An Update on Polyphosphate In Vivo Activities
Abstract
:1. Introduction
2. Biophysical Characteristics of Polyphosphate
3. PolyP Metabolism
4. Bacteria
5. Unicellular Eukariotes
6. Mammalians
7. Extracellular PolyP
8. PolyP Signalling
9. Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Desfougeres, Y.; Saiardi, A.; Azevedo, C. Inorganic polyphosphate in mammals: Where’s Wally? Biochem. Soc. Trans. 2020, 48, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.N.; Gomez-Garcia, M.R.; Kornberg, A. Inorganic polyphosphate: Essential for growth and survival. Annu. Rev. Biochem. 2009, 78, 605–647. [Google Scholar] [CrossRef]
- Wang, L.; Yan, J.; Wise, M.J.; Liu, Q.; Asenso, J.; Huang, Y.; Dai, S.; Liu, Z.; Du, Y.; Tang, D. Distribution Patterns of Polyphosphate Metabolism Pathway and Its Relationships With Bacterial Durability and Virulence. Front. Microbiol. 2018, 9, 782. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.N.; Docampo, R. Polyphosphate and its diverse functions in host cells and pathogens. PLoS Pathog. 2013, 9, e1003230. [Google Scholar] [CrossRef] [PubMed]
- Kumble, K.D.; Kornberg, A. Inorganic polyphosphate in mammalian cells and tissues. J. Biol. Chem. 1995, 270, 5818–5822. [Google Scholar] [CrossRef] [PubMed]
- Lynn, W.S.; Brown, R.H. Synthesis of Polyphosphate by Rat Liver Mitochondria. Biochem. Biophys. Res. Commun. 1963, 11, 367–371. [Google Scholar] [CrossRef]
- Kulakovskaya, T.; Kulaev, I. Enzymes of inorganic polyphosphate metabolism. Prog. Mol. Subcell. Biol. 2013, 54, 39–63. [Google Scholar] [CrossRef]
- Hirokado, M.; Shimamura, Y.; Nakajima, K.; Ozawa, H.; Kimura, K.; Yasuda, K.; Nishijima, M. Methods for determination of milt protein and epsilon-polylysine in food additive preparations and processed foods by capillary zone electrophoresis. Shokuhin Eiseigaku Zasshi 2001, 42, 79–83. [Google Scholar] [CrossRef]
- Thilo, E. Die kondensierten Phosphate. Angew. Chem. 1955, 67, 141–145. [Google Scholar] [CrossRef]
- Achbergerova, L.; Nahalka, J. Polyphosphate—An ancient energy source and active metabolic regulator. Microb. Cell Fact. 2011, 10, 63. [Google Scholar] [CrossRef]
- Curnutt, S.G.; Schmidt, R.R. Possible Mechanisms Controlling the Intracellular Level of Inorganic Polyphosphate during Synchronous Growth of Chlorella Pyrenoidosa. Ii. Atp/Adp Ratio. Biochim. Biophys. Acta 1964, 86, 201–203. [Google Scholar] [CrossRef]
- Smith, S.A.; Mutch, N.J.; Baskar, D.; Rohloff, P.; Docampo, R.; Morrissey, J.H. Polyphosphate modulates blood coagulation and fibrinolysis. Proc. Natl. Acad. Sci. USA 2006, 103, 903–908. [Google Scholar] [CrossRef]
- Dassa, E.; Boquet, P.L. Is the acid phosphatase of Escherichia coli with pH optimum of 2.5 A polyphosphate depolymerase? FEBS Lett. 1981, 135, 148–150. [Google Scholar] [CrossRef]
- Bru, S.; Jimenez, J.; Canadell, D.; Arino, J.; Clotet, J. Improvement of biochemical methods of polyP quantification. Microb. Cell 2016, 4, 6–15. [Google Scholar] [CrossRef]
- Christ, J.J.; Willbold, S.; Blank, L.M. Methods for the Analysis of Polyphosphate in the Life Sciences. Anal. Chem. 2020, 92, 4167–4176. [Google Scholar] [CrossRef]
- Jessen, H.J.; Dürr-Mayer, T.; Haas, T.M.; Ripp, A.; Cummins, C.C. Lost in Condensation: Poly-, Cyclo-, and Ultraphosphates. Acc. Chem. Res. 2021, 54, 4036–4050. [Google Scholar] [CrossRef]
- Dürr-Mayer, T.; Qiu, D.; Eisenbeis, V.B.; Steck, N.; Häner, M.; Hofer, A.; Mayer, A.; Siegel, J.S.; Baldridge, K.K.; Jessen, H.J. The chemistry of branched condensed phosphates. Nat. Commun. 2021, 12, 5368. [Google Scholar] [CrossRef]
- Kornberg, A. Inorganic polyphosphate: A molecule of many functions. Prog. Mol. Subcell. Biol. 1999, 23, 1–18. [Google Scholar] [CrossRef]
- Vanwazer, J.R.; Campanella, D.A. Structure and Properties of the Condensed Phosphates.4. Complex Ion Formation in Polyphosphate Solutions. J. Am. Chem. Soc. 1950, 72, 655–663. [Google Scholar] [CrossRef]
- Verhoef, J.J.; Barendrecht, A.D.; Nickel, K.F.; Dijkxhoorn, K.; Kenne, E.; Labberton, L.; McCarty, O.J.; Schiffelers, R.; Heijnen, H.F.; Hendrickx, A.P.; et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. Blood 2017, 129, 1707–1717. [Google Scholar] [CrossRef]
- Greenfield, N.J.; Hussain, M.; Lenard, J. Effects of Growth-State and Amines on Cytoplasmic and Vacuolar Ph, Phosphate and Polyphosphate Levels in Saccharomyces-Cerevisiae—A P-31-Nuclear Magnetic-Resonance Study. Biochim. Biophys. Acta 1987, 926, 205–213. [Google Scholar] [CrossRef]
- Ruiz, F.A.; Rodrigues, C.O.; Docampo, R. Rapid changes in polyphosphate content within acidocalcisomes in response to cell growth, differentiation, and environmental stress in Trypanosoma cruzi. J. Biol. Chem. 2001, 276, 26114–26121. [Google Scholar] [CrossRef]
- Foley, B.; Johnson, S.A.; Hackley, B.; Smith, J.C., Jr.; Halsted, J.A. Zinc content of human platelets. Proc. Soc. Exp. Biol. Med. 1968, 128, 265–269. [Google Scholar] [CrossRef]
- Elustondo, P.A.; Nichols, M.; Negoda, A.; Thirumaran, A.; Zakharian, E.; Robertson, G.S.; Pavlov, E.V. Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase C-subunit, polyhydroxybutyrate and inorganic polyphosphate. Cell Death Discov. 2016, 2, 16070. [Google Scholar] [CrossRef]
- Kulakovskaya, T.V.; Lichko, L.P.; Vagabov, V.M.; Kulaev, I.S. Inorganic polyphosphates in mitochondria. Biochem. Biokhimiia 2010, 75, 825–831. [Google Scholar] [CrossRef]
- Pestov, N.A.; Kulakovskaya, T.V.; Kulaev, I.S. Inorganic polyphosphate in mitochondria of Saccharomyces cerevisiae at phosphate limitation and phosphate excess. FEMS Yeast Res. 2004, 4, 643–648. [Google Scholar] [CrossRef]
- Jackson, L.E.; Kariuki, B.M.; Smith, M.E.; Barralet, J.E.; Wright, A.J. Synthesis and structure of a calcium polyphosphate with a unique criss-cross arrangement of helical phosphate chains. Chem. Mater. 2005, 17, 4642–4646. [Google Scholar] [CrossRef]
- Goh, S.H.; Wright, J.A.; LeJohn, H.B. Possible regulation of macromolecular biosynthesis in mammalian cells by a novel dinucleoside polyphosphate (HS3) produced during step-down growth conditions. J. Cell Physiol. 1977, 93, 353–362. [Google Scholar] [CrossRef]
- Jankowski, J.; Jankowski, V.; Laufer, U.; van der Giet, M.; Henning, L.; Tepel, M.; Zidek, W.; Schluter, H. Identification and quantification of diadenosine polyphosphate concentrations in human plasma. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1231–1238. [Google Scholar] [CrossRef]
- Mailer, R.K.W.; Hanel, L.; Allende, M.; Renne, T. Polyphosphate as a Target for Interference With Inflammation and Thrombosis. Front. Med. 2019, 6, 76. [Google Scholar] [CrossRef]
- Muller, W.E.G.; Schroder, H.C.; Wang, X. Inorganic Polyphosphates As Storage for and Generator of Metabolic Energy in the Extracellular Matrix. Chem. Rev. 2019, 119, 12337–12374. [Google Scholar] [CrossRef]
- Leyhausen, G.; Lorenz, B.; Zhu, H.; Geurtsen, W.; Bohnensack, R.; Muller, W.E.; Schroder, H.C. Inorganic polyphosphate in human osteoblast-like cells. J. Bone Miner. Res. 1998, 13, 803–812. [Google Scholar] [CrossRef]
- Taylor, A.W.; Frazier, A.W.; Gurney, E.L. Solubility products of magnesium ammonium and magnesium potassium phosphates. Trans. Faraday Soc. 1963, 59, 1585–1589. [Google Scholar] [CrossRef]
- Gornagy, S.; Kaldi, P.; Besan, J.; Szanto, A. Solubility of Micronutrients in Ammonium Polyphosphate Solutions. Hung. J. Ind. Chem. 1978, 6, 259–274. [Google Scholar]
- Chiti, A. A new member in the EJNMMI family: The European Journal of Hybrid Imaging. Eur. J. Hybrid. Imag. 2017, 1, 6. [Google Scholar] [CrossRef]
- Smith, S.A.; Morrissey, J.H. Sensitive fluorescence detection of polyphosphate in polyacrylamide gels using 4’,6-diamidino-2-phenylindol. Electrophoresis 2007, 28, 3461–3465. [Google Scholar] [CrossRef]
- Griffin, J.B.; Davidian, N.M.; Penniall, R. Studies of phosphorus metabolism by isolated nuclei. VII. Identification of polyphosphate as a product. J. Biol. Chem. 1965, 240, 4427–4434. [Google Scholar] [CrossRef]
- Ebel, J.P.; Muller, S. Cytochemical study of inorganic polyphosphates in living organisms. I. Study of metachromatic reactions and coloration with methyl green and pyronine as a function of the length of the polyphosphate chain. Exp. Cell Res. 1958, 15, 21–28. [Google Scholar] [CrossRef]
- Ahn, K.; Kornberg, A. Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J. Biol. Chem. 1990, 265, 11734–11739. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, W.; Lee, S.S.; Xu, W. Crystal structure of a polyphosphate kinase and its implications for polyphosphate synthesis. EMBO Rep. 2005, 6, 681–687. [Google Scholar] [CrossRef]
- Zhang, H.; Ishige, K.; Kornberg, A. A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc. Natl. Acad. Sci. USA 2002, 99, 16678–16683. [Google Scholar] [CrossRef]
- Hothorn, M.; Neumann, H.; Lenherr, E.D.; Wehner, M.; Rybin, V.; Hassa, P.O.; Uttenweiler, A.; Reinhardt, M.; Schmidt, A.; Seiler, J.; et al. Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science 2009, 324, 513–516. [Google Scholar] [CrossRef]
- Gomez-Garcia, M.R.; Kornberg, A. Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate. Proc. Natl. Acad. Sci. USA 2004, 101, 15876–15880. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Comte-Miserez, V.; Zhang, M.; Yu, X.; Chen, Q.; Jessen, H.J.; Mayer, A.; Wu, S.; Ye, S. Cryo-EM structure of the polyphosphate polymerase VTC reveals coupling of polymer synthesis to membrane transit. EMBO J. 2023, 42, e113320. [Google Scholar] [CrossRef]
- Lonetti, A.; Szijgyarto, Z.; Bosch, D.; Loss, O.; Azevedo, C.; Saiardi, A. Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J. Biol. Chem. 2011, 286, 31966–31974. [Google Scholar] [CrossRef]
- Kumble, K.D.; Kornberg, A. Endopolyphosphatases for long chain inorganic polyphosphate in yeast and mammals. J. Biol. Chem. 1996, 271, 27146–27151. [Google Scholar] [CrossRef]
- Andreeva, N.A.; Kulakovskaya, T.V.; Kulakovskaya, E.V.; Kulaev, I.S. Polyphosphates and exopolyphosphatases in cytosol and mitochondria of Saccharomyces cerevisiae during growth on glucose or ethanol under phosphate surplus. Biochem. Biokhimiia 2008, 73, 65–69. [Google Scholar] [CrossRef]
- Gerasimaite, R.; Sharma, S.; Desfougeres, Y.; Schmidt, A.; Mayer, A. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J. Cell Sci. 2014, 127, 5093–5104. [Google Scholar] [CrossRef]
- Solesio, M.E.; Garcia Del Molino, L.C.; Elustondo, P.A.; Diao, C.; Chang, J.C.; Pavlov, E.V. Inorganic polyphosphate is required for sustained free mitochondrial calcium elevation, following calcium uptake. Cell Calcium 2020, 86, 102127. [Google Scholar] [CrossRef]
- Christ, J.J.; Blank, L.M. Analytical polyphosphate extraction from Saccharomyces cerevisiae. Anal. Biochem. 2018, 563, 71–78. [Google Scholar] [CrossRef]
- Samper-Martin, B.; Sarrias, A.; Lazaro, B.; Perez-Montero, M.; Rodriguez-Rodriguez, R.; Ribeiro, M.P.C.; Banon, A.; Wolfgeher, D.; Jessen, H.J.; Alsina, B.; et al. Polyphosphate degradation by Nudt3-Zn2+ mediates oxidative stress response. Cell Rep. 2021, 37, 110004. [Google Scholar] [CrossRef] [PubMed]
- Tammenkoski, M.; Koivula, K.; Cusanelli, E.; Zollo, M.; Steegborn, C.; Baykov, A.A.; Lahti, R. Human metastasis regulator protein H-prune is a short-chain exopolyphosphatase. Biochemistry 2008, 47, 9707–9713. [Google Scholar] [CrossRef] [PubMed]
- Aravind, L.; Koonin, E.V. A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. Trends Biochem. Sci. 1998, 23, 17–19. [Google Scholar] [CrossRef] [PubMed]
- Ugochukwu, E.; Lovering, A.L.; Mather, O.C.; Young, T.W.; White, S.A. The crystal structure of the cytosolic exopolyphosphatase from Saccharomyces cerevisiae reveals the basis for substrate specificity. J. Mol. Biol. 2007, 371, 1007–1021. [Google Scholar] [CrossRef] [PubMed]
- Hurlimann, H.C.; Stadler-Waibel, M.; Werner, T.P.; Freimoser, F.M. Pho91 Is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae. Mol. Biol. Cell 2007, 18, 4438–4445. [Google Scholar] [CrossRef] [PubMed]
- Gerasimaitė, R.; Mayer, A. Ppn2, a novel Zn2+-dependent polyphosphatase in the acidocalcisome-like yeast vacuole. J. Cell Sci. 2017, 130, 1625–1636. [Google Scholar] [CrossRef] [PubMed]
- Lindner, S.N.; Knebel, S.; Wesseling, H.; Schoberth, S.M.; Wendisch, V.F. Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum. Appl. Environ. Microbiol. 2009, 75, 3161–3170. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Kaneko, T.; Ikeda, Y. Properties of polyphosphate kinase prepared from mycobacterium smegmatis. Biochim. Biophys. Acta 1972, 268, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Achbergerová, L.; Nahálka, J. PPK1 and PPK2—Which polyphosphate kinase is older? Biologia 2014, 6, 263–269. [Google Scholar] [CrossRef]
- Rashid, M.H.; Rumbaugh, K.; Passador, L.; Davies, D.G.; Hamood, A.N.; Iglewski, B.H.; Kornberg, A. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2000, 97, 9636–9641. [Google Scholar] [CrossRef]
- Tan, S.; Fraley, C.D.; Zhang, M.; Dailidiene, D.; Kornberg, A.; Berg, D.E. Diverse phenotypes resulting from polyphosphate kinase gene (ppk1) inactivation in different strains of Helicobacter pylori. J. Bacteriol. 2005, 187, 7687–7695. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, A.; De Piano, C.; Gelman, E.; McKinney, J.D.; Dhar, N. Elucidating the role of (p)ppGpp in mycobacterial persistence against antibiotics. IUBMB Life 2018, 70, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.M.; Dutta, N.K.; Hung, C.F.; Wu, T.C.; Rubin, H.; Karakousis, P.C. Stringent Response Factors PPX1 and PPK2 Play an Important Role in Mycobacterium tuberculosis Metabolism, Biofilm Formation, and Sensitivity to Isoniazid In Vivo. Antimicrob. Agents Chemother. 2016, 60, 6460–6470. [Google Scholar] [CrossRef] [PubMed]
- Neville, N.; Roberge, N.; Jia, Z. Polyphosphate Kinase 2 (PPK2) Enzymes: Structure, Function, and Roles in Bacterial Physiology and Virulence. Int. J. Mol. Sci. 2022, 23, 670. [Google Scholar] [CrossRef] [PubMed]
- Racki, L.R.; Tocheva, E.I.; Dieterle, M.G.; Sullivan, M.C.; Jensen, G.J.; Newman, D.K. Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in. Proc. Natl. Acad. Sci. USA 2017, 114, E2440–E2449. [Google Scholar] [CrossRef] [PubMed]
- Bonting, C.F.C.; Kortstee, G.J.J.; Zehnder, A.J.B. Properties of Polyphosphate—Amp Phosphotransferase of Acinetobacter Strain-210a. J. Bacteriol. 1991, 173, 6484–6488. [Google Scholar] [CrossRef] [PubMed]
- Motomura, K.; Hirota, R.; Okada, M.; Ikeda, T.; Ishida, T.; Kuroda, A. A New Subfamily of Polyphosphate Kinase 2 (Class III PPK2) Catalyses both Nucleoside Monophosphate Phosphorylation and Nucleoside Diphosphate Phosphorylation. Appl. Environ. Microb. 2014, 80, 2602–2608. [Google Scholar] [CrossRef] [PubMed]
- Rangarajan, E.S.; Nadeau, G.; Li, Y.; Wagner, J.; Hung, M.N.; Schrag, J.D.; Cygler, M.; Matte, A. The structure of the exopolyphosphatase (PPX) from Escherichia coli O157:H7 suggests a binding mode for long polyphosphate chains. J. Mol. Biol. 2006, 359, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Lichko, L.P.; Kulakovskaya, T.V.; Kulakovskaya, E.V.; Kulaev, I.S. Inactivation of PPX1 and PPN1 genes encoding exopolyphosphatases of Saccharomyces cerevisiae does not prevent utilisation of polyphosphates as phosphate reserve. Biochem. Biokhimiia 2008, 73, 985–989. [Google Scholar] [CrossRef]
- Sethuraman, A.; Rao, N.N.; Kornberg, A. The endopolyphosphatase gene: Essential in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2001, 98, 8542–8547. [Google Scholar] [CrossRef]
- Lichko, L.P.; Kulakovskaya, T.V.; Kulaev, I.S. Inorganic polyphosphates and exopolyphosphatases in different cell compartments of Saccharomyces cerevisiae. Biochem. Biokhimiia 2006, 71, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, N.A.; Kulakovskaia, T.V.; Kulaev, I.S. Characteristics of polyphosphatase activity of Saccharomyces cerevisiae cytosol. Biokhimiia 1994, 59, 1882–1891. [Google Scholar] [PubMed]
- Azevedo, C.; Desfougères, Y.; Jiramongkol, Y.; Partington, H.; Trakansuebkul, S.; Singh, J.; Steck, N.; Jessen, H.J.; Saiardi, A. Development of a yeast model to study the contribution of vacuolar polyphosphate metabolism to lysine polyphosphorylation. J. Biol. Chem. 2020, 295, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Lander, N.; Cordeiro, C.; Huang, G.; Docampo, R. Polyphosphate and acidocalcisomes. Biochem. Soc. Trans. 2016, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Docampo, R.; Moreno, S.N. Acidocalcisomes. Cell Calcium 2011, 50, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Docampo, R.; de Souza, W.; Miranda, K.; Rohloff, P.; Moreno, S.N. Acidocalcisomes—Conserved from bacteria to man. Nat. Rev. Microbiol. 2005, 3, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Sanchez, D.; Hernandez-Ruiz, L.; Ruiz, F.A.; Docampo, R. Polyphosphate is a novel proinflammatory regulator of mast cells and is located in acidocalcisomes. J. Biol. Chem. 2012, 287, 28435–28444. [Google Scholar] [CrossRef]
- Gerasimaite, R.; Pavlovic, I.; Capolicchio, S.; Hofer, A.; Schmidt, A.; Jessen, H.J.; Mayer, A. Inositol Pyrophosphate Specificity of the SPX-Dependent Polyphosphate Polymerase VTC. ACS Chem. Biol. 2017, 12, 648–653. [Google Scholar] [CrossRef]
- Kornberg, A.; Rao, N.N.; Ault-Riche, D. Inorganic polyphosphate: A molecule of many functions. Annu. Rev. Biochem. 1999, 68, 89–125. [Google Scholar] [CrossRef] [PubMed]
- Scoma, E.R.; Da Costa, R.T.; Leung, H.H.; Urquiza, P.; Guitart-Mampel, M.; Hambardikar, V.; Riggs, L.M.; Wong, C.O.; Solesio, M.E. Human Prune Regulates the Metabolism of Mammalian Inorganic Polyphosphate and Bioenergetics. Int. J. Mol. Sci. 2023, 24, 13859. [Google Scholar] [CrossRef]
- Baev, A.Y.; Angelova, P.R.; Abramov, A.Y. Inorganic polyphosphate is produced and hydrolysed in F0F1-ATP synthase of mammalian mitochondria. Biochem. J. 2020, 477, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.J.; Rogers, C.E.; Harris, H. Expression of alkaline phosphatase loci in mammalian tissues. Proc. Natl. Acad. Sci. USA 1980, 77, 2857–2860. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.K.; Fonzi, W.A.; Wilkerson, J.; Opheim, D.J. A particulate form of alkaline phosphatase in the yeast, Saccharomyces cerevisiae. Biochim. Biophys. Acta 1981, 657, 482–494. [Google Scholar] [CrossRef]
- Giovannini, D.; Touhami, J.; Charnet, P.; Sitbon, M.; Battini, J.L. Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep. 2013, 3, 1866–1873. [Google Scholar] [CrossRef] [PubMed]
- Mailer, R.K.; Allende, M.; Heestermans, M.; Schweizer, M.; Deppermann, C.; Frye, M.; Pula, G.; Odeberg, J.; Gelderblom, M.; Rose-John, S.; et al. Xenotropic and polytropic retrovirus receptor 1 regulates procoagulant platelet polyphosphate. Blood 2021, 137, 1392–1405. [Google Scholar] [CrossRef] [PubMed]
- Battini, J.L.; Rasko, J.E.; Miller, A.D. A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: Possible role in G protein-coupled signal transduction. Proc. Natl. Acad. Sci. USA 1999, 96, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Seidlmayer, L.K.; Juettner, V.V.; Kettlewell, S.; Pavlov, E.V.; Blatter, L.A.; Dedkova, E.N. Distinct mPTP activation mechanisms in ischaemia-reperfusion: Contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Cardiovasc. Res. 2015, 106, 237–248. [Google Scholar] [CrossRef]
- Seidlmayer, L.K.; Gomez-Garcia, M.R.; Shiba, T.; Porter, G.A., Jr.; Pavlov, E.V.; Bers, D.M.; Dedkova, E.N. Dual role of inorganic polyphosphate in cardiac myocytes: The importance of polyP chain length for energy metabolism and mPTP activation. Arch. Biochem. Biophys. 2019, 662, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Lemasters, J.J.; Theruvath, T.P.; Zhong, Z.; Nieminen, A.L. Mitochondrial calcium and the permeability transition in cell death. Biochim. Biophys. Acta (BBA) Bioenerg. 2009, 1787, 1395–1401. [Google Scholar] [CrossRef]
- Nickel, K.F.; Labberton, L.; Long, A.T.; Langer, F.; Fuchs, T.A.; Stavrou, E.X.; Butler, L.M.; Renne, T. The polyphosphate/factor XII pathway in cancer-associated thrombosis: Novel perspectives for safe anticoagulation in patients with malignancies. Thromb. Res. 2016, 141 (Suppl. S2), S4–S7. [Google Scholar] [CrossRef]
- Caen, J.; Wu, Q. Hageman factor, platelets and polyphosphates: Early history and recent connection. J. Thromb. Haemost. 2010, 8, 1670–1674. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, F.A.; Lea, C.R.; Oldfield, E.; Docampo, R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J. Biol. Chem. 2004, 279, 44250–44257. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.N.; Docampo, R. The role of acidocalcisomes in parasitic protists. J. Eukaryot. Microbiol. 2009, 56, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Nickel, K.F.; Ronquist, G.; Langer, F.; Labberton, L.; Fuchs, T.A.; Bokemeyer, C.; Sauter, G.; Graefen, M.; Mackman, N.; Stavrou, E.X.; et al. The polyphosphate-factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood 2015, 126, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Santi, M.J.; Montilla, M.; Carroza, M.A.; Ruiz, F.A. Novel assay for prothrombotic polyphosphates in plasma reveals their correlation with obesity. Thromb. Res. 2016, 144, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.J.; Smith, S.A.; Morrissey, J.H. Polyphosphate in thrombosis, hemostasis, and inflammation. Res. Pract. Thromb. Haemost. 2019, 3, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Bondy-Chorney, E.; Abramchuk, I.; Nasser, R.; Holinier, C.; Denoncourt, A.; Baijal, K.; McCarthy, L.; Khacho, M.; Lavallee-Adam, M.; Downey, M. A Broad Response to Intracellular Long-Chain Polyphosphate in Human Cells. Cell Rep. 2020, 33, 108318. [Google Scholar] [CrossRef] [PubMed]
- Muller, F.; Mutch, N.J.; Schenk, W.A.; Smith, S.A.; Esterl, L.; Spronk, H.M.; Schmidbauer, S.; Gahl, W.A.; Morrissey, J.H.; Renne, T. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009, 139, 1143–1156. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, J.H.; Smith, S.A. Polyphosphate as modulator of hemostasis, thrombosis, and inflammation. J. Thromb. Haemost. 2015, 13 (Suppl. S1), S92–S97. [Google Scholar] [CrossRef]
- Maas, C.; Renne, T. Coagulation factor XII in thrombosis and inflammation. Blood 2018, 131, 1903–1909. [Google Scholar] [CrossRef]
- Bjorkqvist, J.; Nickel, K.F.; Stavrou, E.; Renne, T. In vivo activation and functions of the protease factor XII. Thromb. Haemost. 2014, 112, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Konrath, S.; Mailer, R.K.; Renne, T. Mechanism, Functions, and Diagnostic Relevance of FXII Activation by Foreign Surfaces. Hamostaseologie 2021, 41, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Kenne, E.; Nickel, K.F.; Long, A.T.; Fuchs, T.A.; Stavrou, E.X.; Stahl, F.R.; Renne, T. Factor XII: A novel target for safe prevention of thrombosis and inflammation. J. Intern. Med. 2015, 278, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, G.; Revenko, A.S.; Crosby, J.R.; May, C.; Gao, D.; Zhao, C.; Monia, B.P.; MacLeod, A.R. Inhibition of vascular permeability by antisense-mediated inhibition of plasma kallikrein and coagulation factor 12. Nucleic Acid. Ther. 2013, 23, 175–187. [Google Scholar] [CrossRef]
- Larsson, M.; Rayzman, V.; Nolte, M.W.; Nickel, K.F.; Björkqvist, J.; Jämsä, A.; Hardy, M.P.; Fries, M.; Schmidbauer, S.; Hedenqvist, P.; et al. A Factor XIIa Inhibitory Antibody Provides Thromboprotection in Extracorporeal Circulation Without Increasing Bleeding Risk. Sci. Transl. Med. 2014, 6, 222ra217. [Google Scholar] [CrossRef] [PubMed]
- Oschatz, C.; Maas, C.; Lecher, B.; Jansen, T.; Bjorkqvist, J.; Tradler, T.; Sedlmeier, R.; Burfeind, P.; Cichon, S.; Hammerschmidt, S.; et al. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity 2011, 34, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Tucker, E.I.; Pine, M.S.; Sisler, I.; Matafonov, A.; Sun, M.F.; White-Adams, T.C.; Smith, S.A.; Hanson, S.R.; McCarty, O.J.; et al. A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood 2010, 116, 3981–3989. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Shukla, D.; Suman, K.; Lakshmi, B.J.; Manorama, R.; Kumar, S.; Bhandari, R. Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels. Blood 2013, 122, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, T.; Castellino, F.J. Plasma levels of bradykinin are suppressed in factor XII-deficient mice. Thromb. Haemost. 2006, 95, 1003–1010. [Google Scholar] [CrossRef]
- Smith, S.A.; Choi, S.H.; Collins, J.N.; Travers, R.J.; Cooley, B.C.; Morrissey, J.H. Inhibition of polyphosphate as a novel strategy for preventing thrombosis and inflammation. Blood 2012, 120, 5103–5110. [Google Scholar] [CrossRef]
- Smith, S.A.; Gajsiewicz, J.M.; Morrissey, J.H. Ability of Polyphosphate and Nucleic Acids to Trigger Blood Clotting: Some Observations and Caveats. Front. Med. 2018, 5, 107. [Google Scholar] [CrossRef]
- Akiyama, M.; Crooke, E.; Kornberg, A. An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. J. Biol. Chem. 1993, 268, 633–639. [Google Scholar] [CrossRef]
- Labberton, L.; Kenne, E.; Long, A.T.; Nickel, K.F.; Di Gennaro, A.; Rigg, R.A.; Hernandez, J.S.; Butler, L.; Maas, C.; Stavrou, E.X.; et al. Neutralising blood-borne polyphosphate in vivo provides safe thromboprotection. Nat. Commun. 2016, 7, 12616. [Google Scholar] [CrossRef] [PubMed]
- Niebuhr, K.; Ebel, F.; Frank, R.; Reinhard, M.; Domann, E.; Carl, U.D.; Walter, U.; Gertler, F.B.; Wehland, J.; Chakraborty, T. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 1997, 16, 5433–5444. [Google Scholar] [CrossRef] [PubMed]
- Bolesch, D.G.; Keasling, J.D. Polyphosphate binding and chain length recognition of Escherichia coli exopolyphosphatase. J. Biol. Chem. 2000, 275, 33814–33819. [Google Scholar] [CrossRef]
- Kleinschnitz, C.; Stoll, G.; Bendszus, M.; Schuh, K.; Pauer, H.U.; Burfeind, P.; Renne, C.; Gailani, D.; Nieswandt, B.; Renne, T. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J. Exp. Med. 2006, 203, 513–518. [Google Scholar] [CrossRef]
- Nickel, K.F.; Long, A.T.; Fuchs, T.A.; Butler, L.M.; Renne, T. Factor XII as a Therapeutic Target in Thromboembolic and Inflammatory Diseases. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, P.H.; Xu, X.; Oliveira, F.; Chagas, A.C.; Nascimento, C.R.; Francischetti, I.M.; Juliano, M.A.; Juliano, L.; Scharfstein, J.; Valenzuela, J.G.; et al. Novel family of insect salivary inhibitors blocks contact pathway activation by binding to polyphosphate, heparin, and dextran sulfate. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2759–2770. [Google Scholar] [CrossRef]
- Malik, R.A.; Zhou, J.; Fredenburgh, J.C.; Truong, T.K.; Crosby, J.R.; Revenko, A.S.; Weitz, J.I. Polyphosphate-induced thrombosis in mice is factor XII dependent and is attenuated by histidine-rich glycoprotein. Blood Adv. 2021, 5, 3540–3551. [Google Scholar] [CrossRef] [PubMed]
- MacQuarrie, J.L.; Stafford, A.R.; Yau, J.W.; Leslie, B.A.; Vu, T.T.; Fredenburgh, J.C.; Weitz, J.I. Histidine-rich glycoprotein binds factor XIIa with high affinity and inhibits contact-initiated coagulation. Blood 2011, 117, 4134–4141. [Google Scholar] [CrossRef]
- Malik, R.A.; Liao, P.; Zhou, J.; Hussain, R.; Fredenburgh, J.C.; Hettrick, L.; Revenko, A.S.; Weitz, J.I. Histidine-rich glycoprotein attenuates catheter thrombosis. Blood Adv. 2023, 7, 5651–5660. [Google Scholar] [CrossRef] [PubMed]
- Banno, F.; Kita, T.; Fernandez, J.A.; Yanamoto, H.; Tashima, Y.; Kokame, K.; Griffin, J.H.; Miyata, T. Exacerbated venous thromboembolism in mice carrying a protein S K196E mutation. Blood 2015, 126, 2247–2253. [Google Scholar] [CrossRef] [PubMed]
- Zilberman-Rudenko, J.; Reitsma, S.E.; Puy, C.; Rigg, R.A.; Smith, S.A.; Tucker, E.I.; Silasi, R.; Merkulova, A.; McCrae, K.R.; Maas, C.; et al. Factor XII Activation Promotes Platelet Consumption in the Presence of Bacterial-Type Long-Chain Polyphosphate In Vitro and In Vivo. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1748–1760. [Google Scholar] [CrossRef] [PubMed]
- Holmstrom, K.M.; Marina, N.; Baev, A.Y.; Wood, N.W.; Gourine, A.V.; Abramov, A.Y. Signalling properties of inorganic polyphosphate in the mammalian brain. Nat. Commun. 2013, 4, 1362. [Google Scholar] [CrossRef] [PubMed]
- Arredondo, C.; Cefaliello, C.; Dyrda, A.; Jury, N.; Martinez, P.; Díaz, I.; Amaro, A.; Tran, H.; Morales, D.; Pertusa, M.; et al. Excessive release of inorganic polyphosphate by ALS/FTD astrocytes causes non-cell-autonomous toxicity to motoneurons. Neuron 2022, 110, 1656–1670.e1612. [Google Scholar] [CrossRef]
- Gray, M.J.; Wholey, W.Y.; Wagner, N.O.; Cremers, C.M.; Mueller-Schickert, A.; Hock, N.T.; Krieger, A.G.; Smith, E.M.; Bender, R.A.; Bardwell, J.C.; et al. Polyphosphate is a primordial chaperone. Mol. Cell 2014, 53, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Jakob, U. Inorganic polyphosphate, a multifunctional polyanionic protein scaffold. J. Biol. Chem. 2019, 294, 2180–2190. [Google Scholar] [CrossRef]
- Angelova, P.R.; Iversen, K.Z.; Teschemacher, A.G.; Kasparov, S.; Gourine, A.V.; Abramov, A.Y. Signal transduction in astrocytes: Localisation and release of inorganic polyphosphate. Glia 2018, 66, 2126–2136. [Google Scholar] [CrossRef]
- Brown, M.R.; Kornberg, A. Inorganic polyphosphate in the origin and survival of species. Proc. Natl. Acad. Sci. USA 2004, 101, 16085–16087. [Google Scholar] [CrossRef]
- Omelon, S.; Georgiou, J.; Henneman, Z.J.; Wise, L.M.; Sukhu, B.; Hunt, T.; Wynnyckyj, C.; Holmyard, D.; Bielecki, R.; Grynpas, M.D. Control of vertebrate skeletal mineralisation by polyphosphates. PLoS ONE 2009, 4, e5634. [Google Scholar] [CrossRef]
- Wang, L.; Fraley, C.D.; Faridi, J.; Kornberg, A.; Roth, R.A. Inorganic polyphosphate stimulates mammalian TOR, a kinase involved in the proliferation of mammary cancer cells. Proc. Natl. Acad. Sci. USA 2003, 100, 11249–11254. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Ruiz, L.; Gonzalez-Garcia, I.; Castro, C.; Brieva, J.A.; Ruiz, F.A. Inorganic polyphosphate and specific induction of apoptosis in human plasma cells. Haematologica 2006, 91, 1180–1186. [Google Scholar] [PubMed]
- Azevedo, C.; Singh, J.; Steck, N.; Hofer, A.; Ruiz, F.A.; Singh, T.; Jessen, H.J.; Saiardi, A. Screening a Protein Array with Synthetic Biotinylated Inorganic Polyphosphate To Define the Human PolyP-ome. ACS Chem. Biol. 2018, 13, 1958–1963. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, C.; Livermore, T.; Saiardi, A. Protein polyphosphorylation of lysine residues by inorganic polyphosphate. Mol. Cell 2015, 58, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Neville, N.; Lehotsky, K.; Yang, Z.; Klupt, K.A.; Denoncourt, A.; Downey, M.; Jia, Z. Modification of histidine repeat proteins by inorganic polyphosphate. Cell Rep. 2023, 42, 113082. [Google Scholar] [CrossRef] [PubMed]
- Neville, N.; Lehotsky, K.; Klupt, K.A.; Downey, M.; Jia, Z. Polyphosphate attachment to lysine repeats is a non-covalent protein modification. Mol. Cell 2024, 84, 1802–1810.e4. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, C.; Borghi, F.; Su, X.B.; Saiardi, A. On the covalent nature of lysine polyphosphorylation. Mol. Cell 2024, 84, 1811–1815.e3. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Orts, L.; Hohmann, U.; Zhu, J.S.; Hothorn, M. Molecular characterisation of CHAD domains as inorganic polyphosphate-binding modules. Life Sci. Alliance 2019, 2, e201900385. [Google Scholar] [CrossRef] [PubMed]
- Aschar-Sobbi, R.; Abramov, A.Y.; Diao, C.; Kargacin, M.E.; Kargacin, G.J.; French, R.J.; Pavlov, E. High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach. J. Fluoresc. 2008, 18, 859–866. [Google Scholar] [CrossRef]
- Angelova, P.R.; Agrawalla, B.K.; Elustondo, P.A.; Gordon, J.; Shiba, T.; Abramov, A.Y.; Chang, Y.T.; Pavlov, E.V. In situ investigation of mammalian inorganic polyphosphate localisation using novel selective fluorescent probes JC-D7 and JC-D8. ACS Chem. Biol. 2014, 9, 2101–2110. [Google Scholar] [CrossRef]
- Fernandes-Cunha, G.M.; McKinlay, C.J.; Vargas, J.R.; Jessen, H.J.; Waymouth, R.M.; Wender, P.A. Delivery of Inorganic Polyphosphate into Cells Using Amphipathic Oligocarbonate Transporters. ACS Central Sci. 2018, 4, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Labberton, L.; Long, A.T.; Gendler, S.J.; Snozek, C.L.; Stavrou, E.X.; Nickel, K.F.; Maas, C.; Blankenberg, S.; Hernandez, J.S.; Renne, T. A Flow Cytometry-Based Assay for Procoagulant Platelet Polyphosphate. Cytom. B Clin. Cytom. 2018, 94, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Ohtomo, R.; Kuga-Uetake, Y.; Aono, T.; Saito, M. Direct Labeling of Polyphosphate at the Ultrastructural Level in Saccharomyces cerevisiae by Using the Affinity of the Polyphosphate Binding Domain of Escherichia coli Exopolyphosphatase. Appl. Environ. Microbiol. 2005, 71, 5692–5701. [Google Scholar] [CrossRef] [PubMed]
- Tumlirsch, T.; Jendrossek, D. Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules In Vivo and Constitute a Novel Family of Polyphosphate-Associated Proteins (Phosins). Appl. Environ. Microbiol. 2017, 83, e03399-16. [Google Scholar] [CrossRef] [PubMed]
- Serafim, L.S.; Lemos, P.C.; Levantesi, C.; Tandoi, V.; Santos, H.; Reis, M.A. Methods for detection and visualisation of intracellular polymers stored by polyphosphate-accumulating microorganisms. J. Microbiol. Methods 2002, 51, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gunther, S.; Trutnau, M.; Kleinsteuber, S.; Hause, G.; Bley, T.; Roske, I.; Harms, H.; Muller, S. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4’,6’-diamidino-2-phenylindole) and tetracycline labeling. Appl. Environ. Microbiol. 2009, 75, 2111–2121. [Google Scholar] [CrossRef] [PubMed]
- Gunther, S.; Hubschmann, T.; Rudolf, M.; Eschenhagen, M.; Roske, I.; Harms, H.; Muller, S. Fixation procedures for flow cytometric analysis of environmental bacteria. J. Microbiol. Methods 2008, 75, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Lee, H.J.; Kim, S.Y.; Song, J.J.; Park, W.; Jeon, C.O. Analysis of the Fine-Scale Population Structure of “Accumulibacter phosphatis” in Enhanced Biological Phosphorus Removal Sludge, Using Fluorescence Hybridization and Flow Cytometric Sorting. Appl. Environ. Microb. 2010, 76, 3825–3835. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, V.; Nautiyal, C.S. A high throughput method and culture medium for rapid screening of phosphate accumulating microorganisms. Bioresour. Technol. 2011, 102, 8057–8062. [Google Scholar] [CrossRef]
- Jimenez-Nunez, M.D.; Moreno-Sanchez, D.; Hernandez-Ruiz, L.; Benitez-Rondan, A.; Ramos-Amaya, A.; Rodriguez-Bayona, B.; Medina, F.; Brieva, J.A.; Ruiz, F.A. Myeloma cells contain high levels of inorganic polyphosphate which is associated with nucleolar transcription. Haematologica 2012, 97, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Cosmidis, J.; Benzerara, K.; Menguy, N.; Arning, E. Microscopy evidence of bacterial microfossils in phosphorite crusts of the Peruvian shelf: Implications for phosphogenesis mechanisms. Chem. Geol. 2013, 359, 10–22. [Google Scholar] [CrossRef]
- Ge, H.Q.; Batstone, D.J.; Keller, J. Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade. Water Res. 2015, 69, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Rivadeneyra, A.; Gonzalez-Martinez, A.; Gonzalez-Lopez, J.; Martin-Ramos, D.; Martinez-Toledo, M.V.; Rivadeneyra, M.A. Precipitation of Phosphate Minerals by Microorganisms Isolated from a Fixed-Biofilm Reactor Used for the Treatment of Domestic Wastewater. Int. J. Environ. Res. Public Health 2014, 11, 3689–3704. [Google Scholar] [CrossRef] [PubMed]
- Majed, N.; Li, Y.Y.; Gu, A.Z. Advances in techniques for phosphorus analysis in biological sources. Curr. Opin. Biotech. 2012, 23, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Schuster, K.C.; Urlaub, E.; Gapes, J.R. Single-cell analysis of bacteria by Raman microscopy: Spectral information on the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Methods 2000, 42, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Majed, N.; Matthaus, C.; Diem, M.; Gu, A.Z. Evaluation of intracellular polyphosphate dynamics in enhanced biological phosphorus removal process using Raman microscopy. Environ. Sci. Technol. 2009, 43, 5436–5442. [Google Scholar] [CrossRef] [PubMed]
- Ohtomo, R.; Sekiguchi, Y.; Kojima, T.; Saito, M. Different chain length specificity among three polyphosphate quantification methods. Anal. Biochem. 2008, 383, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Hupfer, M.; Glöss, S.; Schmieder, P.; Grossart, H.P. Methods for detection and quantification of polyphosphate and polyphosphate accumulating microorganisms in aquatic sediments. Int. Rev. Hydrobiol. 2008, 93, 1–30. [Google Scholar] [CrossRef]
- Comolli, L.R.; Kundmann, M.; Downing, K.H. Characterization of intact subcellular bodies in whole bacteria by cryo-electron tomography and spectroscopic imaging. J. Microsc. 2006, 223, 40–52. [Google Scholar] [CrossRef]
- Forbes, C.M.; O’Leary, N.D.; Dobson, A.D.; Marchesi, J.R. The contribution of ‘omic’-based approaches to the study of enhanced biological phosphorus removal microbiology. FEMS Microbiol. Ecol. 2009, 69, 1–15. [Google Scholar] [CrossRef]
- McMahon, K.D.; Dojka, M.A.; Pace, N.R.; Jenkins, D.; Keasling, J.D. Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal. Appl. Environ. Microb. 2002, 68, 4971–4978. [Google Scholar] [CrossRef] [PubMed]
- Wilmes, P.; Wexler, M.; Bond, P.L. Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment. PLoS ONE 2008, 3, e1778. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Function | Regulation | Species | References |
---|---|---|---|---|
PPK1 | polyP polymerase using ATP | Bacteria and Dictyostelium discoideum in cytoplasm | [39,40] | |
PPK2 | polyP polymerase using GTP/ATP | Bacteria in cytoplasm | [41] | |
VTC | polyP polymerase using ATP | V-ATPase | S. cerevisiae, Trypanosoma and Leishmania in acidocalcisomes | [42,43,44] |
PPN1 | Endopolyphosphatase | S. cerevisiae, mammals | [45,46] | |
PPX1/2 | Exopolyphosphatase | Regulated by the accumulation of polyP in the cytosol | Fungi, S. cerevisiae in mitochondria | [25,47,48,49,50] |
Nudt (Nudix hydrolase 15) | PolyP hydrolase | Regulates oxidative stress in response to polyP | Mammals | [51] |
Prune/DRES17 | Short-chain exopolyphosphatase | Regulated by cytosolic polyP-level | Mammalian and Drosophila melanogaster cells in the cytosol | [49,52,53,54] |
DDP1 (Diphosphoinositol polyP phosphohydrolase) | Endopolyphosphatase | S. cerevisiae in the cytosol | [45] | |
Vtc4 (Vacuolar transporter chaperone-4) | polyP polymerase | not specified | S. cerevisiae in Vacuole | [42,55] |
PPN2 | Endopolyphosphatase, Metallophosphatase | Zn2+ | S. cerevisiae in acidocalcisomes | [56] |
PPX2 | Exopolyphosphatase | Mg2+, Mn2+, and Ca2+ | bacteria | [57] |
Extracellular Functions | Intracellular Functions |
---|---|
Regulation of cell motility | Phosphate and energy storage |
Contact activation of Factor XII and, consecutively, the kallikrein–kinin system and the intrinsic coagulation pathway | Regulation of Ca2+ homeostasis and signalling |
pH regulation | Activating of mTOR-dependent pathways |
Cation binding | Regulation of growth, differentiation, and apoptosis |
Biofilm formation | Complexation of toxic heavy metal ions |
Storage of Ca2+ and other ions in the ECM | Regulation of mitochondria permeability |
Interference with oxidative stress | |
pH regulation | |
Osmoregulation | |
Regulation of enzyme activities |
Detection Method | Description | Sensitivity | Reference |
---|---|---|---|
Light- and fluorescence microscopy | The use of specific dyes such as DAPI/Nile-Red for labelling polyP granules in cells enables qualitative detection + localisation of polyP | +/++ | [145] |
Flow cytometry | Localisation and quantification of polyP granules; fluorescent dyes such as DAPI + Nile-Red; enables sorting of cells based on polyP content | ++/+++ | [146,147] |
Fluorescence in-situ hybridisation (FISH) | Identification of PAOs by specifically labelled probes for polyP formation or degradation genes enables the detection of DNA or RNA molecules in situ | ++ | [147,148] |
Extraction procedures and polyphosphate quantification | Extraction of polyP from samples; measurement of phosphate concentration after hydrolysis of polyP; characterisation of different polyP fractions; quantification after enzymatic treatments | ++/+++ | [149] |
UREA polyacrylamide gel electrophoresis (UREA-PAGE) | Separation of polyP molecules based on their size; determination of the degree of polymerisation (DP); use of specific staining techniques | +/++ | [150] |
Electron microscopy (EM) | Visual detection of polyP granules within cells; use of contrast agents for labelling and visualisation of polyP granules | +/++ | [151,152] |
X-Ray analysis (X-RAY) | Determination of the chemical composition of polyP granules; possible quantitative analysis; use of X-rays | ++/+++ | [153] |
Nuclear magnetic resonance spectroscopy (NMRS) | Investigation of the structure of polyP and the phosphate metabolome; use of specific pulses for the detection of phosphorus atoms | ++/+++ | [154] |
RAMAN spectroscopy | Identification and quantification of polyP in bacterial cells using characteristic Raman bands; use of specific spectra to recognise and quantify polyP | ++/+++ | [154,155,156] |
Enzyme assays | PolyP-driven ATP formation is quantified by luciferase reporters | ++ | [157,158] |
Cryo-electron tomography and spectroscopic imaging (CTSI) | Investigation of the structure of polyP granules in bacterial cells; high-resolution visualisation without destroying the sample; use of specific contrast agents and illumination techniques | +/++ | [159] |
Mass spectrometry (MS) | Characterisation of different forms of polyP molecules; identification and quantification of polyP molecules using specific ionisation and detection techniques | ++/+++ | [2] |
Protein affinity | Detection and localisation of polyP in cells using specific polyP probes (PPBD) | ++/+++ | [143] |
Omics’ technology (OMICS) | Global detection of polyP; identification of polyanions by specifically labelled probes/primers | ++/+++ | [160,161,162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoeppe, R.; Waldmann, M.; Jessen, H.J.; Renné, T. An Update on Polyphosphate In Vivo Activities. Biomolecules 2024, 14, 937. https://doi.org/10.3390/biom14080937
Schoeppe R, Waldmann M, Jessen HJ, Renné T. An Update on Polyphosphate In Vivo Activities. Biomolecules. 2024; 14(8):937. https://doi.org/10.3390/biom14080937
Chicago/Turabian StyleSchoeppe, Robert, Moritz Waldmann, Henning J. Jessen, and Thomas Renné. 2024. "An Update on Polyphosphate In Vivo Activities" Biomolecules 14, no. 8: 937. https://doi.org/10.3390/biom14080937
APA StyleSchoeppe, R., Waldmann, M., Jessen, H. J., & Renné, T. (2024). An Update on Polyphosphate In Vivo Activities. Biomolecules, 14(8), 937. https://doi.org/10.3390/biom14080937