubMed]
- Harriss, D.J.; MacSween, A.; Atkinson, G. Ethical Standards in Sport and Exercise Science Research: 2020 Update. Int. J. Sports Med. 2019, 40, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak, G.; Plous, S. Research Randomizer (Version 4.0). 2013. Available online: https://www.randomizer.org/ (accessed on 26 January 2023).
- Dwan, K.; Li, T.; Altman, D.G.; Elbourne, D. CONSORT 2010 Statement: Extension to Randomised Crossover Trials. BMJ 2019, 366, l4378. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, E.; Gerdes, C.; Petersmann, A.; Müller-Wieland, D.; Müller, U.A.; Freckmann, G.; Heinemann, L.; Nauck, M.; Landgraf, R. Definition, Classification and Diagnosis of Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2022, 130, S1–S8. [Google Scholar] [CrossRef]
- Crespo, N.C.; Mullane, S.L.; Zeigler, Z.S.; Buman, M.P.; Gaesser, G.A. Effects of Standing and Light-Intensity Walking and Cycling on 24-h Glucose. Med. Sci. Sports Exerc. 2016, 48, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Zeigler, Z.S.; Mullane, S.L.; Crespo, N.C.; Buman, M.P.; Gaesser, G.A. Effects of Standing and Light-Intensity Activity on Ambulatory Blood Pressure. Med. Sci. Sports Exerc. 2016, 48, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Thorp, A.A.; Kingwell, B.A.; Owen, N.; Dunstan, D.W. Breaking up Workplace Sitting Time with Intermittent Standing Bouts Improves Fatigue and Musculoskeletal Discomfort in Overweight/Obese Office Workers. Occup. Environ. Med. 2014, 71, 765–771. [Google Scholar] [CrossRef]
- Manning, P.J.; Sutherland, W.H.F.; McGrath, M.M.; De Jong, S.A.; Walker, R.J.; Williams, M.J.A. Postprandial Cytokine Concentrations and Meal Composition in Obese and Lean Women. Obesity 2008, 16, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.-C.; Xu, J.; Wang, T.; Hua, F.; Li, J.-J. Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovasc. Diabetol. 2022, 21, 68. [Google Scholar] [CrossRef] [PubMed]
- Araújo, S.P.; Juvanhol, L.L.; Bressan, J.; Hermsdorff, H.H.M. Triglyceride Glucose Index: A New Biomarker in Predicting Cardiovascular Risk. Prev. Med. Rep. 2022, 29, 101941. [Google Scholar] [CrossRef] [PubMed]
- Derstine, B.A.; Holcombe, S.A.; Ross, B.E.; Wang, N.C.; Wang, S.C.; Su, G.L. Healthy US Population Reference Values for CT Visceral Fat Measurements and the Impact of IV Contrast, HU Range, and Spinal Levels. Sci. Rep. 2022, 12, 2374. [Google Scholar] [CrossRef] [PubMed]
- Achamrah, N.; Colange, G.; Delay, J.; Rimbert, A.; Folope, V.; Petit, A.; Grigioni, S.; Déchelotte, P.; Coëffier, M. Comparison of Body Composition Assessment by DXA and BIA According to the Body Mass Index: A Retrospective Study on 3655 Measures. PLoS ONE 2018, 13, e0200465. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary. J. Am. Coll. Cardiol. 2019, 73, 3168–3209. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.P. Interleukin-6 in Acute Exercise and Training: What Is the Biological Relevance? Exerc. Immunol. Rev 2006, 12, 6–33. [Google Scholar] [PubMed]
- Ulven, S.M.; Foss, S.S.; Skjølsvik, A.M.; Stadheim, H.K.; Myhrstad, M.C.W.; Raael, E.; Sandvik, M.; Narverud, I.; Andersen, L.F.; Jensen, J.; et al. An Acute Bout of Exercise Modulate the Inflammatory Response in Peripheral Blood Mononuclear Cells in Healthy Young Men. Arch. Physiol. Biochem. 2015, 121, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Son, W.-H.; Park, H.-T.; Jeon, B.H.; Ha, M.-S. Moderate Intensity Walking Exercises Reduce the Body Mass Index and Vascular Inflammatory Factors in Postmenopausal Women with Obesity: A Randomized Controlled Trial. Sci. Rep. 2023, 13, 20172. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the Interleukin-10 Receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Park, J.Y.; Yu, R. Relationship of Obesity and Visceral Adiposity with Serum Concentrations of CRP, TNF-α and IL-6. Diabetes Res. Clin. Pract. 2005, 69, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.; Pitsavos, C.; Yannakoulia, M.; Chrysohoou, C.; Stefanadis, C. The Implication of Obesity and Central Fat on Markers of Chronic Inflammation: The ATTICA Study. Atherosclerosis 2005, 183, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.; Feraco, A.; Bellia, C.; Prisco, L.; D’Ippolito, I.; Padua, E.; Storz, M.A.; Lauro, D.; Caprio, M.; Bellia, A. Influence of Nutritional Status and Physical Exercise on Immune Response in Metabolic Syndrome. Nutrients 2022, 14, 2054. [Google Scholar] [CrossRef] [PubMed]
- Maylor, B.D.; Zakrzewski-Fruer, J.K.; Orton, C.J.; Bailey, D.P. Beneficial Postprandial Lipaemic Effects of Interrupting Sedentary Time with High-Intensity Physical Activity versus a Continuous Moderate-Intensity Physical Activity Bout: A Randomised Crossover Trial. J. Sci. Med. Sport 2018, 21, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Duvivier, B.M.F.M.; Schaper, N.C.; Bremers, M.A.; van Crombrugge, G.; Menheere, P.P.C.A.; Kars, M.; Savelberg, H.H.C.M. Minimal Intensity Physical Activity (Standing and Walking) of Longer Duration Improves Insulin Action and Plasma Lipids More than Shorter Periods of Moderate to Vigorous Exercise (Cycling) in Sedentary Subjects When Energy Expenditure Is Comparable. PLoS ONE 2013, 8, e55542. [Google Scholar] [CrossRef] [PubMed]
- Nieste, I.; Franssen, W.M.A.; Duvivier, B.M.F.M.; Spaas, J.; Savelberg, H.H.C.M.; Eijnde, B.O. Replacing Sitting with Light-Intensity Physical Activity throughout the Day versus 1 Bout of Vigorous-Intensity Exercise: Similar Cardiometabolic Health Effects in Multiple Sclerosis. A Randomised Cross-over Study. Disabil. Rehabil. 2023, 45, 3293–3302. [Google Scholar] [CrossRef]
- Prasertsri, P.; Phoemsapthawee, J.; Kuamsub, S.; Poolpol, K.; Boonla, O. Effects of Long-Term Regular Continuous and Intermittent Walking on Oxidative Stress, Metabolic Profile, Heart Rate Variability, and Blood Pressure in Older Adults with Hypertension. J. Environ. Public Health 2022, 2022, 5942947. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.-L.; Chen, C.; Hsu, C.-H.; Lin, Y.-C.; Wu, H.-J. Is the Goal of 12,000 Steps per Day Sufficient for Improving Body Composition and Metabolic Syndrome? The Necessity of Combining Exercise Intensity: A Randomized Controlled Trial. BMC Public Health 2019, 19, 1215. [Google Scholar] [CrossRef] [PubMed]
- Champion, R.B.; Smith, L.R.; Smith, J.; Hirlav, B.; Maylor, B.D.; White, S.L.; Bailey, D.P. Reducing Prolonged Sedentary Time Using a Treadmill Desk Acutely Improves Cardiometabolic Risk Markers in Male and Female Adults. J. Sports Sci. 2018, 36, 2484–2491. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.K.; Lapidus, J.A.; Cawthon, P.M.; Dam, T.L.; Sakai, L.Y.; Marshall, L.M. Serum Albumin in Relation to Change in Muscle Mass, Muscle Strength, and Muscle Power in Older Men. J. Am. Geriatr. Soc. 2012, 60, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Reijnierse, E.M.; Trappenburg, M.C.; Leter, M.J.; Sipilä, S.; Stenroth, L.; Narici, M.V.; Hogrel, J.Y.; Butler-Browne, G.; McPhee, J.S.; Pääsuke, M.; et al. Serum Albumin and Muscle Measures in a Cohort of Healthy Young and Old Participants. AGE 2015, 37, 88. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Kritchevsky, S.B.; Newman, A.B.; Goodpaster, B.H.; Tylavsky, F.A.; Nevitt, M.C.; Harris, T.B. Lower Serum Albumin Concentration and Change in Muscle Mass: The Health, Aging and Body Composition Study. Am. J. Clin. Nutr. 2005, 82, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.V. Age-Related Muscle Dysfunction. Exp. Gerontol. 2009, 44, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.-M.V.; Gonzalez, M.; Poueymirou, W.T.; Kline, W.O.; Na, E.; Zlotchenko, E.; Stitt, T.N.; Economides, A.N.; Yancopoulos, G.D.; Glass, D.J. Conditional Activation of Akt in Adult Skeletal Muscle Induces Rapid Hypertrophy. Mol. Cell. Biol. 2004, 24, 9295–9304. [Google Scholar] [CrossRef]
- Hou, Y.; Ma, R.; Gao, S.; Kaudimba, K.K.; Yan, H.; Liu, T.; Wang, R. The Effect of Low and Moderate Exercise on Hyperuricemia: Protocol for a Randomized Controlled Study. Front. Endocrinol. 2021, 12, 716802. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Han, C.; Wu, D.; Xia, X.; Gu, J.; Guan, H.; Shan, Z.; Teng, W. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2015, 2015, 762820. [Google Scholar] [CrossRef] [PubMed]
- Park, D.Y.; Kim, Y.S.; Ryu, S.H.; Jin, Y.S. The Association between Sedentary Behavior, Physical Activity and Hyperuricemia. Vasc. Health Risk Manag. 2019, 15, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Wen, C.P.; Wu, S.B.; Lan, J.-L.; Tsai, M.K.; Tai, Y.-P.; Lee, J.H.; Hsu, C.C.; Tsao, C.K.; Wai, J.P.M.; et al. Attenuating the Mortality Risk of High Serum Uric Acid: The Role of Physical Activity Underused. Ann. Rheum. Dis. 2015, 74, 2034–2042. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Mean (95% CI, n = 17) | Inflammatory and Cardiometabolic Risk Markers | Mean (95% CI, n = 17) |
---|---|---|---|
Females (n [%]) * | 8 (47.1) | IL-6 (pg/mL) | 3.2 (1.7–4.8) |
Age (years) | 23.4 (21.7–25.0) | CRP (mg/L | 2.6 (0.7–4.5) |
Height (cm) | 173.8 (167.5–180.0) | TC (mg/dL) | 180.0 (166.2–192.7) |
Weight (kg) | 90.1 (80.7–99.5) | HDL-C (mg/dL) | 54.1 (47.9–60.2) |
BMI (kg/m2) | 29.7 (27.8–31.6) | LDL-C (mg/dL | 103.0 (90.9–114.8) |
Body Composition | TG (mg/dL) | 112.6 (92.7–132.5) | |
ICW (L) | 28.3 (24.7–31.8) | TC/HDL-C (mg/dL) | 3.4 (3.1–3.8) |
ECW (L) | 16.8 (14.7–18.9) | TG/HDL-C (mg/dL) | 2.2 (1.7–2.7) |
TBW (L) | 45.1 (39.4–50.8) | LDL-C/HDL-C (mg/dL) | 2.0 (1.7–2.3) |
FM (kg) | 29.2 (23.9–34.4) | TyG index (mg/dL) | 8.4 (8.2–8.6) |
FM (%) | 31.8 (27.6–36.0) | Albumin (g/dL) | 4.9 (4.7–5.0) |
SMM (kg) | 34.9 (30.2–39.5) | Amylase, pancreatic (U/L) | 24.3 (20.3–28.4) |
SMM (%) | 38.6 (36.0–41.1) | Protein, total (g/dL) | 7.6 (7.4–7.7) |
VFA (cm2) | 119.2 (101.7–136.7) | Uric acid (mg/dL) | 5.8 (5.2–6.4) |
BMR (kcal) | 1700.0 (1531.0–1868.0) | Urea (mg/dL) | 24.3 (20.8–27.8) |
Creatinine (mg/dL) | 0.9 (0.8–1.0) |
Age (Years) | BMI (kg/m2) | FM (%) | SMM (%) | VFA (cm2) | |
---|---|---|---|---|---|
IL-6 (pg/mL) | 0.266 | 0.510 | 0.297 | 0.183 | 0.583 |
(0.298) | (0.039 *) | (0.245) | (0.478) | (0.016 *) | |
CRP (mg/L) | 0.475 | 0.319 | 0.070 | 0.057 | 0.460 |
(0.056) | (0.209) | (0.788) | (0.827) | (0.065) | |
TC (mg/dL) | 0.020 | −0.144 | −0.120 | −0.211 | −0.213 |
(0.941) | (0.661) | (0.645) | (0.415) | (0.410) | |
HDL-C (mg/dL) | −0.168 | −0.087 | 0.369 | 0.154 | −0.178 |
(0.513) | (0.735) | (0.145) | (0.554) | (0.491) | |
LDL-C (mg/dL) | −0.040 | −0.129 | −0.417 | −0.238 | −0.218 |
(0.877) | (0.6202) | (0.096) | (0.357) | (0.399) | |
TG (mg/dL) | 0.088 | 0.396 | 0.177 | 0.137 | 0.580 |
(0.733) | (0.116) | (0.497) | (0.599) | (0.015 *) | |
TC/HDL-C (mg/dL) | 0.103 | −0.018 | −0.392 | −0.290 | 0.061 |
(0.694) | (0.945) | (0.119) | (0.259) | (0.815) | |
TG/HDL-C (mg/dL) | 0.232 | 0.338 | 0.048 | 0.104 | 0.563 |
(0.371) | (0.184) | (0.856) | (0.690) | (0.019 *) | |
LDL-C/HDL-C (mg/dL) | 0.070 | −0.147 | −0.481 | −0.355 | −0.117 |
(0.788) | (0.577) | (0.051) | (0.162) | (0.654) | |
TyG index (mg/dL) | 0.162 | 0.142 | 0.059 | 0.212 | 0.412 |
(0.536) | (0.586) | (0.823) | (0.415) | (0.100) | |
Albumin (g/dL) | 0.061 | 0.276 | −0.235 | 0.171 | 0.272 |
(0.815) | (0.283) | (0.364) | (0.513) | (0.292) | |
Amylase, pancreatic (U/L) | 0.218 | −0.083 | −0.193 | −0.434 | −0.085 |
(0.401 | (0.753) | (0.458) | (0.082) | (0.747) | |
Protein, total (g/dL) | 0.103 | 0.578 | −0.055 | 0.241 | 0.514 |
(0.696) | (0.015 *) | (0.835) | (0.352) | (0.035 *) | |
Uric acid (mg/dL) | 0.500 | 0.335 | −0.327 | −0.060 | 0.406 |
(0.041 *) | (0.189) | (0.199) | (0.820) | (0.106) | |
Urea (mg/dL) | −0.405 | −0.072 | −0.188 | −0.326 | −0.078 |
(0.107) | (0.785) | (0.469) | (0.202) | (0.764) | |
Creatinine (mg/dL) | 0.143 | 0.056 | −0.513 | −0.396 | 0.100 |
(0.585) | (0.831) | (0.035 *) | (0.116) | (0.702) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmann, S.W.; Schierbauer, J.; Zimmermann, P.; Voit, T.; Grothoff, A.; Wachsmuth, N.B.; Rössler, A.; Niedrist, T.; Lackner, H.K.; Moser, O. Effects of Interrupting Prolonged Sitting with Light-Intensity Physical Activity on Inflammatory and Cardiometabolic Risk Markers in Young Adults with Overweight and Obesity: Secondary Outcome Analyses of the SED-ACT Randomized Controlled Crossover Trial. Biomolecules 2024, 14, 1029. https://doi.org/10.3390/biom14081029
Hoffmann SW, Schierbauer J, Zimmermann P, Voit T, Grothoff A, Wachsmuth NB, Rössler A, Niedrist T, Lackner HK, Moser O. Effects of Interrupting Prolonged Sitting with Light-Intensity Physical Activity on Inflammatory and Cardiometabolic Risk Markers in Young Adults with Overweight and Obesity: Secondary Outcome Analyses of the SED-ACT Randomized Controlled Crossover Trial. Biomolecules. 2024; 14(8):1029. https://doi.org/10.3390/biom14081029
Chicago/Turabian StyleHoffmann, Sascha W., Janis Schierbauer, Paul Zimmermann, Thomas Voit, Auguste Grothoff, Nadine B. Wachsmuth, Andreas Rössler, Tobias Niedrist, Helmut K. Lackner, and Othmar Moser. 2024. "Effects of Interrupting Prolonged Sitting with Light-Intensity Physical Activity on Inflammatory and Cardiometabolic Risk Markers in Young Adults with Overweight and Obesity: Secondary Outcome Analyses of the SED-ACT Randomized Controlled Crossover Trial" Biomolecules 14, no. 8: 1029. https://doi.org/10.3390/biom14081029
APA StyleHoffmann, S. W., Schierbauer, J., Zimmermann, P., Voit, T., Grothoff, A., Wachsmuth, N. B., Rössler, A., Niedrist, T., Lackner, H. K., & Moser, O. (2024). Effects of Interrupting Prolonged Sitting with Light-Intensity Physical Activity on Inflammatory and Cardiometabolic Risk Markers in Young Adults with Overweight and Obesity: Secondary Outcome Analyses of the SED-ACT Randomized Controlled Crossover Trial. Biomolecules, 14(8), 1029. https://doi.org/10.3390/biom14081029