Deciphering the Role of Adrenergic Receptors in Alzheimer’s Disease: Paving the Way for Innovative Therapies
Abstract
:1. Introduction
1.1. α-Adrenergic Receptors
1.2. Positive Roles of α-Adrenergic Receptors in Alzheimer’s Disease and Other Neurodegenerative Disorders
1.2.1. α1-Adrenergic Receptors
1.2.2. α2-Adrenergic Receptors
1.3. Negative Roles of α-Adrenergic Receptors in Alzheimer’s Disease and Other Neurodegenerative Disorders
1.3.1. α1-Adrenergic Receptors
1.3.2. α2-Adrenergic Receptors
1.4. β-Adrenergic Receptors
1.5. Positive Roles of β-Adrenergic Receptors in Alzheimer’s Disease and Other Neurodegenerative Disorders
1.5.1. β1 Adrenergic Receptors
1.5.2. β2-Adrenergic Receptors
1.6. Adrenergic Signaling, Beyond the Activity of Specific Receptor Subtypes
1.7. Negative Roles of β-Adrenergic Receptors in Alzheimer’s Disease and Other Neurodegenerative Disorders
1.7.1. β1-Adrenergic Receptors
1.7.2. β2-Adrenergic Receptors
1.8. Negative Impacts of Adrenergic Signaling on Neurodegeneration
2. Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research 2018, 7, 1161. [Google Scholar] [CrossRef] [PubMed]
- Ossenkoppele, R.; van der Flier, W.M.; Verfaillie, S.C.; Vrenken, H.; Versteeg, A.; van Schijndel, R.A.; Sikkes, S.A.; Twisk, J.; Adriaanse, S.M.; Zwan, M.D.; et al. Long-term effects of amyloid, hypometabolism, and atrophy on neuropsychological functions. Neurology 2014, 82, 1768–1775. [Google Scholar] [CrossRef]
- De la Rosa, A.; Olaso-Gonzalez, G.; Arc-Chagnaud, C.; Millan, F.; Salvador-Pascual, A.; García-Lucerga, C.; Blasco-Lafarga, C.; Garcia-Dominguez, E.; Carretero, A.; Correas, A.G.; et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J. Sport. Health Sci. 2020, 9, 394–404. [Google Scholar] [CrossRef]
- Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment Strategies and Their Limitations. Int. J. Mol. Sci. 2022, 23, 13954. [Google Scholar] [CrossRef] [PubMed]
- Muralidar, S.; Ambi, S.V.; Sekaran, S.; Thirumalai, D.; Palaniappan, B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol. 2020, 163, 1599–1617. [Google Scholar] [CrossRef] [PubMed]
- Pascoal, T.A.; Mathotaarachchi, S.; Shin, M.; Benedet, A.L.; Mohades, S.; Wang, S.; Beaudry, T.; Kang, M.S.; Soucy, J.; Labbe, A.; et al. Synergistic interaction between amyloid and tau predicts the progression to dementia. Alzheimer’s Dement. 2017, 13, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Duyckaerts, C. Tau pathology in children and young adults: Can you still be unconditionally baptist? Acta Neuropathol. 2011, 121, 145–147. [Google Scholar] [CrossRef]
- Bekdash, R.A. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 1273. [Google Scholar] [CrossRef] [PubMed]
- Perez, D.M. alpha(1)-Adrenergic Receptors: Insights into Potential Therapeutic Opportunities for COVID-19, Heart Failure, and Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 4188. [Google Scholar] [CrossRef] [PubMed]
- Le, L.; Feidler, A.M.; Li, H.; Kara-Pabani, K.; Lamantia, C.; O’Banion, M.K.; Majewska, K.A. Noradrenergic signaling controls Alzheimer’s disease pathology via activation of microglial beta2 adrenergic receptors. bioRxiv 2023. [Google Scholar] [CrossRef]
- Li, S. The beta-adrenergic hypothesis of synaptic and microglial impairment in Alzheimer’s disease. J. Neurochem. 2023, 165, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Femminella, G.D.; Rengo, G.; Pagano, G.; De Lucia, C.; Komici, K.; Parisi, V.; Alessandroa, C.; Danielaa, L.; Carloa, V.; Pasquale Perrone, F.; et al. beta-adrenergic receptors and G protein-coupled receptor kinase-2 in Alzheimer’s disease: A new paradigm for prognosis and therapy? J. Alzheimer’s Dis. 2013, 34, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.T.; Wang, N.D.; Ma, T.; Jiang, H.; Guan, J.; Tan, L. Roles of beta-adrenergic receptors in Alzheimer’s disease: Implications for novel therapeutics. Brain Res. Bull. 2011, 84, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Luong, K.; Nguyen, L.T. The role of Beta-adrenergic receptor blockers in Alzheimer’s disease: Potential genetic and cellular signaling mechanisms. Am. J. Alzheimer’s Dis. Other Demen. 2013, 28, 427–439. [Google Scholar] [CrossRef]
- Holland, N.; Robbins, T.W.; Rowe, J.B. The role of noradrenaline in cognition and cognitive disorders. Brain 2021, 144, 2243–2256. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.; Wang, Q. Complex noradrenergic dysfunction in Alzheimer’s disease: Low norepinephrine input is not always to blame. Brain Res. 2019, 1702, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.; Che, P.; Chen, Y.; Jiao, K.; Roberson, E.D.; Wang, Q. Noradrenergic dysfunction in Alzheimer’s disease. Front. Neurosci. 2015, 9, 220. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Rein, B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: Pathophysiological implications. Mol. Psychiatry 2022, 27, 445–465. [Google Scholar] [CrossRef]
- Shimohama, S.; Taniguchi, T.; Fujiwara, M.; Kameyama, M. Changes in beta-adrenergic receptor subtypes in Alzheimer-type dementia. J. Neurochem. 1987, 48, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- O’donnell, J.; Zeppenfeld, D.; McConnell, E.; Pena, S.; Nedergaard, M. Norepinephrine: A neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem. Res. 2012, 37, 2496–2512. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, P.; Hempel, P.; Kunze, R.; Bimmler, M. Agonistic autoantibodies to the α1-adrenergic receptor and the β2-adrenergic receptor in Alzheimer’s and vascular dementia. Scand. J. Immunol. 2012, 75, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Gannon, M.; Chen, Y.; Zhou, L.; Jiao, K.; Wang, Q. The amyloid precursor protein modulates α2A-adrenergic receptor endocytosis and signaling through disrupting arrestin 3 recruitment. FASEB J. 2017, 31, 4434–4446. [Google Scholar] [CrossRef]
- Papay, R.S.; Stauffer, S.R.; Perez, D.M. A PAM of the α1A-Adrenergic receptor rescues biomarker, long-term potentiation, and cognitive deficits in Alzheimer’s disease mouse models without effects on blood pressure. Curr. Res. Pharmacol. Drug Discov. 2023, 5, 100160. [Google Scholar] [CrossRef] [PubMed]
- Doze, V.A.; Papay, R.S.; Goldenstein, B.L.; Gupta, M.K.; Collette, K.M.; Nelson, B.W.; Lyons, M.J.; Davis, B.A.; Luger, E.J.; Wood, S.G.; et al. Long-term alpha1A-adrenergic receptor stimulation improves synaptic plasticity, cognitive function, mood, and longevity. Mol. Pharmacol. 2011, 80, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, V.S.; Samidurai, M.; Park, H.J.; Wang, M.; Park, R.Y.; Yu, S.Y.; Kang, H.K.; Hong, S.; Choi, W.-S.; Lee, Y.Y.; et al. Avenanthramide-C Restores Impaired Plasticity and Cognition in Alzheimer’s Disease Model Mice. Mol. Neurobiol. 2020, 57, 315–330. [Google Scholar] [CrossRef]
- Knauber, J.; Muller, W.E. Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the alpha(1b)-adrenoceptor. Eur. Neuropsychopharmacol. 2000, 10, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Coelho, B.P.; Gaelzer, M.M.; Petry, F.d.S.; Hoppe, J.B.; Trindade, V.M.T.; Salbego, C.G.; Guma, F.T. Dual Effect of Doxazosin: Anticancer Activity on SH-SY5Y Neuroblastoma Cells and Neuroprotection on an In Vitro Model of Alzheimer’s Disease. Neuroscience 2019, 404, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Katsouri, L.; Vizcaychipi, M.P.; McArthur, S.; Harrison, I.; Suárez-Calvet, M.; Lleo, A.; Lloyd, D.G.; Ma, D.; Sastre, M. Prazosin, an alpha(1)-adrenoceptor antagonist, prevents memory deterioration in the APP23 transgenic mouse model of Alzheimer’s disease. Neurobiol. Aging 2013, 34, 1105–1115. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Gao, J.; Cheng, Q.; Liu, L.; Cai, R. Activation of Pgk1 Results in Reduced Protein Aggregation in Diverse Neurodegenerative Conditions. Mol. Neurobiol. 2023, 60, 5090–5101. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yi, X.; Wang, Y.; Zeng, G.; Tan, C.; Cheng, Y.; Sun, P.; Liu, Z.; Wang, Y.; Liu, Y. Inhibiting alpha1-adrenergic receptor signaling pathway ameliorates AD-type pathologies and behavioral deficits in APPswe/PS1 mouse model. J. Neurochem. 2022, 161, 293–307. [Google Scholar] [CrossRef]
- Koutroumani, M.; Daniilidou, M.; Giannakouros, T.; Proitsi, P.; Liapi, D.; Germanou, A.; Nikolakaki, E.; Tsolaki, M. The deletion variant of alpha2b-adrenergic receptor is associated with decreased risk in Alzheimer’s disease and mild cognitive impairment. J. Neurol. Sci. 2013, 328, 19–23. [Google Scholar] [CrossRef]
- Sallinen, J.; Holappa, J.; Koivisto, A.; Kuokkanen, K.; Chapman, H.; Lehtimäki, J.; Piepponen, P.; Mijatovic, J.; Tanila, H.; Virtanen, R.; et al. Pharmacological characterisation of a structurally novel alpha2C-adrenoceptor antagonist ORM-10921 and its effects in neuropsychiatric models. Basic. Clin. Pharmacol. Toxicol. 2013, 113, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Rizk, P.; Salazar, J.; Raisman-Vozari, R.; Marien, M.; Ruberg, M.; Colpaert, F.; Debeir, T. The alpha2-adrenoceptor antagonist dexefaroxan enhances hippocampal neurogenesis by increasing the survival and differentiation of new granule cells. Neuropsychopharmacology 2006, 31, 1146–1157. [Google Scholar] [CrossRef] [PubMed]
- Debeir, T.; Marien, M.; Chopin, P.; Martel, J.-C.; Colpaert, F.; Raisman-Vozari, R. Protective effects of the alpha 2-adrenoceptor antagonist, dexefaroxan, against degeneration of the basalocortical cholinergic system induced by cortical devascularization in the adult rat. Neuroscience 2002, 115, 41–53. [Google Scholar] [CrossRef]
- Chopin, P.; Colpaert, F.C.; Marien, M. Effects of acute and subchronic administration of dexefaroxan, an alpha(2)-adrenoceptor antagonist, on memory performance in young adult and aged rodents. J. Pharmacol. Exp. Ther. 2002, 301, 187–196. [Google Scholar] [CrossRef]
- Melkonyan, M.M.; Hunanyan, L.; Lourhmati, A.; Layer, N.; Beer-Hammer, S.; Yenkoyan, K.; Schwab, M.; Danielyan, L. Neuroprotective, Neurogenic, and Amyloid Beta Reducing Effect of a Novel Alpha 2-Adrenoblocker, Mesedin, on Astroglia and Neuronal Progenitors upon Hypoxia and Glutamate Exposure. Int. J. Mol. Sci. 2017, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peng, Y.; Che, P.; Gannon, M.; Liu, Y.; Li, L.; Bu, G.; van Groen, T.; Jiao, K.; Wang, Q. alpha(2A) adrenergic receptor promotes amyloidogenesis through disrupting APP-SorLA interaction. Proc. Natl. Acad. Sci. USA 2014, 111, 17296–17301. [Google Scholar] [CrossRef] [PubMed]
- Nizari, S.; Guo, L.; Davis, B.M.; Normando, E.M.; Galvao, J.; A Turner, L.; Bizrah, M.; Dehabadi, M.; Tian, K.; Cordeiro, M.F. Non-amyloidogenic effects of alpha2 adrenergic agonists: Implications for brimonidine-mediated neuroprotection. Cell Death Dis. 2016, 7, e2514. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, P.; Hempel, P.; Bimmler, M. Role of alpha1-adrenergic receptor antibodies in Alzheimer’s disease. Front. Biosci. (Landmark Ed.) 2018, 23, 2082–2089. [Google Scholar] [PubMed]
- Hempel, P.; Heinig, B.; Jerosch, C.; Decius, I.; Karczewski, P.; Kassner, U.; Kunze, R.; Steinhagen-Thiessen, E.; Bimmler, M. Immunoadsorption of Agonistic Autoantibodies Against alpha1-Adrenergic Receptors in Patients with Mild to Moderate Dementia. Ther. Apher. Dial. 2016, 20, 523–529. [Google Scholar] [CrossRef]
- Pohlmann, A.; Karczewski, P.; Ku, M.-C.; Dieringer, B.; Waiczies, H.; Wisbrun, N.; Kox, S.; Palatnik, I.; Reimann, H.M.; Eichhorn, C.; et al. Cerebral blood volume estimation by ferumoxytol-enhanced steady-state MRI at 9.4 T reveals microvascular impact of alpha1 -adrenergic receptor antibodies. NMR Biomed. 2014, 27, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Stracke, S.; Lange, S.; Bornmann, S.; Kock, H.; Schulze, L.; Klinger-König, J.; Böhm, S.; Vogelgesang, A.; von Podewils, F.; Föel, A.; et al. Immunoadsorption for Treatment of Patients with Suspected Alzheimer Dementia and Agonistic Autoantibodies against Alpha1a-Adrenoceptor-Rationale and Design of the IMAD Pilot Study. J. Clin. Med. 2020, 9, 1919. [Google Scholar] [CrossRef] [PubMed]
- Haase, N.; Herse, F.; Spallek, B.; Haase, H.; Morano, I.; Qadri, F.; Szijártó, I.A.; Roham, I.; Yilmaz, A.; Warrington, J.P.; et al. Amyloid-beta peptides activate alpha1-adrenergic cardiovascular receptors. Hypertension 2013, 62, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Sharp, S.I.; Ballard, C.G.; Chen, C.P.-H.; Francis, P.T. Aggressive behavior and neuroleptic medication are associated with increased number of alpha1-adrenoceptors in patients with Alzheimer disease. Am. J. Geriatr. Psychiatry 2007, 15, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, R.N.; Andorn, A.C. Adrenergic receptors in aging and Alzheimer’s disease: Decreased alpha 2-receptors demonstrated by [3H]p-aminoclonidine binding in prefrontal cortex. Neurobiol. Aging 1991, 12, 131–136. [Google Scholar] [CrossRef]
- Pascual, J.; Grijalba, B.; García-Sevilla, J.A.; Zarranz, J.J.; Pazos, A. Loss of high-affinity alpha 2-adrenoceptors in Alzheimer’s disease: An autoradiographic study in frontal cortex and hippocampus. Neurosci. Lett. 1992, 142, 36–40. [Google Scholar] [CrossRef]
- Ippolito, M.; Benovic, J.L. Biased agonism at beta-adrenergic receptors. Cell Signal 2021, 80, 109905. [Google Scholar] [CrossRef]
- Coutellier, L.; Ardestani, P.M.; Shamloo, M. beta1-adrenergic receptor activation enhances memory in Alzheimer’s disease model. Ann. Clin. Transl. Neurol. 2014, 1, 348–360. [Google Scholar] [CrossRef]
- Ardestani, P.M.; Evans, A.K.; Yi, B.; Nguyen, T.; Coutellier, L.; Shamloo, M. Modulation of neuroinflammation and pathology in the 5XFAD mouse model of Alzheimer’s disease using a biased and selective beta-1 adrenergic receptor partial agonist. Neuropharmacology 2017, 116, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wright, H.M.; Vempati, P.; Li, H.; Wangsa, J.; Dzhuan, A.; Habbu, K.; Knable, L.A.; Ho, L.; Pasinetti, G.M. Investigation of nebivolol as a novel therapeutic agent for the treatment of Alzheimer’s disease. J. Alzheimer’s Dis. 2013, 33, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Jahangir, A.; Evans, A.K.; Briggs, D.; Ravina, K.; Ernest, J.; Farimani, A.B.; Sun, W.; Rajadas, J.; Green, M.; et al. Discovery of novel brain permeable and G protein-biased beta-1 adrenergic receptor partial agonists for the treatment of neurocognitive disorders. PLoS ONE 2017, 12, e0180319. [Google Scholar] [CrossRef]
- Lee, J.H.; Wolfe, D.M.; Darji, S.; McBrayer, M.K.; Colacurcio, D.J.; Kumar, A.; Stavrides, P.; Mohan, P.S.; Nixon, R.A. beta2-adrenergic Agonists Rescue Lysosome Acidification and Function in PSEN1 Deficiency by Reversing Defective ER-to-lysosome Delivery of ClC-7. J. Mol. Biol. 2020, 432, 2633–2650. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Rajsombath, M.M.; Weikop, P.; Selkoe, D.J. Enriched environment enhances beta-adrenergic signaling to prevent microglia inflammation by amyloid-beta. EMBO Mol. Med. 2018, 10, e8931. [Google Scholar] [CrossRef]
- Li, S.; Jin, M.; Zhang, D.; Yang, T.; Koeglsperger, T.; Fu, H.; Selkoe, D.J. Environmental novelty activates beta2-adrenergic signaling to prevent the impairment of hippocampal LTP by Abeta oligomers. Neuron 2013, 77, 929–941. [Google Scholar] [CrossRef]
- O’Dell, T.J.; Connor, S.A.; Gelinas, J.N.; Nguyen, P.V. Viagra for your synapses: Enhancement of hippocampal long-term potentiation by activation of beta-adrenergic receptors. Cell Signal 2010, 22, 728–736. [Google Scholar] [CrossRef]
- Hutten, D.R.; Bos, J.H.; de Vos, S.; Hak, E. Targeting the Beta-2-Adrenergic Receptor and the Risk of Developing Alzheimer’s Disease: A Retrospective Inception Cohort Study. J. Alzheimer’s Dis. 2022, 87, 1089–1101. [Google Scholar] [CrossRef]
- Zhao, P.; Chai, G.-S.; Wang, Y.-Y.; Yasheng, A. Beta 2-adrenergic receptor activation enhances neurogenesis in Alzheimer’s disease mice. Neural Regen. Res. 2016, 11, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Chai, G.S.; Wang, Y.Y.; Zhu, D.; Yasheng, A.; Zhao, P. Activation of beta(2)-adrenergic receptor promotes dendrite ramification and spine generation in APP/PS1 mice. Neurosci. Lett. 2017, 636, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Townsend, D.J.; Mala, B.; Hughes, E.; Hussain, R.; Siligardi, G.; Fullwood, N.J.; Middleton, D.A. Circular Dichroism Spectroscopy Identifies the beta-Adrenoceptor Agonist Salbutamol As a Direct Inhibitor of Tau Filament Formation in Vitro. ACS Chem. Neurosci. 2020, 11, 2104–2116. [Google Scholar] [CrossRef]
- Wang, D.; Fu, Q.; Zhou, Y.; Xu, B.; Shi, Q.; Igwe, B.; Matt, L.; Hell, J.W.; Wisely, E.V.; Oddo, S.; et al. beta2 adrenergic receptor, protein kinase A (PKA) and c-Jun N-terminal kinase (JNK) signaling pathways mediate tau pathology in Alzheimer disease models. J. Biol. Chem. 2013, 288, 10298–10307. [Google Scholar] [CrossRef]
- Wu, J.J.; Yu, H.; Bi, S.G.; Wang, Z.X.; Gong, J.; Mao, Y.M.; Wang, F.Z.; Zhang, Y.Q.; Niu, Y.J.; Chai, G.S. Aerobic exercise attenuates autophagy-lysosomal flux deficits by ADRB2/beta2-adrenergic receptor-mediated V-ATPase assembly factor VMA21 signaling in APP-PSEN1/PS1 mice. Autophagy 2024, 20, 1015–1031. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.M.; Langner, B.M.; Jackson, N.; Alex, C.; McMahon, L.L. Heightened Hippocampal beta-Adrenergic Receptor Function Drives Synaptic Potentiation and Supports Learning and Memory in the TgF344-AD Rat Model during Prodromal Alzheimer’s Disease. J. Neurosci. 2021, 41, 5747–5761. [Google Scholar] [CrossRef]
- Shen, H.; Fuchino, Y.; Miyamoto, D.; Nomura, H.; Matsuki, N. Vagus nerve stimulation enhances perforant path-CA3 synaptic transmission via the activation of beta-adrenergic receptors and the locus coeruleus. Int. J. Neuropsychopharmacol. 2012, 15, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Counts, S.E.; Mufson, E.J. Noradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity. J. Neurochem. 2010, 113, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Ruan, L.; Qian, L.; Liu, X.; Le, Y. Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J. Neurosci. 2010, 30, 11848–11857. [Google Scholar] [CrossRef] [PubMed]
- Sugama, S.; Takenouchi, T.; Hashimoto, M.; Ohata, H.; Takenaka, Y.; Kakinuma, Y. Stress-induced microglial activation occurs through beta-adrenergic receptor: Noradrenaline as a key neurotransmitter in microglial activation. J. Neuroinflamm. 2019, 16, 266. [Google Scholar] [CrossRef]
- Yang, J.H.; Lee, E.O.; Kim, S.E.; Suh, Y.H.; Chong, Y.H. Norepinephrine differentially modulates the innate inflammatory response provoked by amyloid-beta peptide via action at beta-adrenoceptors and activation of cAMP/PKA pathway in human THP-1 macrophages. Exp. Neurol. 2012, 236, 199–206. [Google Scholar] [CrossRef]
- Allaman, I.; Pellerin, L.; Magistretti, P.J. Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes. Glia 2000, 30, 382–391. [Google Scholar] [CrossRef]
- Bullido, M.J.; Ramos, M.C.; Ruiz-Gómez, A.; Tutor, A.S.; Sastre, I.; Frank, A.; Coria, F.; Gil, P.; Mayor, F.; Valdivieso, F. Polymorphism in genes involved in adrenergic signaling associated with Alzheimer’s. Neurobiol. Aging 2004, 25, 853–859. [Google Scholar] [CrossRef]
- Wang, D.; Yuen, E.Y.; Zhou, Y.; Yan, Z.; Xiang, Y.K. Amyloid beta peptide-(1-42) induces internalization and degradation of beta2 adrenergic receptors in prefrontal cortical neurons. J. Biol. Chem. 2011, 286, 31852–31863. [Google Scholar] [CrossRef]
- Wisely, E.V.; Xiang, Y.K.; Oddo, S. Genetic suppression of beta2-adrenergic receptors ameliorates tau pathology in a mouse model of tauopathies. Hum. Mol. Genet. 2014, 23, 4024–4034. [Google Scholar] [CrossRef] [PubMed]
- Bussiere, R.; Lacampagne, A.; Reiken, S.; Liu, X.; Scheuerman, V.; Zalk, R.; Martin, C.; Checler, F.; Marks, A.R.; Chami, M.; et al. Amyloid beta production is regulated by beta2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor. J. Biol. Chem. 2017, 292, 10153–10168. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Govindaiah, G.; Liu, R.; De Arcangelis, V.; Cox, C.L.; Xiang, Y.K. Binding of amyloid beta peptide to beta2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity. FASEB J. 2010, 24, 3511–3521. [Google Scholar] [CrossRef]
- Yu, J.T.; Tan, L.; Ou, J.R.; Zhu, J.X.; Liu, K.; Song, J.H.; Sun, Y.P. Polymorphisms at the beta2-adrenergic receptor gene influence Alzheimer’s disease susceptibility. Brain Res. 2008, 1210, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Hohberger, B.; Prüss, H.; Mardin, C.; Lämmer, R.; Müller, J.; Wallukat, G. Glaucoma and Alzheimer: Neurodegenerative disorders show an adrenergic dysbalance. PLoS ONE 2022, 17, e0272811. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Fujita, Y.; Shen, X.; Liu, J.; Terakawa, T.; Nishikata, D.; Niibori, S.; Ito, T.; Ashidate, K.; Kikuchi, T.; et al. Interaction between Angiotensin Receptor and beta-Adrenergic Receptor Regulates the Production of Amyloid beta-Protein. Biol. Pharm. Bull. 2020, 43, 731–735. [Google Scholar] [CrossRef]
- Ni, Y.; Zhao, X.; Bao, G.; Zou, L.; Teng, L.; Wang, Z.; Song, M.; Xiong, J.; Bai, Y.; Pei, G. Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nat. Med. 2006, 12, 1390–1396. [Google Scholar] [CrossRef]
- Yu, N.N.; Wang, X.X.; Yu, J.T.; Wang, N.D.; Lu, R.C.; Miao, D.; Tian, Y.; Tan, L. Blocking beta2-adrenergic receptor attenuates acute stress-induced amyloid beta peptides production. Brain Res. 2010, 1317, 305–310. [Google Scholar] [CrossRef]
- Wang, J.; Ono, K.; Dickstein, D.L.; Arrieta-Cruz, I.; Zhao, W.; Qian, X.; Lamparello, A.; Subnani, R.; Ferruzzi, M.; Pavlides, C.; et al. Carvedilol as a potential novel agent for the treatment of Alzheimer’s disease. Neurobiol. Aging 2011, 32, 2321 e1-12. [Google Scholar] [CrossRef] [PubMed]
- Branca, C.; Wisely, E.V.; Hartman, L.K.; Caccamo, A.; Oddo, S. Administration of a selective beta2 adrenergic receptor antagonist exacerbates neuropathology and cognitive deficits in a mouse model of Alzheimer’s disease. Neurobiol. Aging 2014, 35, 2726–2735. [Google Scholar] [CrossRef]
- Evans, A.K.; Ardestani, P.M.; Yi, B.; Park, H.H.; Lam, R.K.; Shamloo, M. Beta-adrenergic receptor antagonism is proinflammatory and exacerbates neuroinflammation in a mouse model of Alzheimer’s Disease. Neurobiol. Dis. 2020, 146, 105089. [Google Scholar] [CrossRef]
- Decker, M.W.; Gill, T.M.; McGaugh, J.L. Concurrent muscarinic and beta-adrenergic blockade in rats impairs place-learning in a water maze and retention of inhibitory avoidance. Brain Res. 1990, 513, 81–85. [Google Scholar] [CrossRef]
- Walker, V.M.; Davies, N.M.; Martin, R.M.; Kehoe, P.G. Comparison of Antihypertensive Drug Classes for Dementia Prevention. Epidemiology 2020, 31, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Beaman, E.E.; Bonde, A.N.; Larsen SM, U.; Ozenne, B.; Lohela, T.J.; Nedergaard, M.; Hilmar Gíslason, G.; Knudsen, G.M.; Holst, S.C. Blood-brain barrier permeable beta-blockers linked to lower risk of Alzheimer’s disease in hypertension. Brain 2022, 146, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Shofer, J.B.; Rohde, K.; Hart, K.L.; Hoff, D.J.; McFall, Y.H.; Raskind, M.A.; Peskind, E.R. Prazosin for the treatment of behavioral symptoms in patients with Alzheimer disease with agitation and aggression. Am. J. Geriatr. Psychiatry 2009, 17, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Rinne, J.O.; Wesnes, K.; Cummings, J.L.; Hakulinen, P.; Hallikainen, M.; Hänninen, J.; Murphy, M.; Riordan, H.; Scheinin, M.; Soininen, H.; et al. Tolerability of ORM-12741 and effects on episodic memory in patients with Alzheimer’s disease. Alzheimer’s Dement. 2017, 3, 1–9. [Google Scholar] [CrossRef]
- Duraes, F.; Pinto, M.; Sousa, E. Old Drugs as New Treatments for Neurodegenerative Diseases. Pharmaceuticals 2018, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Hernández, T.D.R.; Gore, S.V.; Kreiling, J.A.; Creton, R. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles. Biomed. Pharmacother. 2024, 171, 116096. [Google Scholar]
- Walker, V.M.; Davies, N.M.; Jones, T.; Kehoe, P.G.; Martin, R.M. Can commonly prescribed drugs be repurposed for the prevention or treatment of Alzheimer’s and other neurodegenerative diseases? Protocol for an observational cohort study in the UK Clinical Practice Research Datalink. BMJ Open 2016, 6, e012044. [Google Scholar] [CrossRef] [PubMed]
- Tournissac, M.; Vu, T.-M.; Vrabic, N.; Hozer, C.; Tremblay, C.; Mélançon, K.; Planel, E.; Pifferi, F.; Calon, F. Repurposing beta-3 adrenergic receptor agonists for Alzheimer’s disease: Beneficial effects in a mouse model. Alzheimer’s Res. Ther. 2021, 13, 103. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, S.; Jo, Y.; Kim, Y.; Ye, B.S.; Yu, Y.M. Neuroprotective effect of angiotensin II receptor blockers on the risk of incident Alzheimer’s disease: A nationwide population-based cohort study. Front. Aging Neurosci. 2023, 15, 1137197. [Google Scholar] [CrossRef] [PubMed]
- Giil, L.M.; Kristoffersen, E.K.; Vedeler, C.A.; Aarsland, D.; Nordrehaug, J.E.; Winblad, B.; Cedazo-Minguez, A.; Lund, A.; Reksten, T.R. Autoantibodies Toward the Angiotensin 2 Type 1 Receptor: A Novel Autoantibody in Alzheimer’s Disease. J. Alzheimer’s Dis. 2015, 47, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.E.; Nikolic, K.; Ramsay, R.R. One for All? Hitting Multiple Alzheimer’s Disease Targets with One Drug. Front. Neurosci. 2016, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.K.; Lee, Y.R.; Ong, L.; Gold, M.; Kalali, A.; Sarkar, J. Alzheimer’s Disease: Key Insights from Two Decades of Clinical Trial Failures. J. Alzheimer’s Dis. 2022, 87, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Rhea, E.M.; Reed, M.J.; Erickson, M.A. The penetration of therapeutics across the blood-brain barrier: Classic case studies and clinical implications. Cell Rep. Med. 2024, 5, 101760. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zabihi, M.; Li, Q.; Li, X.; Kim, B.J.; Ubogu, E.E.; Raja, S.N.; Wesselmann, U.; Zhao, C. Drug Permeability: From the Blood-Brain Barrier to the Peripheral Nerve Barriers. Adv. Ther. 2023, 6, 2200150. [Google Scholar] [CrossRef]
- Di Battista, A.M.; Heinsinger, N.M.; Rebeck, G.W. Alzheimer’s Disease Genetic Risk Factor. APOE-epsilon4 Also Affects Normal Brain Function. Curr. Alzheimer Res. 2016, 13, 1200–1207. [Google Scholar] [CrossRef]
- Bengtsson Boström, K.; Hedner, J.; Grote, L.; Melander, O.; Von Wowern, F.; Råstam, L.; Groop, L.; Lindblad, U. Polymorphisms in alpha- and beta-Adrenergic Receptor Genes, Hypertension, and Obstructive Sleep Apnea: The Skaraborg Sleep Study. Int. J. Hypertens. 2010, 2010. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, M.-S.; Karathanasopoulou, A.; Andrianopoulou, A.; Desiniotis, V.; Tzinis, E.; Dimitrakis, E.; Lagiou, M.; Charmandari, E.; Aschner, M.; Tsatsakis, A.M.; et al. Beta 1, Beta 2 and Beta 3 Adrenergic Receptor Gene Polymorphisms in a Southeastern European Population. Front. Genet. 2018, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Garland, E.M.; Biaggioni, I. Genetic polymorphisms of adrenergic receptors. Clin. Auton. Res. 2001, 11, 67–78. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Zhang, Y. Animal models of Alzheimer’s disease: Applications, evaluation, and perspectives. Zool. Res. 2022, 43, 1026–1040. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, P.; Gotz, J. Clinical relevance of animal models in aging-related dementia research. Nat. Aging 2023, 3, 481–493. [Google Scholar] [CrossRef] [PubMed]
Receptor | Action | Modulator | Effects | References |
---|---|---|---|---|
α1-AR | Positive Allosteric Modulator | Cmpd-3 |
| [23] |
Agonists/Activators | Cirazoline, Avenanthramide-C |
| [24,25] | |
Antagonists | Doxazosin, Prazosin, Terazosin |
| [27,28,29,30] | |
α2-AR | Agonists | Brimonidine, Clonidine |
| [38] |
Antagonists | ORM-10921, Dexefaroxan, Mesedin, Idazoxan |
| [32,33,35,36,37] |
Receptor | Action | Modulator | Effects | References |
---|---|---|---|---|
β1-AR | Agonist | Xamoterol, STD-101-D1 |
| [48,49,51] |
β2-AR | Agonist | Isoproterenol (via β2), Clenbuterol, Salbutamol |
| [52,53,54,55,56,57,58,59] |
Non-pharmacological | Leverage β2 AR Activation | Aerobic exercise |
| [61] |
Receptor | Modulator/Action | Effects/Implications | References |
---|---|---|---|
α1-AR | Agonistic autoantibodies (agAABs)–Prolonged Activation |
| [21,39,41] |
Aβ peptides–Activation |
| [43] | |
α1-AR–Upregulation in AD |
| [44] | |
α2-AR | α2-AR–Reduced density in AD brains |
| [45,46] |
β1-AR | β1-AR gene (ADRB1) and G protein beta3 subunit (GNB3) gene–Polymorphisms |
| [69] |
β2-AR | β2-AR Activation–Aβ peptides or other |
| [70,71,77] |
β2-AR–Altered signalling |
| [72] | |
Gly16Arg, Gln27Glu–Polymorphisms |
| [74] | |
Inhibition–ICI 118,551 |
| [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miliotou, A.N.; Kotsoni, A.; Zacharia, L.C. Deciphering the Role of Adrenergic Receptors in Alzheimer’s Disease: Paving the Way for Innovative Therapies. Biomolecules 2025, 15, 128. https://doi.org/10.3390/biom15010128
Miliotou AN, Kotsoni A, Zacharia LC. Deciphering the Role of Adrenergic Receptors in Alzheimer’s Disease: Paving the Way for Innovative Therapies. Biomolecules. 2025; 15(1):128. https://doi.org/10.3390/biom15010128
Chicago/Turabian StyleMiliotou, Androulla N., Andria Kotsoni, and Lefteris C. Zacharia. 2025. "Deciphering the Role of Adrenergic Receptors in Alzheimer’s Disease: Paving the Way for Innovative Therapies" Biomolecules 15, no. 1: 128. https://doi.org/10.3390/biom15010128
APA StyleMiliotou, A. N., Kotsoni, A., & Zacharia, L. C. (2025). Deciphering the Role of Adrenergic Receptors in Alzheimer’s Disease: Paving the Way for Innovative Therapies. Biomolecules, 15(1), 128. https://doi.org/10.3390/biom15010128