Probing the Dual Role of Ca2+ in the Allochromatium tepidum LH1–RC Complex by Constructing and Analyzing Ca2+-Bound and Ca2+-Free LH1 Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. Construction of Rsp. rubrum Mutants That Biosynthesized Alc. tepidum LH1-Only Complexes
2.3. Purification of Alc. tepidum LH1-Only Complexes
2.4. Spectroscopy and Thermal Stability
2.5. Cryo-EM Data Collection
2.6. Image Processing of LH1-α1β1 and LH1-α2β1 Complex
2.7. Model Building and Refinement of the LH1-Only Complex
3. Results
3.1. Construction, Purification, and Characterization of Heterologously Expressed Alc. tepidum LH1-Only Complexes
3.2. Structures of Chimeric Alc. tepidum Ca2+-Bound and Ca2+-Free LH1-Only Complexes
3.3. Effects of Ca2+ on Thermostability of Chimeric Alc. tepidum LH1-Only Complexes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blankenship, R.E. Molecular Mechanisms of Photosynthesis; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 61–90. [Google Scholar]
- Cogdell, R.J.; Gall, A.; Kohler, J. The architecture and function of the light-harvesting apparatus of purple bacteria: From single molecules to in vivo membranes. Q. Rev. Biophys. 2006, 39, 227–324. [Google Scholar] [CrossRef] [PubMed]
- Cogdell, R.J.; Roszak, A.W. Structural biology: The purple heart of photosynthesis. Nature 2014, 508, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, A.T.; Naydenova, K.; Castro-Hartmann, P.; Nguyen-Phan, T.C.; Russo, C.J.; Sader, K.; Hunter, C.N.; Cogdell, R.J.; Qian, P. The 2.4 Å cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways. Sci. Adv. 2021, 7, eabe4650. [Google Scholar] [CrossRef]
- Qian, P.; Swainsbury, D.J.K.; Croll, T.I.; Castro-Hartmann, P.; Divitini, G.; Sader, K.; Hunter, C.N. Cryo-EM structure of the Rhodobacter sphaeroides light-harvesting 2 complex at 2.1 Å. Biochemistry 2021, 60, 3302–3314. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.; Gardiner, A.T.; Šímová, I.; Naydenova, K.; Croll, T.I.; Jackson, P.J.; Nupur, n.; Kloz, M.; Čubáková, P.; Kuzma, M.; et al. 2.4 Å structure of the double-ring Gemmatimonas phototrophica photosystem. Sci. Adv. 2022, 8, eabk3139. [Google Scholar] [CrossRef] [PubMed]
- Tani, K.; Kanno, R.; Makino, Y.; Hall, M.; Takenouchi, M.; Imanishi, M.; Yu, L.J.; Overmann, J.; Madigan, M.T.; Kimura, Y.; et al. Cryo-EM structure of a Ca2+-bound photosynthetic LH1-RC complex containing multiple alphabeta-polypeptides. Nat. Commun. 2020, 11, 4955. [Google Scholar] [CrossRef] [PubMed]
- Tani, K.; Kanno, R.; Ji, X.-C.; Hall, M.; Yu, L.-J.; Kimura, Y.; Madigan, M.T.; Mizoguchi, A.; Humbel, B.M.; Wang-Otomo, Z.-Y. Cryo-EM structure of the photosynthetic LH1-RC complex from Rhodospirillum rubrum. Biochemistry 2021, 60, 2483–2491. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.J.; Suga, M.; Wang-Otomo, Z.Y.; Shen, J.R. Structure of photosynthetic LH1-RC supercomplex at 1.9 Å resolution. Nature 2018, 556, 209–213. [Google Scholar] [CrossRef]
- Kimura, Y.; Tani, K.; Madigan, M.T.; Wang-Otomo, Z.Y. Advances in the spectroscopic and structural characterization of core light-harvesting complexes from purple phototrophic bacteria. J. Phys. Chem. B. 2023, 127, 6–17. [Google Scholar] [CrossRef]
- Swainsbury, D.J.; Qian, P.; Hitchcock, A.; Hunter, C.N. The structure and assembly of reaction centre-light-harvesting 1 complexes in photosynthetic bacteria. Biosci. Rep. 2023, 43, 1573–4935. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.; Siebert, C.A.; Wang, P.; Canniffe, D.P.; Hunter, C.N. Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 Å. Nature 2018, 556, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.H.; Wang, G.L.; Wang, F.F.; Wang, J.; Wang, X.P.; Zou, M.J.; Ma, F.; Madigan, M.T.; Kimura, Y.; Wang-Otomo, Z.Y.; et al. Structural insights into the unusual core photocomplex from a triply extremophilic purple bacterium, Halorhodospira halochloris. J. Integr. Plant Biol. 2024, 66, 2262–2272. [Google Scholar] [CrossRef]
- Tani, K.; Kobayashi, K.; Hosogi, N.; Ji, X.C.; Nagashima, S.; Nagashima, K.V.P.; Izumida, A.; Inoue, K.; Tsukatani, Y.; Kanno, R.; et al. A Ca2+-binding motif underlies the unusual properties of certain photosynthetic bacterial core light-harvesting complexes. J. Biol. Chem. 2022, 298, 101967. [Google Scholar] [CrossRef]
- Madigan, M.T.; Crespi, J.N.; Mayers, J.E.; Asao, M.; Jung, D.O.; Takaichi, S.; Tsukatani, Y.; Wang-Otomo, Z.-Y.; Kempher, M.L.; Bender, K.S.; et al. Allochromatium tepidum, sp. nov., a new species of thermophilic purple sulfur bacteria. Arch Microbiol. 2022, 241, 115. [Google Scholar]
- Kimura, Y.; Lyu, S.; Okoshi, A.; Okazaki, K.; Nakamura, N.; Ohashi, A.; Ohno, T.; Kobayashi, M.; Imanishi, M.; Takaichi, S.; et al. Effects of calcium ions on the thermostability and spectroscopic properties of the LH1-RC complex from a new thermophilic purple bacterium Allochromatium tepidum. J. Phys. Chem. B. 2017, 121, 5025–5032. [Google Scholar] [CrossRef] [PubMed]
- Madigan, M.T.; Sattley, W.M.; Kimura, Y.; Wang-Otomo, Z.Y. Calcium and the ecology of photosynthesis in purple sulfur bacteria. Environ. Microbiol. 2024, 26, e16591. [Google Scholar] [CrossRef] [PubMed]
- Tani, K.; Kanno, R.; Harada, A.; Kobayashi, Y.; Minamino, A.; Takenaka, S.; Nakamura, N.; Ji, X.C.; Purba, E.R.; Hall, M.; et al. High-resolution structure and biochemical properties of the LH1-RC photocomplex from the model purple sulfur bacterium, Allochromatium vinosum. Commun. Biol. 2024, 7, 176. [Google Scholar] [CrossRef]
- Butzin, N.C.; Owen, H.A.; Collins, M.L. A new system for heterologous expression of membrane proteins: Rhodospirillum rubrum. Protein Expr. Purif. 2010, 70, 88–94. [Google Scholar] [CrossRef]
- Yan, Y.H.; Wang, G.L.; Yue, X.Y.; Ma, F.; Madigan, M.T.; Wang-Otomo, Z.Y.; Zou, M.J.; Yu, L.J. Molecular structure and characterization of the Thermochromatium tepidum light-harvesting 1 photocomplex produced in a foreign host. Biochim. Biophys. Acta 2024, 1865, 149050. [Google Scholar] [CrossRef] [PubMed]
- Hunter, C.N.; Turner, G. Transfer of genes coding for apoproteins of reaction centre and light-harvesting LH1 complexes to Rhodobacter sphaeroides. Microbiology 1988, 134, 1471–1480. [Google Scholar] [CrossRef]
- Punjani, A. Algorithmic advances in single particle cryo-EM data processing using CryoSPARC. Microsc. Microanal. 2020, 26 (Suppl. S2), 2322–2323. [Google Scholar] [CrossRef]
- Wagner, T.; Merino, F.; Stabrin, M.; Moriya, T.; Antoni, C.; Apelbaum, A.; Hagel, P.; Sitsel, O.; Raisch, T.; Prumbaum, D.; et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019, 2, 218. [Google Scholar] [CrossRef]
- Rubinstein, J.L.; Brubaker, M.A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 2015, 192, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Afonine, P.V.; Poon, B.K.; Read, R.J.; Sobolev, O.V.; Terwilliger, T.C.; Urzhumtsev, A.; Adams, P.D. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta. Crystallogr. D Struct. Biol. 2018, 74, 531–544. [Google Scholar] [CrossRef]
- DeLano, W.L. The PyMOL Molecular Graphics System; DeLano Scientific, LCC: San Francisco, CA, USA, 2004. [Google Scholar]
- Takaichi, S. Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In The Photochemistry of Carotenoids; Frank, H.A., Young, A., Britton, G., Cogdell, R.J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 39–69. [Google Scholar]
- Kimura, Y.; Hirano, Y.; Yu, L.J.; Suzuki, H.; Kobayashi, M.; Wang, Z.Y. Calcium ions are involved in the unusual red shift of the light-harvesting 1 Qy transition of the core complex in thermophilic purple sulfur bacterium Thermochromatium tepidum. J. Biol. Chem. 2008, 283, 13867–13873. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.; Nguyen-Phan, C.T.; Gardiner, A.T. Cryo-EM structures of light-harvesting 2 complexes from Rhodopseudomonas palustris reveal the molecular origin of absorption tuning. Proc. Natl. Acad. Sci. USA 2022, 119, e2210109119. [Google Scholar] [CrossRef]
- Cupellini, L.; Qian, P.; Nguyen-Phan, T.C.; Gardiner, A.T.; Cogdell, R.J. Quantum chemical elucidation of a sevenfold symmetric bacterial antenna complex. Photosynth. Res. 2023, 156, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Seto, R.; Takaichi, S.; Kurihara, T.; Kishi, R.; Honda, M.; Takenaka, S.; Tsukatani, Y.; Madigan, M.T.; Wang-Otomo, Z.Y.; Kimura, Y. Lycopene-family carotenoids confer thermostability on photocomplexes from a new thermophilic purple bacterium. Biochemistry 2020, 59, 2351–2358. [Google Scholar] [CrossRef] [PubMed]
LH1-α1β1 Complex | LH1-α2β1 Complex | |
---|---|---|
(EMD-39475) | (EMD-39477) | |
(PDB ID 8YPB) | (PDB ID 8YPD) | |
Data collection and processing | ||
Magnification | 81,000 | 81,000 |
Voltage(kV) | 300 | 300 |
Electron exposure(e-/Å2) | 60 | 60 |
Defocus range(μm) | −0.8~−2.5 | −0.8~−2.5 |
pixel size(Å) | 1.04 | 1.04 |
Symmetry imposed | C14 | C14 |
Initial particle images (no.) | 1,882,697 | 863,338 |
Final particle images (no.) | 234,287 | 206,784 |
Map resolution (Å) | 2.45 | 2.78 |
FSC threshold | 0.143 | 0.143 |
Refinement | ||
Initial model used (PDB code) | 5Y5S | 5Y5S |
Model resolution (Å) | 2.5 | 2.8 |
FSC threshold | 0.5 | 0.5 |
Map sharpening B factor (Å2) | 90.7 | 108.2 |
Model composition | ||
Non-hydrogen atoms | 13,286 | 12,292 |
Protein residues | 1330 | 1190 |
Ligands | 56 | 42 |
B factors (Å2) | ||
Protein | 11.18 | 15.41 |
Ligand | 7.54 | 7.65 |
R.m.s.deviations | ||
Bond lengths (A) | 0.008 | 0.008 |
Bond angles (°) | 1.236 | 1.208 |
Validation | ||
MolProbity score | 1.89 | 1.59 |
Clashscore | 14.01 | 12.06 |
Poor rotamers (%) | 2.03 | 0.49 |
Ramachandran plot | ||
Favored (%) | 99.37 | 100.00 |
Allowed (%) | 0.63 | 0.00 |
Disallowed (%) | 0.00 | 0.00 |
Carotenoid | LH1-α1β1 | LH1-α2β1 | Cell | LH1−RC |
---|---|---|---|---|
Lycopene | nd | nd | 4.3 | 0.4 |
Rhodopin | 14.63 | nd | 57.4 | 7.4 |
3,4,3′,4′-Tetrahydro spirilloxanthin | nd | 21.65 | nd | nd |
Anhydrorhodovibrin | 58.46 | 11.12 | 13.7 | 6.1 |
Rhodovibrin | 14.64 | 11.53 | 2.2 | 4.7 |
OH-spirilloxanthin | nd | nd | nd | nd |
Spirilloxanthin | 12.27 | 55.70 | 16.5 | 73.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, M.-J.; Sun, S.; Wang, G.-L.; Yan, Y.-H.; Ji, W.; Wang-Otomo, Z.-Y.; Madigan, M.T.; Yu, L.-J. Probing the Dual Role of Ca2+ in the Allochromatium tepidum LH1–RC Complex by Constructing and Analyzing Ca2+-Bound and Ca2+-Free LH1 Complexes. Biomolecules 2025, 15, 124. https://doi.org/10.3390/biom15010124
Zou M-J, Sun S, Wang G-L, Yan Y-H, Ji W, Wang-Otomo Z-Y, Madigan MT, Yu L-J. Probing the Dual Role of Ca2+ in the Allochromatium tepidum LH1–RC Complex by Constructing and Analyzing Ca2+-Bound and Ca2+-Free LH1 Complexes. Biomolecules. 2025; 15(1):124. https://doi.org/10.3390/biom15010124
Chicago/Turabian StyleZou, Mei-Juan, Shuai Sun, Guang-Lei Wang, Yi-Hao Yan, Wei Ji, Zheng-Yu Wang-Otomo, Michael T. Madigan, and Long-Jiang Yu. 2025. "Probing the Dual Role of Ca2+ in the Allochromatium tepidum LH1–RC Complex by Constructing and Analyzing Ca2+-Bound and Ca2+-Free LH1 Complexes" Biomolecules 15, no. 1: 124. https://doi.org/10.3390/biom15010124
APA StyleZou, M.-J., Sun, S., Wang, G.-L., Yan, Y.-H., Ji, W., Wang-Otomo, Z.-Y., Madigan, M. T., & Yu, L.-J. (2025). Probing the Dual Role of Ca2+ in the Allochromatium tepidum LH1–RC Complex by Constructing and Analyzing Ca2+-Bound and Ca2+-Free LH1 Complexes. Biomolecules, 15(1), 124. https://doi.org/10.3390/biom15010124