Lipid Antigens: Revealing the Hidden Players in Adaptive Immune Responses
Abstract
:1. Introduction
2. Traditional Focus on Protein Antigens
3. Introduction to Lipids in Adaptive Immunity
4. Discovery of Lipid Antigens
5. Role of Lipid Antigens in T Cell Activation
6. Lipids in B Cell Responses
7. Impact of Lipid Antigens on the Immune System and Its Relevance to Disease
8. Lipid-Based Vaccines and Immunotherapies
9. Technological Advances in Lipid Antigen Research
10. Future Directions and Challenges
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McComb, S.; Thiriot, A.; Akache, B.; Krishnan, L.; Stark, F. Introduction to the immune system. In Immunoproteomics: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–24. [Google Scholar]
- Stewart, J.; Weir, D. Innate and acquired immunity. In Medical Microbiology; Greenwood, D., Ed.; Churchill Livingstone: New York, NY, USA, 2012; pp. 109–135. [Google Scholar]
- Yokosuka, T.; Saito, T. The immunological synapse, TCR microclusters, and T cell activation. Immunol. Synap. 2010, 340, 81–107. [Google Scholar]
- Koike, T.; Fujii, K.; Kometani, K.; Butler, N.S.; Funakoshi, K.; Yari, S.; Kikuta, J.; Ishii, M.; Kurosaki, T.; Ise, W. Progressive differentiation toward the long-lived plasma cell compartment in the bone marrow. J. Exp. Med. 2023, 220, e20221717. [Google Scholar] [CrossRef]
- Sharma, S.K. B Cells. In Basics of Hematopoietic Stem Cell Transplant; Springer: Berlin/Heidelberg, Germany, 2023; pp. 87–120. [Google Scholar]
- Rastogi, I.; Jeon, D.; Moseman, J.E.; Muralidhar, A.; Potluri, H.K.; McNeel, D.G. Role of B cells as antigen presenting cells. Front. Immunol. 2022, 13, 954936. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.A.; Hamdani, S.S.; Mehraj, U.; Qayoom, H.; Sheikh, B.; Nisar, S.; Bhat, B. Antigens and immunogens. Basics Fundam Immunol. 2020, 1, 77–103. [Google Scholar]
- Saylor, K.; Gillam, F.; Lohneis, T.; Zhang, C. Designs of antigen structure and composition for improved protein-based vaccine efficacy. Front. Immunol. 2020, 11, 504077. [Google Scholar] [CrossRef]
- Rich, R.R.; Chaplin, D.D. The human immune response. In Clinical Immunology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–17.e1. [Google Scholar]
- Pishesha, N.; Harmand, T.J.; Ploegh, H.L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 2022, 22, 751–764. [Google Scholar] [CrossRef]
- Elsner, R.A.; Shlomchik, M.J. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2020, 53, 1136–1150. [Google Scholar] [CrossRef]
- Ostrand-Rosenberg, S.; Pulaski, B.A.; Gunther, V. Processing and Presentation of Antigen for the Activation of Lymphocytes to Tumor Cells. In Tumor Immunology; CRC Press: Boca Raton, FL, USA, 2002; Volume 48. [Google Scholar]
- Kedzierska, K.; Koutsakos, M. The ABC of major histocompatibility complexes and T cell receptors in health and disease. Viral Immunol. 2020, 33, 160–178. [Google Scholar] [CrossRef]
- Altman, J.D.; Davis, M.M. MHC-peptide tetramers to visualize antigen-specific T cells. Curr. Protoc. Immunol. 2016, 115, 17.13.11–17.13.44. [Google Scholar] [CrossRef] [PubMed]
- Büyükköroğlu, G.; Dora, D.D.; Özdemir, F.; Hızel, C. Techniques for protein analysis. In Omics Technologies and Bio-Engineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 317–351. [Google Scholar]
- Mattioli, I.A.; Hassan, A.; Oliveira Jr, O.N.; Crespilho, F.N. On the challenges for the diagnosis of SARS-CoV-2 based on a review of current methodologies. ACS Sens. 2020, 5, 3655–3677. [Google Scholar] [CrossRef]
- Gallo, E. The rise of big data: Deep sequencing-driven computational methods are transforming the landscape of synthetic antibody design. J. Biomed. Sci. 2024, 31, 29. [Google Scholar] [CrossRef]
- Yazhini, A.; Srinivasan, N.; Sandhya, S. Signatures of conserved and unique molecular features in Afrotheria. Sci. Rep. 2021, 11, 1011. [Google Scholar] [CrossRef]
- Lössl, P.; van de Waterbeemd, M.; Heck, A.J. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J. 2016, 35, 2634–2657. [Google Scholar] [CrossRef]
- Valdes, A.Z. Immunological tolerance and autoimmunity. In Translational Autoimmunity; Elsevier: Amsterdam, The Netherlands, 2022; pp. 325–345. [Google Scholar]
- Zhu, Y.; Deng, J.; Nan, M.-L.; Zhang, J.; Okekunle, A.; Li, J.-Y.; Yu, X.-Q.; Wang, P.-H. The interplay between pattern recognition receptors and autophagy in inflammation. In Autophagy Regulation of Innate Immunity; Springer: Berlin/Heidelberg, Germany, 2019; pp. 79–108. [Google Scholar]
- Tennant, I.; Pound, J.; Marr, L.; Willems, J.; Petrova, S.; Ford, C.; Paterson, M.; Devitt, A.; Gregory, C. Innate recognition of apoptotic cells: Novel apoptotic cell-associated molecular patterns revealed by crossreactivity of anti-LPS antibodies. Cell Death Differ. 2013, 20, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Storni, T.; Kündig, T.M.; Senti, G.; Johansen, P. Immunity in response to particulate antigen-delivery systems. Adv. Drug Deliv. Rev. 2005, 57, 333–355. [Google Scholar] [CrossRef]
- Patrussi, L.; Mariggiò, S.; Corda, D.; Baldari, C.T. The glycerophosphoinositols: From lipid metabolites to modulators of T-cell signaling. Front. Immunol. 2013, 4, 213. [Google Scholar] [CrossRef]
- De Libero, G.; Mori, L. How the immune system detects lipid antigens. Prog. Lipid Res. 2010, 49, 120–127. [Google Scholar] [CrossRef]
- Di Gioia, M.; Zanoni, I. Toll-like receptor co-receptors as master regulators of the immune response. Mol. Immunol. 2015, 63, 143–152. [Google Scholar] [CrossRef]
- Pone, E.J.; Zhang, J.; Mai, T.; White, C.A.; Li, G.; Sakakura, J.K.; Patel, P.J.; Al-Qahtani, A.; Zan, H.; Xu, Z. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway. Nat. Commun. 2012, 3, 767. [Google Scholar] [CrossRef]
- Dowds, C.M.; Kornell, S.-C.; Blumberg, R.S.; Zeissig, S. Lipid antigens in immunity. Biol. Chem. 2014, 395, 61–81. [Google Scholar] [CrossRef] [PubMed]
- Jappe, U.; Schwager, C.; Schromm, A.B.; González Roldán, N.; Stein, K.; Heine, H.; Duda, K.A. Lipophilic allergens, different modes of allergen-lipid interaction and their impact on asthma and allergy. Front. Immunol. 2019, 10, 122. [Google Scholar] [CrossRef]
- Cohen, N.R.; Garg, S.; Brenner, M.B. Antigen presentation by CD1: Lipids, T cells, and NKT cells in microbial immunity. Adv. Immunol. 2009, 102, 1–94. [Google Scholar]
- Huang, S. Targeting innate-like T cells in tuberculosis. Front. Immunol. 2016, 7, 234371. [Google Scholar] [CrossRef]
- Cotton, R.N.; Shahine, A.; Rossjohn, J.; Moody, D.B. Lipids hide or step aside for CD1-autoreactive T cell receptors. Curr. Opin. Immunol. 2018, 52, 93–99. [Google Scholar] [CrossRef] [PubMed]
- De Libero, G.; Mori, L. Recognition of lipid antigens by T cells. Nat. Rev. Immunol. 2005, 5, 485–496. [Google Scholar] [CrossRef]
- Mori, L.; Lepore, M.; De Libero, G. The immunology of CD1-and MR1-restricted T cells. Annu. Rev. Immunol. 2016, 34, 479–510. [Google Scholar] [CrossRef]
- Leshem, Y.Y. Plant Membranes: A Biophysical Approach to Structure, Development and Senescence; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Salio, M.; Cerundolo, V. Regulation of lipid specific and vitamin specific non-MHC restricted T cells by antigen presenting cells and their therapeutic potentials. Front. Immunol. 2015, 6, 150929. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Morita, C.T.; Brenner, M.B. CDlb restricts the response of human CD4− 8− T lymphocytes to a microbial antigen. Nature 1992, 360, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Beckman, E.M.; Porcelli, S.A.; Morita, C.T.; Behar, S.M.; Furlong, S.T.; Brenner, M.B. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 1994, 372, 691–694. [Google Scholar] [CrossRef]
- Zeng, Z.-H.; Castano, A.; Segelke, B.; Stura, E.; Peterson, P.; Wilson, I. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 1997, 277, 339–345. [Google Scholar] [CrossRef]
- Ly, D.; Moody, D.B. The CD1 size problem: Lipid antigens, ligands, and scaffolds. Cell. Mol. Life Sci. 2014, 71, 3069–3079. [Google Scholar] [CrossRef]
- De Libero, G.; Mori, L. The T-cell response to lipid antigens of Mycobacterium tuberculosis. Front. Immunol. 2014, 5, 96915. [Google Scholar] [CrossRef]
- Salio, M.; Silk, J.D.; Yvonne Jones, E.; Cerundolo, V. Biology of CD1-and MR1-restricted T cells. Annu. Rev. Immunol. 2014, 32, 323–366. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.; Fox, L.; Tian, R.; Bardet, W.; Skaley, M.; Mojsilovic, D.; Gumperz, J.; Hildebrand, W. Determination of cellular lipids bound to human CD1d molecules. PLoS ONE 2009, 4, e5325. [Google Scholar] [CrossRef]
- Salio, M.; Silk, J.D.; Cerundolo, V. Recent advances in processing and presentation of CD1 bound lipid antigens. Curr. Opin. Immunol. 2010, 22, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Chancellor, A.; Gadola, S.D.; Mansour, S. The versatility of the CD 1 lipid antigen presentation pathway. Immunology 2018, 154, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.J. Lipid presentation by human CD1 molecules and the diverse T cell populations that respond to them. Curr. Opin. Immunol. 2014, 26, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Horst, A.K.; Kumashie, K.G.; Neumann, K.; Diehl, L.; Tiegs, G. Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. Cell. Mol. Immunol. 2021, 18, 92–111. [Google Scholar] [CrossRef] [PubMed]
- Cutillo, G.; Saariaho, A.-H.; Meri, S. Physiology of gangliosides and the role of antiganglioside antibodies in human diseases. Cell. Mol. Immunol. 2020, 17, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Zhang, M.; Jiang, D.; Su, Q.; Shi, J. The role of inflammation in autoimmune disease: A therapeutic target. Front. Immunol. 2023, 14, 1267091. [Google Scholar] [CrossRef]
- Kerstholt, M.; Netea, M.G.; Joosten, L.A. Borrelia burgdorferi hijacks cellular metabolism of immune cells: Consequences for host defense. Ticks Tick-Borne Dis. 2020, 11, 101386. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, M.; Ghasemian, A.; Eslami, M.; Nojoomi, F.; Rajabi-Vardanjani, H. Risk factors and control strategies for silicotuberculosis as an occupational disease. New Microbes New Infect. 2019, 27, 75–77. [Google Scholar] [CrossRef]
- Bagchi, S.; Genardi, S.; Wang, C.R. Linking CD1-Restricted T Cells With Autoimmunity and Dyslipidemia: Lipid Levels Matter. Front. Immunol. 2018, 9, 1616. [Google Scholar] [CrossRef] [PubMed]
- Teyton, L. Role of lipid transfer proteins in loading CD1 antigen-presenting molecules. J. Lipid Res. 2018, 59, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Cho, S.; Kim, J.H. CD1-mediated immune responses in mucosal tissues: Molecular mechanisms underlying lipid antigen presentation system. Exp. Mol. Med. 2023, 55, 1858–1871. [Google Scholar] [CrossRef]
- Collmann, A. Assessing the Response of T Cells to “Mycobacterium Tuberculosis” Lipids; University of Basel: Basel, Switzerland, 2008. [Google Scholar]
- Blander, J.M. Regulation of the cell biology of antigen cross-presentation. Annu. Rev. Immunol. 2018, 36, 717–753. [Google Scholar] [CrossRef] [PubMed]
- Sugita, M.; Barral, D.; Brenner, M. Pathways of CD1 and lipid antigen delivery, trafficking, processing, loading, and presentation. In T Cell Activation by CD1 and Lipid Antigens; Springer: Berlin/Heidelberg, Germany, 2007; pp. 143–164. [Google Scholar]
- Vartabedian, V.F.; Savage, P.B.; Teyton, L. The processing and presentation of lipids and glycolipids to the immune system. Immunol. Rev. 2016, 272, 109–119. [Google Scholar] [CrossRef]
- Moody, D.B. The surprising diversity of lipid antigens for CD1-restricted T cells. Adv. Immunol. 2006, 89, 87–139. [Google Scholar]
- Schiefner, A.; Wilson, I.A. Presentation of lipid antigens by CD1 glycoproteins. Curr. Pharm. Des. 2009, 15, 3311–3317. [Google Scholar] [CrossRef]
- Siddiqui, S.; Visvabharathy, L.; Wang, C.R. Role of Group 1 CD1-Restricted T Cells in Infectious Disease. Front. Immunol. 2015, 6, 337. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.S.; Macedo, M.F. CD1-restricted T cells at the crossroad of innate and adaptive immunity. J. Immunol. Res. 2016, 2016, 2876275. [Google Scholar] [CrossRef] [PubMed]
- Brigl, M.; Brenner, M.B. CD1: Antigen presentation and T cell function. Annu. Rev. Immunol. 2004, 22, 817–890. [Google Scholar] [CrossRef]
- Rabe, S.Z.T.; Sahebari, M.; Mahmoudi, Z.; Hosseinzadeh, H.; Haghmorad, D.; Tabasi, N.; Rastin, M.; Khazaee, M.; Mahmoudi, M. Inhibitory effect of Crocus sativus L. ethanol extract on adjuvant-induced arthritis. Food Agr. Immunol. 2015, 26, 170–180. [Google Scholar] [CrossRef]
- Rawlings, D.J.; Schwartz, M.A.; Jackson, S.W.; Meyer-Bahlburg, A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat. Rev. Immunol. 2012, 12, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Tolar, P.; Won Sohn, H.; Pierce, S.K. Viewing the antigen-induced initiation of B-cell activation in living cells. Immunol. Rev. 2008, 221, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Cyster, J.G.; Allen, C.D. B cell responses: Cell interaction dynamics and decisions. Cell 2019, 177, 524–540. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; DeFranco, A.L. Lipid rafts and B cell signaling. In Seminars in Cell & Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Ji, X.; Wu, L.; Marion, T.; Luo, Y. Lipid metabolism in regulation of B cell development and autoimmunity. Cytokine Growth Factor Rev. 2023, 73, 40–51. [Google Scholar] [CrossRef]
- Allan, L.L.; Stax, A.M.; Zheng, D.J.; Chung, B.K.; Kozak, F.K.; Tan, R.; van den Elzen, P. CD1d and CD1c expression in human B cells is regulated by activation and retinoic acid receptor signaling. J. Immunol. 2011, 186, 5261–5272. [Google Scholar] [CrossRef]
- Doyon-Laliberté, K.; Aranguren, M.; Poudrier, J.; Roger, M. Marginal zone B-cell populations and their regulatory potential in the context of HIV and other chronic inflammatory conditions. Int. J. Mol. Sci. 2022, 23, 3372. [Google Scholar] [CrossRef] [PubMed]
- Batista, F.D.; Harwood, N.E. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 2009, 9, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Pone, E.J.; Zan, H.; Zhang, J.; Al-Qahtani, A.; Xu, Z.; Casali, P. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: Relevance to microbial antibody responses. Crit. Rev. Immunol. 2010, 30, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Duffney, P.F.; Falsetta, M.L.; Rackow, A.R.; Thatcher, T.H.; Phipps, R.P.; Sime, P.J. Key roles for lipid mediators in the adaptive immune response. J. Clin. Investig. 2018, 128, 2724–2731. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Huang, C.-X.; Xiao, X.; Chen, D.-P.; Shan, H.; He, H.; Kuang, D.-M. B cell heterogeneity, plasticity, and functional diversity in cancer microenvironments. Oncogene 2021, 40, 4737–4745. [Google Scholar] [CrossRef]
- Kim, D.; Chung, H.; Lee, J.E.; Kim, J.; Hwang, J.; Chung, Y. Immunologic Aspects of Dyslipidemia: A Critical Regulator of Adaptive Immunity and Immune Disorders. J. Lipid Atheroscler. 2021, 10, 184–201. [Google Scholar] [CrossRef] [PubMed]
- Molendijk, J.; Robinson, H.; Djuric, Z.; Hill, M. Lipid mechanisms in hallmarks of cancer. Mol. Omics 2020, 16, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Daniotti, J.L.; Lardone, R.D.; Vilcaes, A.A. Dysregulated expression of glycolipids in tumor cells: From negative modulator of anti-tumor immunity to promising targets for developing therapeutic agents. Front. Oncol. 2016, 5, 300. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Zhang, W.; Chen, X.; Guo, H.; Wu, H.; Xu, Y.; He, Q.; Ding, L.; Yang, B. The impact of lipids on the cancer-immunity cycle and strategies for modulating lipid metabolism to improve cancer immunotherapy. Acta Pharm. Sin. B 2023, 13, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Yang, G.-Y. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog. Lipid Res. 2023, 91, 101241. [Google Scholar] [CrossRef] [PubMed]
- Hakomori, S. Sphingolipid-dependent protein kinases. Adv. Pharmacol. 1996, 36, 155–171. [Google Scholar] [CrossRef]
- Livingston, P.O. Approaches to augmenting the immunogenicity of melanoma gangliosides: From whole melanoma cells to ganglioside-KLH conjugate vaccines. Immunol. Rev. 1995, 145, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.J. Diverse antigen presentation by the Group 1 CD1 molecule, CD1c. Mol. Immunol. 2013, 55, 182–185. [Google Scholar] [CrossRef]
- Montamat-Sicotte, D.J.; Millington, K.A.; Willcox, C.R.; Hingley-Wilson, S.; Hackforth, S.; Innes, J.; Kon, O.M.; Lammas, D.A.; Minnikin, D.E.; Besra, G.S.; et al. A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J. Clin. Invest. 2011, 121, 2493–2503. [Google Scholar] [CrossRef]
- Moody, D.B.; Ulrichs, T.; Muhlecker, W.; Young, D.C.; Gurcha, S.S.; Grant, E.; Rosat, J.P.; Brenner, M.B.; Costello, C.E.; Besra, G.S.; et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 2000, 404, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Chancellor, A.; Tocheva, A.S.; Cave-Ayland, C.; Tezera, L.; White, A.; Al Dulayymi, J.R.; Bridgeman, J.S.; Tews, I.; Wilson, S.; Lissin, N.M.; et al. CD1b-restricted GEM T cell responses are modulated by Mycobacterium tuberculosis mycolic acid meromycolate chains. Proc. Natl. Acad. Sci. USA 2017, 114, E10956–E10964. [Google Scholar] [CrossRef]
- Van Rhijn, I.; Iwany, S.K.; Fodran, P.; Cheng, T.Y.; Gapin, L.; Minnaard, A.J.; Moody, D.B. CD1b-mycolic acid tetramers demonstrate T-cell fine specificity for mycobacterial lipid tails. Eur. J. Immunol. 2017, 47, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- De Libero, G.; Singhal, A.; Lepore, M.; Mori, L. Nonclassical T cells and their antigens in tuberculosis. Cold Spring Harb. Perspect. Med. 2014, 4, a018473. [Google Scholar] [CrossRef] [PubMed]
- Wucherpfennig, K.W. Mechanisms for the induction of autoimmunity by infectious agents. J. Clin. Invest. 2001, 108, 1097–1104. [Google Scholar] [CrossRef]
- Hanada, K. Sphingolipids in infectious diseases. Jpn J. Infect. Dis. 2005, 58, 131–148. [Google Scholar] [CrossRef]
- Guevara, M.L.; Persano, S.; Persano, F. Lipid-based vectors for therapeutic mRNA-based anti-cancer vaccines. Curr. Pharm. Des. 2019, 25, 1443–1454. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, Y.; Zhang, J.; Kuo, J.C.-T.; Zhang, Z.; Xie, H.; Zhu, J.; Liu, T. Modification of lipid-based nanoparticles: An efficient delivery system for nucleic acid-based immunotherapy. Molecules 2022, 27, 1943. [Google Scholar] [CrossRef]
- van den Berg, A.I.; Yun, C.-O.; Schiffelers, R.M.; Hennink, W.E. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J. Control. Release 2021, 331, 121–141. [Google Scholar] [CrossRef]
- Ickenstein, L.M.; Garidel, P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin. Drug Deliv. 2019, 16, 1205–1226. [Google Scholar] [CrossRef] [PubMed]
- Bedard, M.; Salio, M.; Cerundolo, V. Harnessing the power of invariant natural killer T cells in cancer immunotherapy. Front. Immunol. 2017, 8, 308005. [Google Scholar] [CrossRef]
- Nordly, P.; Madsen, H.B.; Nielsen, H.M.; Foged, C. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opin. Drug Deliv. 2009, 6, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Carreño, L.J.; Saavedra-Ávila, N.A.; Porcelli, S.A. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clin. Transl. Immunol. 2016, 5, e69. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.S. Recent advancement and applications of mass spectrometry imaging. ChemRxiv 2024. [Google Scholar] [CrossRef]
- Tan, Y. Structural and Functional Characterization of the ESX-3 Secretion System in Mycobacteria. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2023. [Google Scholar]
- Layre, E.; Sweet, L.; Hong, S.; Madigan, C.A.; Desjardins, D.; Young, D.C.; Cheng, T.-Y.; Annand, J.W.; Kim, K.; Shamputa, I.C. A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chem. Biol. 2011, 18, 1537–1549. [Google Scholar] [CrossRef]
- Huang, S.; Shahine, A.; Cheng, T.-Y.; Chen, Y.-L.; Ng, S.W.; Balaji, G.R.; Farquhar, R.; Gras, S.; Hardman, C.S.; Altman, J.D. CD1 lipidomes reveal lipid-binding motifs and size-based antigen-display mechanisms. Cell 2023, 186, 4583–4596.e4513. [Google Scholar] [CrossRef]
- Duong, L.K.; Corbali, H.I.; Riad, T.S.; Ganjoo, S.; Nanez, S.; Voss, T.; Barsoumian, H.B.; Welsh, J.; Cortez, M.A. Lipid metabolism in tumor immunology and immunotherapy. Front. Oncol. 2023, 13, 1187279. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, K.; Ebright, B.; Chow, K.; Dave, P.; Mead, A.; Poblete, R.; Louie, S.G.; Asante, I. Lipidomics in understanding pathophysiology and pharmacologic effects in inflammatory diseases: Considerations for drug development. Metabolites 2022, 12, 333. [Google Scholar] [CrossRef]
- Patel, V.; Shah, M. Artificial intelligence and machine learning in drug discovery and development. Intell. Med. 2022, 2, 134–140. [Google Scholar] [CrossRef]
- Iwabuchi, K.; Van Kaer, L. Role of CD1-and MR1-restricted T cells in immunity and disease. Front. Immunol. 2019, 10, 479496. [Google Scholar] [CrossRef] [PubMed]
- Leadbetter, E.A.; Brigl, M.; Illarionov, P.; Cohen, N.; Luteran, M.C.; Pillai, S.; Besra, G.S.; Brenner, M.B. NK T cells provide lipid antigen-specific cognate help for B cells. Proc. Natl. Acad. Sci. USA 2008, 105, 8339–8344. [Google Scholar] [CrossRef] [PubMed]
- Moody, D.B.; Porcelli, S.A. Intracellular pathways of CD1 antigen presentation. Nat. Rev. Immunol. 2003, 3, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Silk, J.D.; Salio, M.; Brown, J.; Jones, E.Y.; Cerundolo, V. Structural and functional aspects of lipid binding by CD1 molecules. Annu. Rev. Cell Dev. Biol. 2008, 24, 369–395. [Google Scholar] [CrossRef] [PubMed]
- Gullick, J. Investigating Lipid-Responsive T Cells in Tuberculosis; Paving the Way for New Lipid-Based Vaccines. Ph.D. Thesis, University of Southampton, Southampton, UK, 2021. [Google Scholar]
- Bediako, T.Y. The Role of Non-Classical MHC Class I in the Immune Response to Intracellular Bacterial Infection. Ph.D. Thesis, Northwestern University, Evanston, IL, USA, 2012. [Google Scholar]
- Weiner, J., 3rd; Kaufmann, S.H. Recent advances towards tuberculosis control: Vaccines and biomarkers. J. Intern. Med. 2014, 275, 467–480. [Google Scholar] [CrossRef]
- Paterson, N.M.; Al-Zubieri, H.; Barber, M.F. Diversification of CD1 molecules shapes lipid antigen selectivity. Mol. Biol. Evol. 2021, 38, 2273–2284. [Google Scholar] [CrossRef]
- Franco, A.R.; Peri, F. Developing new anti-tuberculosis vaccines: Focus on adjuvants. Cells 2021, 10, 78. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eskandari, T.; Eivazzadeh, Y.; Khaleghinia, F.; Kashi, F.; Oksenych, V.; Haghmorad, D. Lipid Antigens: Revealing the Hidden Players in Adaptive Immune Responses. Biomolecules 2025, 15, 84. https://doi.org/10.3390/biom15010084
Eskandari T, Eivazzadeh Y, Khaleghinia F, Kashi F, Oksenych V, Haghmorad D. Lipid Antigens: Revealing the Hidden Players in Adaptive Immune Responses. Biomolecules. 2025; 15(1):84. https://doi.org/10.3390/biom15010084
Chicago/Turabian StyleEskandari, Tamana, Yasamin Eivazzadeh, Fatemeh Khaleghinia, Fatemeh Kashi, Valentyn Oksenych, and Dariush Haghmorad. 2025. "Lipid Antigens: Revealing the Hidden Players in Adaptive Immune Responses" Biomolecules 15, no. 1: 84. https://doi.org/10.3390/biom15010084
APA StyleEskandari, T., Eivazzadeh, Y., Khaleghinia, F., Kashi, F., Oksenych, V., & Haghmorad, D. (2025). Lipid Antigens: Revealing the Hidden Players in Adaptive Immune Responses. Biomolecules, 15(1), 84. https://doi.org/10.3390/biom15010084