Complexes of HMO1 with DNA: Structure and Affinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. HMO1 Expression and Purification
2.2. Oligonucleotides
2.3. Formation of Complexes and Their Analysis with EMSA
2.4. Gel Image Analysis
2.5. CD Spectroscopy
2.6. Fluorescence Spectroscopy
2.7. Homology Modeling
2.8. MD and Trajectory Analysis
3. Results and Discussion
3.1. Production of HMO1 and Oligonucleotide Duplexes
3.2. Structural Analysis of HMO1 and Its Complex with DNA
3.3. Affinity of HMO1 to DNA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stros, M. HMGB proteins: Interactions with DNA and chromatin. Biochim. Biophys. Acta 2010, 1799, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Voong, C.K.; Goodrich, J.A.; Kugel, J.F. Interactions of HMGB Proteins with the Genome and the Impact on Disease. Biomolecules 2021, 11, 1451. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Kobayashi, R.; Brill, S.J. Characterization of a high mobility group 1/2 homolog in yeast. J. Biol. Chem. 1996, 271, 33678–33685. [Google Scholar] [CrossRef] [PubMed]
- Amigo, R.; Farkas, C.; Gidi, C.; Hepp, M.I.; Cartes, N.; Tarifeno, E.; Workman, J.L.; Gutierrez, J.L. The linker histone Hho1 modulates the activity of ATP-dependent chromatin remodeling complexes. Biochim. Biophys. Acta Gene Regul. Mech. 2022, 1865, 194781. [Google Scholar] [CrossRef]
- Hepp, M.I.; Alarcon, V.; Dutta, A.; Workman, J.L.; Gutierrez, J.L. Nucleosome remodeling by the SWI/SNF complex is enhanced by yeast high mobility group box (HMGB) proteins. Biochim. Biophys. Acta 2014, 1839, 764–772. [Google Scholar] [CrossRef]
- Malinina, D.K.; Sivkina, A.L.; Korovina, A.N.; McCullough, L.L.; Formosa, T.; Kirpichnikov, M.P.; Studitsky, V.M.; Feofanov, A.V. Hmo1 Protein Affects the Nucleosome Structure and Supports the Nucleosome Reorganization Activity of Yeast FACT. Cells 2022, 11, 2931. [Google Scholar] [CrossRef]
- Murugesapillai, D.; McCauley, M.J.; Huo, R.; Nelson Holte, M.H.; Stepanyants, A.; Maher, L.J., 3rd; Israeloff, N.E.; Williams, M.C. DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin. Nucleic Acids Res. 2014, 42, 8996–9004. [Google Scholar] [CrossRef]
- McCauley, M.J.; Huo, R.; Becker, N.; Holte, M.N.; Muthurajan, U.M.; Rouzina, I.; Luger, K.; Maher, L.J., 3rd; Israeloff, N.E.; Williams, M.C. Single and double box HMGB proteins differentially destabilize nucleosomes. Nucleic Acids Res. 2019, 47, 666–678. [Google Scholar] [CrossRef]
- Wittner, M.; Hamperl, S.; Stockl, U.; Seufert, W.; Tschochner, H.; Milkereit, P.; Griesenbeck, J. Establishment and maintenance of alternative chromatin states at a multicopy gene locus. Cell 2011, 145, 543–554. [Google Scholar] [CrossRef]
- Hall, D.B.; Wade, J.T.; Struhl, K. An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol. Cell. Biol. 2006, 26, 3672–3679. [Google Scholar] [CrossRef]
- Huffines, A.K.; Schneider, D.A. Hmo1 Promotes Efficient Transcription Elongation by RNA Polymerase I in Saccharomyces cerevisiae. Genes 2024, 15, 247. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, K.; Ohyama, Y.; Kokubo, T. Hmo1 directs pre-initiation complex assembly to an appropriate site on its target gene promoters by masking a nucleosome-free region. Nucleic Acids Res. 2011, 39, 4136–4150. [Google Scholar] [CrossRef] [PubMed]
- Kamau, E.; Bauerle, K.T.; Grove, A. The Saccharomyces cerevisiae high mobility group box protein HMO1 contains two functional DNA binding domains. J. Biol. Chem. 2004, 279, 55234–55240. [Google Scholar] [CrossRef] [PubMed]
- Higashino, A.; Shiwa, Y.; Yoshikawa, H.; Kokubo, T.; Kasahara, K. Both HMG boxes in Hmo1 are essential for DNA binding in vitro and in vivo. Biosci. Biotechnol. Biochem. 2015, 79, 384–393. [Google Scholar] [CrossRef]
- Knight, B.; Kubik, S.; Ghosh, B.; Bruzzone, M.J.; Geertz, M.; Martin, V.; Denervaud, N.; Jacquet, P.; Ozkan, B.; Rougemont, J.; et al. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev. 2014, 28, 1695–1709. [Google Scholar] [CrossRef]
- Kasahara, K.; Ohtsuki, K.; Ki, S.; Aoyama, K.; Takahashi, H.; Kobayashi, T.; Shirahige, K.; Kokubo, T. Assembly of regulatory factors on rRNA and ribosomal protein genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 2007, 27, 6686–6705. [Google Scholar] [CrossRef]
- Lavoie, H.; Hogues, H.; Mallick, J.; Sellam, A.; Nantel, A.; Whiteway, M. Evolutionary tinkering with conserved components of a transcriptional regulatory network. PLoS Biol. 2010, 8, e1000329. [Google Scholar] [CrossRef]
- Wilson, C.J.; Choy, W.Y.; Karttunen, M. AlphaFold2: A Role for Disordered Protein/Region Prediction? Int. J. Mol. Sci. 2022, 23, 4591. [Google Scholar] [CrossRef]
- Bauerle, K.T.; Kamau, E.; Grove, A. Interactions between N- and C-terminal domains of the Saccharomyces cerevisiae high-mobility group protein HMO1 are required for DNA bending. Biochemistry 2006, 45, 3635–3645. [Google Scholar] [CrossRef]
- Xiao, L.; Williams, A.M.; Grove, A. The C-terminal domain of yeast high mobility group protein HMO1 mediates lateral protein accretion and in-phase DNA bending. Biochemistry 2010, 49, 4051–4059. [Google Scholar] [CrossRef]
- Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 2000, 287, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Cuppari, A.; Fernandez-Millan, P.; Battistini, F.; Tarres-Sole, A.; Lyonnais, S.; Iruela, G.; Ruiz-Lopez, E.; Enciso, Y.; Rubio-Cosials, A.; Prohens, R.; et al. DNA specificities modulate the binding of human transcription factor A to mitochondrial DNA control region. Nucleic Acids Res. 2019, 47, 6519–6537. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.D.; Afonine, P.V.; Bunkoczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Yoo, J.; Aksimentiev, A. New tricks for old dogs: Improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 2018, 20, 8432–8449. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Michaud-Agrawal, N.; Denning, E.J.; Woolf, T.B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. [Google Scholar] [CrossRef]
- Mitternacht, S. FreeSASA: An open source C library for solvent accessible surface area calculations. F1000Research 2016, 5, 189. [Google Scholar] [CrossRef]
- Kypr, J.; Kejnovska, I.; Renciuk, D.; Vorlickova, M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009, 37, 1713–1725. [Google Scholar] [CrossRef] [PubMed]
- Vivian, J.T.; Callis, P.R. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 2001, 80, 2093–2109. [Google Scholar] [CrossRef] [PubMed]
- Travers, A. Recognition of distorted DNA structures by HMG domains. Curr. Opin. Struct. Biol. 2000, 10, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.A.; Ukiyama, E.; King, C.Y. The SRY cantilever motif discriminates between sequence- and structure-specific DNA recognition: Alanine mutagenesis of an HMG box. J. Biomol. Struct. Dyn. 1997, 15, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Lamas-Maceiras, M.; Vizoso-Vazquez, A.; Barreiro-Alonso, A.; Camara-Quilez, M.; Cerdan, M.E. Thanksgiving to Yeast, the HMGB Proteins History from Yeast to Cancer. Microorganisms 2023, 11, 993. [Google Scholar] [CrossRef]
- Amato, J.; Madanayake, T.W.; Iaccarino, N.; Novellino, E.; Randazzo, A.; Hurley, L.H.; Pagano, B. HMGB1 binds to the KRAS promoter G-quadruplex: A new player in oncogene transcriptional regulation? Chem. Commun. 2018, 54, 9442–9445. [Google Scholar] [CrossRef]
- Masse, J.E.; Wong, B.; Yen, Y.M.; Allain, F.H.; Johnson, R.C.; Feigon, J. The S. cerevisiae architectural HMGB protein NHP6A complexed with DNA: DNA and protein conformational changes upon binding. J. Mol. Biol. 2002, 323, 263–284. [Google Scholar] [CrossRef]
- Love, J.J.; Li, X.; Case, D.A.; Giese, K.; Grosschedl, R.; Wright, P.E. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 1995, 376, 791–795. [Google Scholar] [CrossRef]
- Klaus, M.; Prokoph, N.; Girbig, M.; Wang, X.; Huang, Y.H.; Srivastava, Y.; Hou, L.; Narasimhan, K.; Kolatkar, P.R.; Francois, M.; et al. Structure and decoy-mediated inhibition of the SOX18/Prox1-DNA interaction. Nucleic Acids Res. 2016, 44, 3922–3935. [Google Scholar] [CrossRef]
- Murphy, F.V.t.; Sweet, R.M.; Churchill, M.E. The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition. EMBO J. 1999, 18, 6610–6618. [Google Scholar] [CrossRef]
- Klass, J.; Murphy, F.V.t.; Fouts, S.; Serenil, M.; Changela, A.; Siple, J.; Churchill, M.E. The role of intercalating residues in chromosomal high-mobility-group protein DNA binding, bending and specificity. Nucleic Acids Res. 2003, 31, 2852–2864. [Google Scholar] [CrossRef] [PubMed]
- King, C.Y.; Weiss, M.A. The SRY high-mobility-group box recognizes DNA by partial intercalation in the minor groove: A topological mechanism of sequence specificity. Proc. Natl. Acad. Sci. USA 1993, 90, 11990–11994. [Google Scholar] [CrossRef] [PubMed]
- Read, C.M.; Cary, P.D.; Preston, N.S.; Lnenicek-Allen, M.; Crane-Robinson, C. The DNA sequence specificity of HMG boxes lies in the minor wing of the structure. EMBO J. 1994, 13, 5639–5646. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.V.t.; Churchill, M.E. Nonsequence-specific DNA recognition: A structural perspective. Structure 2000, 8, R83–R89. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, K.; Higashino, A.; Unzai, S.; Yoshikawa, H.; Kokubo, T. Oligomerization of Hmo1 mediated by box A is essential for DNA binding in vitro and in vivo. Genes Cells 2016, 21, 1333–1352. [Google Scholar] [CrossRef]
- Churchill, M.E.; Jones, D.N.; Glaser, T.; Hefner, H.; Searles, M.A.; Travers, A.A. HMG-D is an architecture-specific protein that preferentially binds to DNA containing the dinucleotide TG. EMBO J. 1995, 14, 1264–1275. [Google Scholar] [CrossRef]
- Choi, W.S.; Garcia-Diaz, M. A minimal motif for sequence recognition by mitochondrial transcription factor A (TFAM). Nucleic Acids Res. 2022, 50, 322–332. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinina, D.K.; Armeev, G.A.; Geraskina, O.V.; Korovina, A.N.; Studitsky, V.M.; Feofanov, A.V. Complexes of HMO1 with DNA: Structure and Affinity. Biomolecules 2024, 14, 1184. https://doi.org/10.3390/biom14091184
Malinina DK, Armeev GA, Geraskina OV, Korovina AN, Studitsky VM, Feofanov AV. Complexes of HMO1 with DNA: Structure and Affinity. Biomolecules. 2024; 14(9):1184. https://doi.org/10.3390/biom14091184
Chicago/Turabian StyleMalinina, Daria K., Grigoriy A. Armeev, Olga V. Geraskina, Anna N. Korovina, Vasily M. Studitsky, and Alexey V. Feofanov. 2024. "Complexes of HMO1 with DNA: Structure and Affinity" Biomolecules 14, no. 9: 1184. https://doi.org/10.3390/biom14091184
APA StyleMalinina, D. K., Armeev, G. A., Geraskina, O. V., Korovina, A. N., Studitsky, V. M., & Feofanov, A. V. (2024). Complexes of HMO1 with DNA: Structure and Affinity. Biomolecules, 14(9), 1184. https://doi.org/10.3390/biom14091184