Improving Circulation Half-Life of Therapeutic Candidate N-TIMP2 by Unfolded Peptide Extension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of PATylation Sequences
2.2. Design of Internal FLAG-Tag in the N-TIMP2 Sequence
- N-TIMP2:
- N-TIMP2-PAT100:
- N-TIMP2-PAT200:
2.3. N-TIMP2 Protein Production and Purification
2.4. MMP-9 Expression
2.5. Circular Dichroism
2.6. Enzymatic Activity Inhibition Assay
2.7. Kiapp Determination
2.8. Murine Pharmacokinetics Study
2.9. ELISA Detection of Plasma N-TIMP2 Proteins
2.10. Analysis of ELISA
3. Results
3.1. PATylated N-TIMP2 Sequence Design
3.2. Construct Production and Characterization
3.3. Structural Analysis of PATylated Sequences by Circular Dichroism
3.4. Activity of the PATylated N-TIMP2 Variants
3.5. Optimization of ELISA for N-TIMP2 Detection in Plasma
3.6. Measurement of N-TIMP2 Construct Half-Life in Mice
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vandenbroucke, R.E.; Libert, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov. 2014, 13, 904–927. [Google Scholar] [CrossRef] [PubMed]
- Radisky, E.S.; Coban, M. Enzymes|Matrix Metalloproteinases. In Encyclopedia of Biological Chemistry, 3rd ed.; Jez, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 336–353. [Google Scholar]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuna, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.D.; Joyce, J.A. Proteolytic networks in cancer. Trends Cell Biol. 2011, 21, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Radisky, E.S. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J. Biol. Chem. 2024, 300, 107347. [Google Scholar] [CrossRef]
- Overall, C.M.; Kleifeld, O. Tumour microenvironment—opinion: Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 2006, 6, 227–239. [Google Scholar] [CrossRef]
- Dove, A. MMP inhibitors: Glimmers of hope amidst clinical failures. Nat. Med. 2002, 8, 95. [Google Scholar] [CrossRef]
- Farkas, E.; Katz, Y.; Bhusare, S.; Reich, R.; Röschenthaler, G.-V.; Königsmann, M.; Breuer, E. Carbamoylphosphonate-based matrix metalloproteinase inhibitor metal complexes: Solution studies and stability constants. Towards a zinc-selective binding group. JBIC J. Biol. Inorg. Chem. 2004, 9, 307–315. [Google Scholar] [CrossRef]
- Campestre, C.; Agamennone, M.; Tortorella, P.; Preziuso, S.; Biasone, A.; Gavuzzo, E.; Pochetti, G.; Mazza, F.; Hiller, O.; Tschesche, H.; et al. N-Hydroxyurea as zinc binding group in matrix metalloproteinase inhibition: Mode of binding in a complex with MMP-8. Bioorganic Med. Chem. Lett. 2006, 16, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Winer, A.; Adams, S.; Mignatti, P. Matrix Metalloproteinase Inhibitors in Cancer Therapy: Turning Past Failures Into Future Successes. Mol. Cancer Ther. 2018, 17, 1147–1155. [Google Scholar] [CrossRef]
- Fields, G.B. The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells 2019, 8, 984. [Google Scholar] [CrossRef]
- Appleby, T.C.; Greenstein, A.E.; Hung, M.; Liclican, A.; Velasquez, M.; Villaseñor, A.G.; Wang, R.; Wong, M.H.; Liu, X.; Papalia, G.A.; et al. Biochemical characterization and structure determination of a potent, selective antibody inhibitor of human MMP9. J. Biol. Chem. 2017, 292, 6810–6820. [Google Scholar] [CrossRef] [PubMed]
- Radisky, E.S.; Raeeszadeh-Sarmazdeh, M.; Radisky, D.C. Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer. J. Cell. Biochem. 2017, 118, 3531–3548. [Google Scholar] [CrossRef] [PubMed]
- Peeney, D.; Jensen, S.M.; Castro, N.P.; Kumar, S.; Noonan, S.; Handler, C.; Kuznetsov, A.; Shih, J.; Tran, A.D.; Salomon, D.S.; et al. TIMP-2 suppresses tumor growth and metastasis in murine model of triple-negative breast cancer. Carcinogenesis 2020, 41, 313–325. [Google Scholar] [CrossRef]
- Grossman, M.; Tworowski, D.; Dym, O.; Lee, M.H.; Levy, Y.; Murphy, G.; Sagi, I. The intrinsic protein flexibility of endogenous protease inhibitor TIMP-1 controls its binding interface and affects its function. Biochemistry 2010, 49, 6184–6192. [Google Scholar] [CrossRef]
- Bahudhanapati, H.; Zhang, Y.; Sidhu, S.S.; Brew, K. Phage display of tissue inhibitor of metalloproteinases-2 (TIMP-2): Identification of selective inhibitors of collagenase-1 (metalloproteinase 1 (MMP-1)). J. Biol. Chem. 2011, 286, 31761–31770. [Google Scholar] [CrossRef] [PubMed]
- Sharabi, O.; Shirian, J.; Grossman, M.; Sagi, I.; Shifman, J.M. Affinity- and specificity-enhancing mutations are frequent in mulstispecific interaction between MMP14 and its inhibitor TIMP2. PLoS ONE 2014, 9, e93712. [Google Scholar] [CrossRef]
- Shirian, J.; Arkadash, V.; Cohen, I.; Sapir, T.; Radisky, E.S.; Papo, N.; Shifman, J.M. Converting a broad matrix metalloproteinase family inhibitor into a specific inhibitor of MMP-9 and MMP-14. FEBS Lett. 2018, 592, 1122–1134. [Google Scholar] [CrossRef]
- Arkadash, V.; Yosef, G.; Shirian, J.; Cohen, I.; Horev, Y.; Grossman, M.; Sagi, I.; Radisky, E.S.; Shifman, J.M.; Papo, N. Development of High Affinity and High Specificity Inhibitors of Matrix Metalloproteinase 14 through Computational Design and Directed Evolution. J. Biol. Chem. 2017, 292, 3481–3495. [Google Scholar] [CrossRef]
- Raeeszadeh-Sarmazdeh, M.; Greene, K.A.; Sankaran, B.; Downey, G.P.; Radisky, D.C.; Radisky, E.S. Directed evolution of the metalloproteinase inhibitor TIMP-1 reveals that its N- and C-terminal domains cooperate in matrix metalloproteinase recognition. J. Biol. Chem. 2019, 294, 9476–9488. [Google Scholar] [CrossRef]
- Raeeszadeh-Sarmazdeh, M.; Coban, M.; Mahajan, S.; Hockla, A.; Sankaran, B.; Downey, G.P.; Radisky, D.C.; Radisky, E.S. Engineering of tissue inhibitor of metalloproteinases TIMP-1 for fine discrimination between closely related stromelysins MMP-3 and MMP-10. J. Biol. Chem. 2022, 298, 101654. [Google Scholar] [CrossRef]
- Bonadio, A.; Wenig, B.L.; Hockla, A.; Radisky, E.S.; Shifman, J.M. Designed Loop Extension Followed by Combinatorial Screening Confers High Specificity to a Broad Matrix MetalloproteinaseInhibitor. J. Mol. Biol. 2023, 435, 168095. [Google Scholar] [CrossRef] [PubMed]
- Shoari, A.; Khalili-Tanha, G.; Coban, M.A.; Radisky, E.S. Structure and computation-guided yeast surface display for the evolution of TIMP-based matrix metalloproteinase inhibitors. Front. Mol. Biosci. 2023, 10, 1321956. [Google Scholar] [CrossRef] [PubMed]
- Batra, J.; Robinson, J.; Mehner, C.; Hockla, A.; Miller, E.; Radisky, D.C.; Radisky, E.S. PEGylation Extends Circulation Half-Life While Preserving In Vitro and In Vivo Activity of Tissue Inhibitor of Metalloproteinases-1 (TIMP-1). PLoS ONE 2012, 7, e50028. [Google Scholar] [CrossRef]
- Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 2005, 10, 1451–1458. [Google Scholar] [CrossRef]
- AlQahtani, A.D.; O’Connor, D.; Domling, A.; Goda, S.K. Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed. Pharmacother. 2019, 113, 108750. [Google Scholar] [CrossRef] [PubMed]
- Hayun, H.; Arkadash, V.; Sananes, A.; Arbely, E.; Stepensky, D.; Papo, N. Bioorthogonal PEGylation Prolongs the Elimination Half-Life of N-TIMP2 While Retaining MMP Inhibition. Bioconjugate Chem. 2022, 33, 795–806. [Google Scholar] [CrossRef]
- Zorzi, A.; Linciano, S.; Angelini, A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. MedChemComm 2019, 10, 1068–1081. [Google Scholar] [CrossRef]
- Steiner, D.; Merz, F.W.; Sonderegger, I.; Gulotti-Georgieva, M.; Villemagne, D.; Phillips, D.J.; Forrer, P.; Stumpp, M.T.; Zitt, C.; Binz, H.K. Half-life extension using serum albumin-binding DARPin® domains. Protein Eng. Des. Sel. 2017, 30, 583–591. [Google Scholar] [CrossRef]
- Lee, M.S.; Kim, Y.H.; Kim, Y.J.; Kwon, S.H.; Bang, J.K.; Lee, S.M.; Song, Y.S.; Hahm, D.H.; Shim, I.; Han, D.; et al. Pharmacokinetics and biodistribution of human serum albumin-TIMP-2 fusion protein using near-infrared optical imaging. J. Pharm. Pharm. Sci. 2011, 14, 368–377. [Google Scholar] [CrossRef]
- Schlapschy, M.; Binder, U.; Börger, C.; Theobald, I.; Wachinger, K.; Kisling, S.; Haller, D.; Skerra, A. PASylation: A biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng. Des. Sel. PEDS 2013, 26, 489–501. [Google Scholar] [CrossRef]
- Vantourout, J.C.; Adusumalli, S.R.; Knouse, K.W.; Flood, D.T.; Ramirez, A.; Padial, N.M.; Istrate, A.; Maziarz, K.; deGruyter, J.N.; Merchant, R.R.; et al. Serine-Selective Bioconjugation. J. Am. Chem. Soc. 2020, 142, 17236–17242. [Google Scholar] [CrossRef] [PubMed]
- Nishi, H.; Shaytan, A.; Panchenko, A.R. Physicochemical mechanisms of protein regulation by phosphorylation. Front. Genet. 2014, 5, 270. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Mo, D.; Cong, P.; He, Z. Attenuated secretion of the thermostable xylanase xynB from Pichia pastoris using synthesized sequences optimized from the preferred codon usage in yeast. J. Microbiol. Biotechnol. 2012, 22, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Bonadio, A.; Oguche, S.; Lavy, T.; Kleifeld, O.; Shifman, J. Computational design of matrix metalloprotenaise-9 (MMP-9) resistant to auto-cleavage. Biochem. J. 2023, 480, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Neumann, U.; Kubota, H.; Frei, K.; Ganu, V.; Leppert, D. Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme. Anal. Biochem. 2004, 328, 166–173. [Google Scholar] [CrossRef]
- Murphy, D.J. Determination of accurate KI values for tight-binding enzyme inhibitors: An in silico study of experimental error and assay design. Anal. Biochem. 2004, 327, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Van Doren, S.R.; Wei, S.; Gao, G.; DaGue, B.B.; Palmier, M.O.; Bahudhanapati, H.; Brew, K. Inactivation of N-TIMP-1 by N-terminal acetylation when expressed in bacteria. Biopolymers 2008, 89, 960–968. [Google Scholar] [CrossRef]
- Binder, U.; Skerra, A. PASylation (R): A versatile technology to extend drug delivery. Curr. Opin. Colloid Interface Sci. 2017, 31, 10–17. [Google Scholar] [CrossRef]
- Bzymek, M.; Lovett, S.T. Instability of repetitive DNA sequences: The role of replication in multiple mechanisms. Proc. Natl. Acad. Sci. USA 2001, 98, 8319–8325. [Google Scholar] [CrossRef]
- Hua, S.B.; Qiu, M.; Chan, E.; Zhu, L.; Luo, Y. Minimum length of sequence homology required for in vivo cloning by homologous recombination in yeast. Plasmid 1997, 38, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Slootstra, J.W.; Kuperus, D.; Pluckthun, A.; Meloen, R.H. Identification of new tag sequences with differential and selective recognition properties for the anti-FLAG monoclonal antibodies M1, M2 and M5. Mol. Divers. 1997, 2, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Norden, A.G.; Lapsley, M.; Lee, P.J.; Pusey, C.D.; Scheinman, S.J.; Tam, F.W.; Thakker, R.V.; Unwin, R.J.; Wrong, O. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int. 2001, 60, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.A.; Beaumont, K.; Maurer, T.S.; Di, L. Relevance of Half-Life in Drug Design. J. Med. Chem. 2018, 61, 4273–4282. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Lee, J.D.; Clark, R.J.; Noakes, P.G.; Taylor, S.M.; Woodruff, T.M. Preclinical Pharmacokinetics of Complement C5a Receptor Antagonists PMX53 and PMX205 in Mice. ACS Omega 2020, 5, 2345–2354. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.E.; Makanji, Y.; Temple-Smith, P.; Kelly, E.K.; Barton, P.A.; Al-Musawi, S.L.; Mueller, T.D.; Walton, K.L.; Harrison, C.A. Biological activity and in vivo half-life of pro-activin A in male rats. Mol. Cell. Endocrinol. 2016, 422, 84–92. [Google Scholar] [CrossRef]
- Berger, J.; Vigan, M.; Pereira, B.; Nguyen, T.T.; Froissart, R.; Belmatoug, N.; Dalbies, F.; Masseau, A.; Rose, C.; Serratrice, C.; et al. Intra-monocyte Pharmacokinetics of Imiglucerase Supports a Possible Personalized Management of Gaucher Disease Type 1. Clin. Pharmacokinet. 2019, 58, 469–482. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirian, J.; Hockla, A.; Gleba, J.J.; Coban, M.; Rotenberg, N.; Strik, L.M.; Alasonyalilar Demirer, A.; Pawlush, M.L.; Copland, J.A.; Radisky, E.S.; et al. Improving Circulation Half-Life of Therapeutic Candidate N-TIMP2 by Unfolded Peptide Extension. Biomolecules 2024, 14, 1187. https://doi.org/10.3390/biom14091187
Shirian J, Hockla A, Gleba JJ, Coban M, Rotenberg N, Strik LM, Alasonyalilar Demirer A, Pawlush ML, Copland JA, Radisky ES, et al. Improving Circulation Half-Life of Therapeutic Candidate N-TIMP2 by Unfolded Peptide Extension. Biomolecules. 2024; 14(9):1187. https://doi.org/10.3390/biom14091187
Chicago/Turabian StyleShirian, Jason, Alexandra Hockla, Justyna J. Gleba, Matt Coban, Naama Rotenberg, Laura M. Strik, Aylin Alasonyalilar Demirer, Matt L. Pawlush, John A. Copland, Evette S. Radisky, and et al. 2024. "Improving Circulation Half-Life of Therapeutic Candidate N-TIMP2 by Unfolded Peptide Extension" Biomolecules 14, no. 9: 1187. https://doi.org/10.3390/biom14091187
APA StyleShirian, J., Hockla, A., Gleba, J. J., Coban, M., Rotenberg, N., Strik, L. M., Alasonyalilar Demirer, A., Pawlush, M. L., Copland, J. A., Radisky, E. S., & Shifman, J. M. (2024). Improving Circulation Half-Life of Therapeutic Candidate N-TIMP2 by Unfolded Peptide Extension. Biomolecules, 14(9), 1187. https://doi.org/10.3390/biom14091187