Oxidative Stress and Asprosin Levels in Type 2 Diabetic Patients with Good and Poor Glycemic Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Groups
2.2.1. Control Group
2.2.2. Patients Group
2.2.3. Good Glycemic Control Group
2.2.4. Poor Glycemic Control Group
2.3. Inclusion Criteria
2.4. Exlusion Criteria
2.5. Body Weight and Height
2.6. Body Mass Index (BMI)
2.7. Waist Circumference (WC)
2.8. Sample Collection and Measurements
2.9. Measurement of Serum Asprosin Levels
2.10. Measurement of Serum Lipid Hydroperoxides (LOOHs) Levels
2.11. Measurement of Serum Malondialdehyde (MDA) Levels
2.12. Measurement of Serum Erythrocyte Glutathione (GSH) Levels
2.13. Measurement of Serum Superoxide Dismutase (Cu,Zn-SOD) Activity
2.14. Measurement of Serum Total Antioxidant Capacity (TAC) Levels
2.15. Statistical Analysis
3. Results
4. Discussion
Limitations of Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020, 43 (Suppl. S1), S14–S31. [Google Scholar] [CrossRef] [PubMed]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Signifcance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark. Insights 2016, 11, 95–104. [Google Scholar] [CrossRef] [PubMed]
- González Clemente, J.M.; Llauradó Cabot, G. Assessment of glycemic control: New insights into the evaluation of the diabetic patient. Med. Clin. 2010, 135, 15–19. [Google Scholar] [CrossRef]
- Monnier, L.; Colette, C. Target for glycemic control: Concentrating on glucose. Diabetes Care 2009, 32 (Suppl. S2), S199–S204. [Google Scholar] [CrossRef]
- Handelsman, Y.; Bloomgarden, Z.T.; Grunberger, G.; Umpierrez, G.; Zimmerman, R.S.; Bailey, T.S.; Blonde, L.; Bray, G.A.; Cohen, A.J.; Dagogo-Jack, S.; et al. American association of clinical endocrinologists and American college of endocrinology—Clinical practice guidelines for developing a diabetes mellitus comprehensive care plan—2015. Endocr. Pract. 2015, 21, 1–87. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of medical care in diabetes—2018. Diabetes Care 2018, 41, S1–S135. [Google Scholar] [CrossRef]
- Yuan, M.; Li, W.; Zhu, Y.; Yu, B.; Wu, J. Asprosin: A Novel Player in Metabolic Diseases. Front. Endocrinol. 2020, 11, 64. [Google Scholar] [CrossRef]
- Duerrschmid, C.; He, Y.; Wang, C.; Li, C.; Bournat, J.C.; Romere, C.; Saha, P.K.; Lee, M.E.; Phillips, K.J.; Jain, M.; et al. Asprosin is a centrally acting orexigenic hormone. Nat. Med. 2017, 23, 1444–1453. [Google Scholar] [CrossRef] [PubMed]
- Romere, C.; Duerrschmid, C.; Bournat, J.; Constable, P.; Jain, M.; Xia, F.; Saha, P.K.; Del Solar, M.; Zhu, B.; York, B.; et al. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell 2016, 165, 566–579. [Google Scholar] [CrossRef]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Johansen, J.S.; Harris, A.K.; Rychly, D.J.; Ergul, A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovasc. Diabetol. 2005, 4, 5. [Google Scholar] [CrossRef]
- Matough, F.A.; Budin, S.B.; Hamid, Z.A.; Alwahaibi, N.; Mohamed, J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ. Med. J. 2012, 12, 5–18. [Google Scholar] [CrossRef]
- De M. Bandeira, S.; Da Fonseca, L.J.S.; Da S. Guedes, G.; Rabelo, L.A.; Goulart, M.O.F.; Vasconcelos, S.M.L. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int. J. Mol. Sci. 2013, 14, 3265–3284. [Google Scholar]
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Hunt, J.V.; Wolff, S.P. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem. 1992, 202, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [PubMed]
- Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar]
- Fairbanks, V.; Klee, G.G. Biochemical aspects of hemotology. In Textbook of Clinical Chemistry; Tietz Nobert, W., Ed.; WB Saunders: Philadelphia, PA, USA, 1986; pp. 1532–1534. [Google Scholar]
- Sun, Y.; Oberley, L.W.; Li, Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988, 34, 497–500. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Wang, M.; Yin, C.; Wang, L.; Liu, Y.; Li, H.; Li, M.; Yi, X.; Xiao, Y. Serum Asprosin Concentrations Are Increased and Associated with Insulin Resistance in Children with Obesity. Ann. Nutr. Metab. 2019, 75, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Naiemian, S.; Naeemipour, M.; Zarei, M.; Lari Najafi, M.; Gohari, A.; Behroozikhah, M.R.; Heydari, H.; Miri, M. Serum concentration of asprosin in new-onset type 2 diabetes. Diabetol. Metab. Syndr. 2020, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, G.; Setayesh, L.; Fadaei, R.; Khamseh, M.E.; Aliakbari, F.; Hosseini, J.; Moradi, N. Circulating levels of asprosin and its association with insulin resistance and renal function in patients with type 2 diabetes mellitus and diabetic nephropathy. Mol. Biol. Rep. 2021, 48, 5443–5450. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qu, H.; Xiong, X.; Qiu, Y.; Liao, Y.; Chen, Y.; Zheng, Y.; Zheng, H. Plasma Asprosin Concentrations Are Increased in Individuals with Glucose Dysregulation and Correlated with Insulin Resistance and First-Phase Insulin Secretion. Mediat. Inflamm. 2018, 2018, 9471583. [Google Scholar] [CrossRef]
- Zhou, J.; Yuan, W.; Guo, Y.; Wang, Y.; Dai, Y.; Shen, Y.; Liu, X. Asprosin is positively associated with metabolic syndrome in hemodialysis patients: A cross-sectional study. Ren. Fail. 2023, 45, 2220425. [Google Scholar] [CrossRef]
- Ugur, K.; Erman, F.; Turkoglu, S.; Aydin, Y.; Aksoy, A.; Lale, A.; Karagöz, Z.K.; Ugur, I.; Akkoc, R.F.; Yalniz, M. Asprosin, visfatin and subfatin as new biomarkers of obesity and metabolic syndrome. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2124–2133. [Google Scholar]
- Zhang, L.; Chen, C.; Zhou, N.; Fu, Y.; Cheng, X. Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride. Clin. Chim. Acta 2019, 489, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Demoz, G.T.; Gebremariam, A.; Yifter, H.; Alebachew, M.; Niriayo, Y.L.; Gebreslassie, G.; Woldu, G.; Bahrey, D.; Shibeshi, W. Predictors of poor glycemic control among patients with type 2 diabetes on follow-up care at a tertiary healthcare setting in Ethiopia. BMC Res. Notes 2019, 12, 207. [Google Scholar] [CrossRef]
- Milo, R.B.; Connelly, C.D. Predictors of glycemic management among patients with type 2 diabetes. J. Clin. Nurs. 2019, 28, 1737–1744. [Google Scholar] [CrossRef]
- Verma, M.; Paneri, S.; Badi, P.; Raman, P.G. Effect of increasing duration of diabetes mellitus type 2 on glycated hemoglobin and insulin sensitivity. Indian. J. Clin. Biochem. 2006, 21, 142–146. [Google Scholar] [CrossRef]
- Ghouse, J.; Isaksen, J.L.; Skov, M.W.; Lind, B.; Svendsen, J.H.; Kanters, J.K.; Olesen, M.S.; Holst, A.G.; Nielsen, J.B. Effect of diabetes duration on the relationship between glycaemic control and risk of death in older adults with type 2 diabetes. Diabetes Obes. Metab. 2020, 22, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Valente, T.; Arbex, A.K. Glycemic Variability, Oxidative Stress, and Impact on Complications Related to Type 2 Diabetes Mellitus. Curr. Diabetes Rev. 2021, 17, e071620183816. [Google Scholar] [CrossRef] [PubMed]
- Darenskaya, M.A.; Kolesnikova, L.I.; Kolesnikov, S.I. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull. Exp. Biol. Med. 2021, 171, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; et al. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr. Issues Mol. Biol. 2023, 45, 6651–6666. [Google Scholar] [CrossRef] [PubMed]
- Alan, M.; Gurlek, B.; Yilmaz, A.; Aksit, M.; Aslanipour, B.; Gulhan, I.; Mehmet, C.; Taner, C.E. Asprosin: A novel peptide hormone related to insulin resistance in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2019, 35, 220–223. [Google Scholar] [CrossRef]
- Li, X.; Liao, M.; Shen, R.; Zhang, L.; Hu, H.; Wu, J.; Wang, X.; Qu, H.; Guo, S.; Long, M.; et al. Plasma Asprosin Levels Are Associated with Glucose Metabolism, Lipid, and Sex Hormone Profiles in Females with Metabolic-Related Diseases. Mediat. Inflamm. 2018, 2018, 7375294. [Google Scholar] [CrossRef]
- Hong, T.; Li, J.Y.; Wang, Y.D.; Qi, X.Y.; Liao, Z.Z.; Bhadel, P.; Ran, L.; Yang, J.; Yan, B.; Liu, J.H.; et al. High Serum Asprosin Levels Are Associated with Presence of Metabolic Syndrome. Int. J. Endocrinol. 2021, 2021, 6622129. [Google Scholar] [CrossRef]
- Mishra, I.; Duerrschmid, C.; Ku, Z.; He, Y.; Xie, W.; Silva, E.S.; Hoffman, J.; Xin, W.; Zhang, N.; Xu, Y.; et al. Asprosin-neutralizing antibodies as a treatment for metabolic syndrome. eLife 2021, 10, e63784. [Google Scholar] [CrossRef]
Control (n = 75) | GGC (n = 75) | PGC (n = 75) | |
---|---|---|---|
Age (years) | 54.320 ± 12.681 | 54.427 ± 8.360 | 58.040 ± 10.120 |
Body mass index (BMI) (kg/m2) | 23.575 ± 1.349 | 28.201 ± 2.116 a *** | 29.630 ± 3.250 a ***, b *** |
Waist Circumference (cm) | 94.773 ± 13.943 | 101.680 ± 12.672 a ** | 107.320 ± 10.390 a ***, b * |
Male/Female (n/n) | 50/25 | 38/37 | 32/43 |
Diabetes duration (years) | 0 | 5.220 ± 3.947 | 10.613 ± 7.568 b *** |
Systolic blood pressure (mmHg) | 116.533 ± 10.558 | 132.333 ± 13.006 a *** | 137.000 ± 14.704 a *** |
Diastolic blood pressure (mmHg) | 72.933 ± 6.733 | 78.933 ± 9.090 a *** | 81.467 ± 9.255 a *** |
Control (n = 75) | GGC (n = 75) | PGC (n = 75) | |
---|---|---|---|
FBG (mg/dL) | 90.708 ± 7.085 | 145.665 ± 55.067 a *** | 173.653 ± 72.350 a ***, b ** |
HbA1C (%) | 5.581 ± 0.324 | 6.371 ± 0.421 a *** | 8.913± 1.533 a ***, b *** |
Insulin (µIU/mL) | 6.714 ± 1.046 | 14.977 ± 9.062 a *** | 20.941 ± 18.900 a ***, b ** |
HOMA-IR | 1.505 ± 0.263 | 5.485 ± 4.328 a * | 10.702 ± 15.002 a ***, b *** |
Creatinine (mg/dL) | 0.730 ± 0.182 | 0.824 ± 0.258 | 0.922 ± 0.419 a *** |
Urea (mg/dL) | 12.216 ± 3.861 | 15.381 ± 5.269 a ** | 18.398 ± 10.569 a ***, b * |
Uric Acid (mg/dL) | 4.958 ± 1.404 | 5.233 ± 1.452 | 5.752 ± 1.900 a ** |
Total protein (g/dL) | 7.037 ± 0.295 | 6.912 ± 2.494 | 6.615 ± 0.556 |
Albumin (g/dL) | 4.392 ± 0.234 | 4.040 ± 0.578 a *** | 3.848 ± 0.590 a ***, b * |
Calcium (mg/dL) | 9.114 ± 0.320 | 9.205 ± 0.377 | 9.132 ± 0.663 |
Phosphorous (mg/dL) | 3.308 ± 0.481 | 3.542 ± 0.626 | 3.681 ± 0.731 a *** |
Urine protein (mg/g) | 9.309 ± 4.946 | 16.200 ± 36.304 | 39.467 ± 67.367 a ***, b ** |
Microalbuminuria | 7.791 ± 17.198 | 13.157 ± 28.390 | 146.416 ± 284.968 a ***, b *** |
Urinary creatinine (IU/g creatinine) | 104.093 ± 35.538 | 105.426 ± 70.805 | 101.227 ± 75.408 |
GFR (mL/min/1.73m2) | 105.705 ± 13.722 | 123.516 ± 43.236 a ** | 102.171 ± 45.759 b ** |
Total cholesterol (mg/dL) | 175.000 ± 12.965 | 200.260 ± 29.690 a *** | 214.691 ± 32.868 a ***, b ** |
Triglyceride (mg/dL) | 108.097 ± 49.473 | 131.260 ± 41.733 a * | 151.525 ± 79.088 a *** |
VLDL (mg/dL) | 21.619 ± 9.895 | 26.252 ± 8.347 a * | 30.305 ± 15.818 a *** |
HDL (mg/dL) | 48.952 ± 8.631 | 36.645 ± 7.493 a *** | 38.947 ± 7.022 a *** |
LDL (mg/dL) | 104.429 ± 16.489 | 137.363 ± 30.130 a *** | 145.439 ± 30.745 a *** |
LOOH (nmol/mL) | 0.717 ± 0.216 | 0.952 ± 0.405 a * | 1.225 ± 0.917 a ***, b * |
GSH (mg/dL) | 3.802 ± 1.019 | 2.449 ± 0.947 a *** | 1.633 ± 0.801 a ***, b *** |
MDA (nmol/mL) | 2.372 ± 0.786 | 3.054 ± 1.029 a *** | 3.639 ± 0.765 a ***, b *** |
Cu/Zn-SOD (U/L) | 23.831 ± 3.227 | 18.173 ± 4.655 a *** | 11.446 ± 3.413 a ***, b *** |
TAC (µg ascorbic acid equivalent/mL) | 1.281 ± 0.529 | 0.625 ± 0.442 a *** | 0.319 ± 0.212 a ***, b *** |
Asprosin (ng/mL) | 7.067 ± 2.712 | 20.194 ± 5.297 a *** | 27.583 ± 14.302 a ***, b *** |
Parameters | Unstandardized | Standard Error | Standardized | t | p |
---|---|---|---|---|---|
BMI | 0.292 | 0.434 | 0.066 | 0.671 | 0.504 |
FBG | −0.019 | 0.022 | −0.098 | −0.885 | 0.380 |
Insulin | −0.297 | 0.088 | −0.393 | −3.360 | 0.001 |
LOOH | −5.780 | 3.179 | −0.371 | −1.818 | 0.074 |
HOMAIR | 1.257 | 0.163 | 1.318 | 7.726 | <0.001 |
GSH | −2.534 | 4.280 | −0.142 | −0.592 | 0.556 |
MDA | −0.170 | 4.434 | −0.009 | −0.038 | 0.969 |
Cu/Zn-SOD | −0.170 | 0.714 | −0.041 | −0.238 | 0.813 |
TAC | −20.740 | 11.380 | −0.307 | −1.823 | 0.073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senyigit, A.; Durmus, S.; Gelisgen, R.; Uzun, H. Oxidative Stress and Asprosin Levels in Type 2 Diabetic Patients with Good and Poor Glycemic Control. Biomolecules 2024, 14, 1123. https://doi.org/10.3390/biom14091123
Senyigit A, Durmus S, Gelisgen R, Uzun H. Oxidative Stress and Asprosin Levels in Type 2 Diabetic Patients with Good and Poor Glycemic Control. Biomolecules. 2024; 14(9):1123. https://doi.org/10.3390/biom14091123
Chicago/Turabian StyleSenyigit, Abdulhalim, Sinem Durmus, Remise Gelisgen, and Hafize Uzun. 2024. "Oxidative Stress and Asprosin Levels in Type 2 Diabetic Patients with Good and Poor Glycemic Control" Biomolecules 14, no. 9: 1123. https://doi.org/10.3390/biom14091123
APA StyleSenyigit, A., Durmus, S., Gelisgen, R., & Uzun, H. (2024). Oxidative Stress and Asprosin Levels in Type 2 Diabetic Patients with Good and Poor Glycemic Control. Biomolecules, 14(9), 1123. https://doi.org/10.3390/biom14091123