Preclinical Insights into the Role of Kir4.1 in Chronic Pain and Depression: Mechanisms and Therapeutic Potential
Abstract
:1. Introduction
2. Molecular Structure and Channel Properties of Kir4.1
3. The Role of Kir4.1 in the Nervous System
3.1. The Expression of Kir4.1 in the Nervous System
3.2. The Functions of Kir4.1 in the Nervous System
3.2.1. Kir4.1 in Astrocytes
3.2.2. Kir4.1 in Oligodendrocytes and Related Cells
3.2.3. Kir4.1 in SGCs
4. Kir4.1 in Pain and Pain-Related Mental Health Disorders
4.1. Correlation and Potential Mechanisms Between Pain and Mental Health Disorders
4.1.1. The Comorbidity of Pain and Depression
4.1.2. The Comorbidity of Pain and Anxiety
4.2. Kir4.1 and Pain
4.3. Kir4.1 and Depression
4.4. Kir4.1 and Anxiety
4.5. Kir4.1 and Aversion
5. Treatment Strategies for Pain and Mental Health Disorders or Their Comorbidity Targeting Kir4.1
5.1. The Drugs Targeting Kir4.1
Drugs | Effects on Kir4.1 | IC50 Value (Patch Configuration) | Binding Sites | Voltage Dependency | Reference |
---|---|---|---|---|---|
TCAs | |||||
Nortriptyline | Block | 38 μM | E158, T128 | Yes | [153] |
Desipramine | (whole-cell) | ||||
Imipramine | |||||
SSRIs | |||||
Sertraline | Block | 7.2 μM | E158, T128 | No | [154] |
Fluoxetine | 15.2 μM | ||||
(whole-cell) | |||||
VU0134992 | Block | 0.97 μM | E158, I159 | Yes | [156] |
(whole-cell) | |||||
Lys05 | Block | 0.22 µM | T128, G158, | No | [149] |
(whole-cell) | I159 | ||||
Antimalarial drugs | |||||
Quinacrine | Block | 1.8 μM | E158, T128 | Yes | [160] |
(inside-out) | |||||
Chloroquine | ca. 0.5 μM | [161] | |||
(inside-out) | |||||
ca. 7 μM | |||||
(whole-cell) | |||||
Pentamidine | Block | 0.097 μM | E158, T127, | Yes | [157] |
(inside-out) | T128 | ||||
Aminoglycosides | |||||
Gentamycin | Block | 6.2 μM | E158, T128 | Yes | [162] |
Neomycin | 63.8 μM | ||||
(inside-out) | |||||
Ketamine | Downregulate | / | / | / | [135] |
Dexamethasone | Upregulate | / | / | / | [158] |
Antiepileptic drugs | |||||
Phenytoin | Upregulate | / | / | / | [159] |
Sodium valproate | |||||
Phenobarbital | |||||
Azacitidine | Upregulate | / | / | / | [38] |
Luteolin | Upregulate | / | / | / | [76] |
5.2. Treatment Strategies for Comorbid Chronic Pain and Mental Disorders Targeting Kir4.1
5.3. Future Research Directions Based on Kir4.1
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDD | Major depressive disorder |
ACC | Anterior cingulate cortex |
mPFC | Medial prefrontal cortex |
DRN | Dorsal raphe nucleus |
NAc | Nucleus accumbens |
CeA | Central amygdala |
VS | Ventral striatum |
SGCs | Satellite glial cells |
CNS | Central nervous system |
Kir | Inwardly rectifying potassium |
KATP | Adenosine triphosphate-sensitive potassium |
DRG | Dorsal root ganglion |
FST | Forced swim test |
TST | Tail suspension test |
Kir4.1 | Inwardly rectifying potassium channel 4.1 |
BDNF | Brain-derived neurotrophic factor |
TM | Transmembrane |
HIP | Hippocampus |
OLs | Oligodendrocytes |
OPCs | Oligodendrocyte precursor cells |
[K+]o | Extracellular K+ concentration |
EAATs | Excitatory amino acid transporters |
AQP4 | Aquaporin-4 |
Glu | Glutamate |
Gln | Glutamine |
AP | Action potential |
VGPC | Voltage-gated potassium channel |
KAR | Kainic acid receptor |
NMADR | N-methyl-D-aspartate receptor |
AMPAR | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor |
mGluR | Metabotropic glutamate receptor |
GDNF | Glial cell line-derived neurotrophic factor |
LPS | Lipopolysaccharide |
RACK1 | Receptor for activated C kinase 1 |
cKO | Conditional knockout |
CPG | Central pattern generator |
LHb | Lateral habenula |
RTN | Retrotrapezoid nucleus |
MBP | Myelin basic protein |
tMCAO | Transient middle cerebral artery occlusion |
TG | Trigeminal ganglion |
LC | Locus coeruleus |
BNST | Bed nucleus of the stria terminalis |
WKY | Wistar-Kyoto |
TMJ | Temporomandibular joint |
TCAs | Tricyclic antidepressants |
CCI-ION | Chronic constriction injury of the infraorbital nerve |
CFA | Complete Freund’s adjuvant |
LH | Lateral hypothalamus |
IANX | Inferior alveolar nerve transection |
GPR37L1 | G protein-coupled receptor 37-like 1 |
MaR1 | Pro-resolving lipid mediator maresin 1 |
MeCP2 | Methyl-CpG-binding protein 2 |
PWSI | Post-weaning social isolation |
dBNST | Dorsal bed nucleus of the stria terminalis |
NSF | Novelty-suppressed feeding |
CORT | Corticosterone-induced depression |
SSRIs | Selective serotonin reuptake inhibitors |
IC50 | Half-maximal inhibitory concentration |
MBT | Marble-burying test |
IDDS | Implantable Intrathecal Drug Delivery System |
AAV | Adeno-associated virus |
References
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, T.; Irandoost, E.; Sheikhbahaei, F. Stress, pain, anxiety, and depression in endometriosis-Targeting glial activation and inflammation. Int. Immunopharmacol. 2024, 132, 111942. [Google Scholar]
- Zhuo, M. Neural Mechanisms Underlying Anxiety-Chronic Pain Interactions. Trends Neurosci. 2016, 39, 136–145. [Google Scholar] [CrossRef]
- Xu, X.; Chen, R.; Yu, Y.; Yang, J.; Lin, C.; Liu, R. Pulsed radiofrequency on DRG inhibits hippocampal neuroinflammation by regulating spinal GRK2/p38 expression and enhances spinal autophagy to reduce pain and depression in male rats with spared nerve injury. Int. Immunopharmacol. 2024, 127, 111419. [Google Scholar] [CrossRef] [PubMed]
- Hooten, W.M. Chronic Pain and Mental Health Disorders: Shared Neural Mechanisms, Epidemiology, and Treatment. Mayo Clin. Proc. 2016, 91, 955–970. [Google Scholar] [CrossRef] [PubMed]
- Radat, F.; Margot-Duclot, A.; Attal, N. Psychiatric co-morbidities in patients with chronic peripheral neuropathic pain: A multicentre cohort study. Eur. J. Pain 2013, 17, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Wei, A.; Xu, H.; Gu, Y.; Jiang, Y.; Dong, N.; Zheng, C.; Wang, Q.; Gao, M.; Sun, S.; et al. An ACC-VTA-ACC positive-feedback loop mediates the persistence of neuropathic pain and emotional consequences. Nat. Neurosci. 2024, 27, 272–285. [Google Scholar] [CrossRef]
- Massaly, N.; Copits, B.A.; Wilson-Poe, A.R.; Hipólito, L.; Markovic, T.; Yoon, H.J.; Liu, S.; Walicki, M.C.; Bhatti, D.L.; Sirohi, S.; et al. Pain-Induced Negative Affect Is Mediated via Recruitment of The Nucleus Accumbens Kappa Opioid System. Neuron 2019, 102, 564–573.e6. [Google Scholar] [CrossRef]
- Mokhtari, T.; Lu, M.; El-Kenawy, A.E. Potential anxiolytic and antidepressant-like effects of luteolin in a chronic constriction injury rat model of neuropathic pain: Role of oxidative stress, neurotrophins, and inflammatory factors. Int. Immunopharmacol. 2023, 122, 110520. [Google Scholar] [CrossRef]
- Ji, R.R.; Berta, T.; Nedergaard, M. Glia and pain: Is chronic pain a gliopathy? Pain 2013, 154, S10–S28. [Google Scholar]
- Wu, Q.; Zheng, Y.; Yu, J.; Ying, X.; Gu, X.; Tan, Q.; Tu, W.; Lou, X.; Yang, G.; Li, M.; et al. Electroacupuncture alleviates neuropathic pain caused by SNL by promoting M2 microglia polarization through PD-L1. Int. Immunopharmacol. 2023, 123, 110764. [Google Scholar] [CrossRef] [PubMed]
- Vicario, N.; Turnaturi, R.; Spitale, F.M.; Torrisi, F.; Zappalà, A.; Gulino, R.; Pasquinucci, L.; Chiechio, S.; Parenti, C.; Parenti, R. Intercellular communication and ion channels in neuropathic pain chronicization. Inflamm. Res. 2020, 69, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Quan, W.; Xu, C.S.; Li, X.C.; Yang, C.; Lan, T.; Wang, M.Y.; Yu, D.H.; Tang, F.; Wang, Z.F.; Li, Z.Q. Telmisartan inhibits microglia-induced neurotoxic A1 astrocyte conversion via PPARγ-mediated NF-κB/p65 degradation. Int. Immunopharmacol. 2023, 123, 110761. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Luo, L.; Sun, B.; Sun, D. Roles of glial ion transporters in brain diseases. Glia 2020, 68, 472–494. [Google Scholar] [CrossRef]
- Hanani, M.; Spray, D.C. Emerging importance of satellite glia in nervous system function and dysfunction. Nat. Rev. Neurosci. 2020, 21, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Vit, J.-P.; Ohara, P.T.; Bhargava, A.; Kelley, K.; Jasmin, L. Silencing the Kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury. J. Neurosci. 2008, 28, 4161–4171. [Google Scholar] [CrossRef]
- Mika, J.; Zychowska, M.; Popiolek-Barczyk, K.; Rojewska, E.; Przewlocka, B. Importance of glial activation in neuropathic pain. Eur. J. Pharmacol. 2013, 716, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Hibino, H.; Inanobe, A.; Furutani, K.; Murakami, S.; Findlay, I.; Kurachi, Y. Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol. Rev. 2010, 90, 291–366. [Google Scholar] [CrossRef]
- Butt, A.M.; Kalsi, A. Inwardly rectifying potassium channels (kir) in central nervous system glia: A special role for Kir4.1 in glial functions. J. Cell. Mol. Med. 2006, 10, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Blankenship, M.L.; Baccei, M.L. Inward-rectifying potassium (kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life. J. Neurosci. 2013, 33, 3352–3362. [Google Scholar] [CrossRef]
- Zoga, V.; Kawano, T.; Liang, M.Y.; Bienengraeber, M.; Weihrauch, D.; McCallum, B.; Gemes, G.; Hogan, Q.; Sarantopoulos, C. KATP channel subunits in rat dorsal root ganglia: Alterations by painful axotomy. Mol. Pain 2010, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Zhang, D.; Yang, S.; Wang, Y.; Xu, L.; Wu, J.; Ren, J.; Yao, W.; Fan, L.; Zhang, C.; et al. Role of ATP-sensitive potassium channels in modulating nociception in rat model of bone cancer pain. Brain Res. 2014, 1554, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, J.; Gao, Y.; Cao, S.; Shen, S. ATP-sensitive potassium channels alleviate postoperative pain through JNK-dependent MCP-1 expression in spinal cord. Int. J. Mol. Med. 2015, 35, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Fujita, M.; Ono, H.; Hongo, Y.; Kanbara, T.; Ogawa, K.; Morioka, Y.; Nishiyori, A.; Shibasaki, M.; Mori, T.; et al. G protein-gated inwardly rectifying potassium (KIR3) channels play a primary role in the antinociceptive effect of oxycodone, but not morphine, at supraspinal sites. Br. J. Pharmacol. 2014, 171, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Kong, H.; Ye, X.; Ding, J.; Hu, G. ATP-sensitive potassium channels: Uncovering novel targets for treating depression. Brain Struct. Funct. 2016, 221, 3111–3122. [Google Scholar] [CrossRef]
- Kobayashi, T.; Washiyama, K.; Ikeda, K. Inhibition of G protein-activated inwardly rectifying K+ channels by the antidepressant paroxetine. J. Pharmacol. Sci. 2006, 102, 278–287. [Google Scholar] [CrossRef]
- Kim, S.; Shou, J.; Abera, S.; Ziff, E.B. Sucrose withdrawal induces depression and anxiety-like behavior by Kir2.1 upregulation in the nucleus accumbens. Neuropharmacology 2018, 130, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Nwaobi, S.E.; Cuddapah, V.A.; Patterson, K.C.; Randolph, A.C.; Olsen, M.L. The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol. 2016, 132, 1–21. [Google Scholar] [CrossRef]
- Sicca, F.; Imbrici, P.; D’Adamo, M.C.; Moro, F.; Bonatti, F.; Brovedani, P.; Grottesi, A.; Guerrini, R.; Masi, G.; Santorelli, F.M.; et al. Autism with seizures and intellectual disability: Possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1. Neurobiol. Dis. 2011, 43, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Kinboshi, M.; Mukai, T.; Nagao, Y.; Matsuba, Y.; Tsuji, Y.; Tanaka, S.; Tokudome, K.; Shimizu, S.; Ito, H.; Ikeda, A.; et al. Inhibition of inwardly rectifying potassium (kir) 4.1 channels facilitates brain-derived neurotrophic factor (BDNF) expression in astrocytes. Front. Mol. Neurosci. 2017, 10, 408. [Google Scholar] [CrossRef] [PubMed]
- Jeremic, D.; Sanchez-Rodriguez, I.; Jimenez-Diaz, L.; Navarro-Lopez, J.D. Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol. Ther. 2021, 223, 107808. [Google Scholar] [PubMed]
- McClenahan, S.J.; Kent, C.N.; Kharade, S.V.; Isaeva, E.; Williams, J.C.; Han, C.; Terker, A.; Gresham, R., 3rd; Lazarenko, R.M.; Days, E.L.; et al. VU6036720: The First Potent and Selective In Vitro Inhibitor of Heteromeric Kir4.1/5.1 Inward Rectifier Potassium Channels. Mol. Pharmacol. 2022, 101, 357–370. [Google Scholar] [CrossRef]
- Reichold, M.; Zdebik, A.A.; Lieberer, E.; Rapedius, M.; Schmidt, K.; Bandulik, S.; Sterner, C.; Tegtmeier, I.; Penton, D.; Baukrowitz, T.; et al. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc. Natl. Acad. Sci. USA 2010, 107, 14490–14495. [Google Scholar] [CrossRef] [PubMed]
- Méndez-González, M.P.; Kucheryavykh, Y.V.; Zayas-Santiago, A.; Vélez-Carrasco, W.; Maldonado-Martínez, G.; Cubano, L.A.; Nichols, C.G.; Skatchkov, S.N.; Eaton, M.J. Novel KCNJ10 gene variations compromise function of inwardly rectifying potassium channel 4.1. J. Biol. Chem. 2016, 291, 7716–7726. [Google Scholar] [CrossRef]
- Ohno, Y.; Kunisawa, N.; Shimizu, S. Emerging roles of astrocyte Kir4.1 channels in the pathogenesis and treatment of brain diseases. Int. J. Mol. Sci. 2021, 22, 10236. [Google Scholar] [CrossRef]
- Furutani, K.; Ohno, Y.; Inanobe, A.; Hibino, H.; Kurachi, Y. Mutational and in silico analyses for antidepressant block of astroglial inward-rectifier Kir4.1 channel. Mol. Pharmacol. 2009, 75, 1287–1295. [Google Scholar] [CrossRef]
- Poopalasundaram, S.; Knott, C.; Shamotienko, O.G.; Foran, P.G.; Dolly, J.O.; Ghiani, C.A.; Gallo, V.; Wilkin, G.P. Glial heterogeneity in expression of the inwardly rectifying K(+) channel, Kir4.1, in adult rat CNS. Glia 2000, 30, 362–372. [Google Scholar] [CrossRef]
- Nwaobi, S.E.; Lin, E.; Peramsetty, S.R.; Olsen, M.L. DNA methylation functions as a critical regulator of Kir4.1 expression during CNS development. Glia 2014, 62, 411–427. [Google Scholar] [CrossRef] [PubMed]
- Higashi, K.; Fujita, A.; Inanobe, A.; Tanemoto, M.; Doi, K.; Kubo, T.; Kurachi, Y. An inwardly rectifying K(+) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am. J. Physiol. Cell Physiol. 2001, 281, C922–C931. [Google Scholar] [CrossRef] [PubMed]
- Procacci, N.M.; Hastings, R.L.; Aziz, A.A.; Christiansen, N.M.; Zhao, J.; DeAngeli, C.; LeBlanc, N.; Notterpek, L.; Valdez, G.; Gould, T.W. Kir4.1 is specifically expressed and active in non-myelinating schwann cells. Glia 2023, 71, 926–944. [Google Scholar] [CrossRef] [PubMed]
- Seifert, G.; Hüttmann, K.; Binder, D.K.; Hartmann, C.; Wyczynski, A.; Neusch, C.; Steinhäuser, C. Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J. Neurosci. 2009, 29, 7474–7488. [Google Scholar] [CrossRef]
- Harada, Y.; Nagao, Y.; Shimizu, S.; Serikawa, T.; Terada, R.; Fujimoto, M.; Okuda, A.; Mukai, T.; Sasa, M.; Kurachi, Y.; et al. Expressional analysis of inwardly rectifying Kir4.1 channels in noda epileptic rat (NER). Brain Res. 2013, 1517, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Bazzigaluppi, P.; Weisspapir, I.; Stefanovic, B.; Leybaert, L.; Carlen, P.L. Astrocytic gap junction blockade markedly increases extracellular potassium without causing seizures in the mouse neocortex. Neurobiol. Dis. 2017, 101, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Frizzo, M.E.; Ohno, Y. Perisynaptic astrocytes as a potential target for novel antidepressant drugs. J. Pharmacol. Sci. 2021, 145, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Djukic, B.; Casper, K.B.; Philpot, B.D.; Chin, L.-S.; McCarthy, K.D. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J. Neurosci. 2007, 27, 11354–11365. [Google Scholar] [CrossRef]
- Kucheryavykh, Y.V.; Kucheryavykh, L.Y.; Nichols, C.G.; Maldonado, H.M.; Baksi, K.; Reichenbach, A.; Skatchkov, S.N.; Eaton, M.J. Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 2007, 55, 274–281. [Google Scholar] [CrossRef]
- Ohno, Y.; Kinboshi, M.; Shimizu, S. Inwardly rectifying potassium channel Kir4.1 as a novel modulator of BDNF expression in astrocytes. Int. J. Mol. Sci. 2018, 19, 3313. [Google Scholar] [CrossRef]
- Pannicke, T.; Iandiev, I.; Uckermann, O.; Biedermann, B.; Kutzera, F.; Wiedemann, P.; Wolburg, H.; Reichenbach, A.; Bringmann, A. A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol. Cell. Neurosci. 2004, 26, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Higashimori, H.; Sontheimer, H. Role of Kir4.1 channels in growth control of glia. Glia 2007, 55, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Zurolo, E.; de Groot, M.; Iyer, A.; Anink, J.; van Vliet, E.A.; Heimans, J.J.; Reijneveld, J.C.; Gorter, J.A.; Aronica, E. Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: A role for interleukin-1 β. J. Neuroinflammation 2012, 9, 280. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, J.; Sun, T.; Yan, H.; Zou, W.; Li, H.; Qi, Q.; Sun, M. IL-6 promotes the activation of rat astrocytes and down-regulation of the expression of Kir4.1 channel. Chin. J. Cell. Mol. Immunol. 2022, 38, 316–320. [Google Scholar]
- Song, Z.; Bian, Z.; Zhang, Z.; Wang, X.; Zhu, A.; Zhu, G. Astrocytic Kir4.1 regulates NMDAR/calpain signaling axis in lipopolysaccharide-induced depression-like behaviors in mice. Toxicol. Appl. Pharmacol. 2021, 429, 115711. [Google Scholar] [CrossRef]
- Yang, X.L.; Wang, X.; Shao, L.; Jiang, G.T.; Min, J.W.; Mei, X.Y.; He, X.H.; Liu, W.H.; Huang, W.X.; Peng, B.W. TRPV1 mediates astrocyte activation and interleukin-1β release induced by hypoxic ischemia (HI). J. Neuroinflammation 2019, 16, 114. [Google Scholar] [CrossRef] [PubMed]
- Dibaj, P.; Kaiser, M.; Hirrlinger, J.; Kirchhoff, F.; Neusch, C. Kir4.1 channels regulate swelling of astroglial processes in experimental spinal cord edema. J. Neurochem. 2007, 103, 2620–2628. [Google Scholar] [CrossRef]
- Oudart, M.; Avila-Gutierrez, K.; Moch, C.; Dossi, E.; Milior, G.; Boulay, A.C.; Gaudey, M.; Moulard, J.; Lombard, B.; Loew, D.; et al. The ribosome-associated protein RACK1 represses Kir4.1 translation in astrocytes and influences neuronal activity. Cell Rep. 2023, 42, 112456. [Google Scholar] [CrossRef] [PubMed]
- Sibille, J.; Dao Duc, K.; Holcman, D.; Rouach, N. The neuroglial potassium cycle during neurotransmission: Role of Kir4.1 channels. PLoS Comput. Biol. 2015, 11, e1004137. [Google Scholar] [CrossRef]
- Barbay, T.; Pecchi, E.; Ducrocq, M.; Rouach, N.; Brocard, F.; Bos, R. Astrocytic Kir4.1 channels regulate locomotion by orchestrating neuronal rhythmicity in the spinal network. Glia 2023, 71, 1259–1277. [Google Scholar] [CrossRef]
- Altas, B.; Rhee, H.J.; Ju, A.; Solís, H.C.; Karaca, S.; Winchenbach, J.; Kaplan-Arabaci, O.; Schwark, M.; Ambrozkiewicz, M.C.; Lee, C.; et al. Nedd4-2-dependent regulation of astrocytic Kir4.1 and Connexin43 controls neuronal network activity. J. Cell Biol. 2024, 223, e201902050. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, Y.; Ni, Z.; Dong, Y.; Cai, G.; Foncelle, A.; Ma, S.; Sang, K.; Tang, S.; Li, Y.; et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 2018, 554, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.; Chen, Y.; Liu, J.; Zhang, D.; Yang, Y.; Shen, J.; Miao, C.; Tang, S.-J.; Liu, X.; Mulkey, D.K.; et al. Spinal astrocytic MeCP2 regulates Kir4.1 for the maintenance of chronic hyperalgesia in neuropathic pain. Prog. Neurobiol. 2023, 224, 102436. [Google Scholar] [CrossRef] [PubMed]
- Olsen, M.L.; Sontheimer, H. Functional implications for Kir4.1 channels in glial biology: From K+ buffering to cell differentiation. J. Neurochem. 2008, 107, 589–601. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, S.N.; Sontheimer, H. Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 2000, 30, 39–48. [Google Scholar] [CrossRef]
- Olsen, M.L.; Sontheimer, H. Mislocalization of Kir channels in malignant glia. Glia 2004, 46, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Wenker, I.C.; Kréneisz, O.; Nishiyama, A.; Mulkey, D.K. Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1-Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism. J. Neurophysiol. 2010, 104, 3042–3052. [Google Scholar] [CrossRef] [PubMed]
- Cleary, C.M.; Browning, J.L.; Armbruster, M.; Sobrinho, C.R.; Strain, M.L.; Jahanbani, S.; Soto-Perez, J.; Hawkins, V.E.; Dulla, C.G.; Olsen, M.L.; et al. Kir4.1 channels contribute to astrocyte CO2/H(+)-sensitivity and the drive to breathe. Commun. Biol. 2024, 7, 373. [Google Scholar] [CrossRef] [PubMed]
- Boggs, J.M. Myelin basic protein: A multifunctional protein. Cell. Mol. Life Sci. CMLS 2006, 63, 1945–1961. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhou, L.; Shao, C.-Y.; Wang, X.-T.; Zhang, N.; Ma, J.; Hu, H.-L.; Wang, Y.; Qiu, M.; Shen, Y. Potassium channel Kir 4.1 regulates oligodendrocyte differentiation via intracellular pH regulation. Glia 2022, 70, 2093–2107. [Google Scholar] [CrossRef] [PubMed]
- Larson, V.A.; Mironova, Y.; Vanderpool, K.G.; Waisman, A.; Rash, J.E.; Agarwal, A.; Bergles, D.E. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. eLife 2018, 7, e34829. [Google Scholar] [CrossRef]
- Schirmer, L.; Möbius, W.; Zhao, C.; Cruz-Herranz, A.; Ben Haim, L.; Cordano, C.; Shiow, L.R.; Kelley, K.W.; Sadowski, B.; Timmons, G.; et al. Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity. eLife 2018, 7, e36428. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhou, L.; Shen, Y. Inward rectifying K(ir)4.1 channels regulate oligodendrocyte precursor cell differentiation and CNS myelination in vivo. Neurosci. Lett. 2023, 807, 137278. [Google Scholar] [CrossRef]
- Timmermann, A.; Tascio, D.; Jabs, R.; Boehlen, A.; Domingos, C.; Skubal, M.; Huang, W.; Kirchhoff, F.; Henneberger, C.; Bilkei-Gorzo, A.; et al. Dysfunction of NG2 glial cells affects neuronal plasticity and behavior. Glia 2023, 71, 1481–1501. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.; Srivastava, R.; Kalluri, S.R.; Seidel, U.; Schuelke, M.; Schimmel, M.; Rostasy, K.; Leiz, S.; Hosie, S.; Grummel, V.; et al. Potassium channel KIR4.1-specific antibodies in children with acquired demyelinating CNS disease. Neurology 2014, 82, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Kapell, H.; Fazio, L.; Dyckow, J.; Schwarz, S.; Cruz-Herranz, A.; Mayer, C.; Campos, J.; D’Este, E.; Möbius, W.; Cordano, C.; et al. Neuron-oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination. J. Clin. Investig. 2023, 133, e164223. [Google Scholar] [CrossRef]
- Neusch, C.; Rozengurt, N.; Jacobs, R.E.; Lester, H.A.; Kofuji, P. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J. Neurosci. 2001, 21, 5429–5438. [Google Scholar] [CrossRef]
- Song, F.; Hong, X.; Cao, J.; Ma, G.; Han, Y.; Cepeda, C.; Kang, Z.; Xu, T.; Duan, S.; Wan, J.; et al. Kir4.1 channels in NG2-glia play a role in development, potassium signaling, and ischemia-related myelin loss. Commun. Biol. 2018, 1, 80. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Jian, Y.; Ding, S.; Zhou, J.; Zheng, X.; Zhang, H.; Zhou, B.; Zhuang, C.; Wan, J.; Tong, X. Kir4.1 channel activation in NG2 glia contributes to remyelination in ischemic stroke. eBioMedicine 2023, 87, 104406. [Google Scholar] [CrossRef]
- Mandge, D.; Shukla, P.R.; Bhatnagar, A.; Manchanda, R. Computational Model for Cross-Depolarization in DRG Neurons via Satellite Glial Cells using [K] o: Role of Kir4. 1 Channels and Extracellular Leakage. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019. [Google Scholar]
- Leo, M.; Schmitt, L.-I.; Kutritz, A.; Kleinschnitz, C.; Hagenacker, T. Cisplatin-induced activation and functional modulation of satellite glial cells lead to cytokine-mediated modulation of sensory neuron excitability. Exp. Neurol. 2021, 341, 113695. [Google Scholar] [CrossRef]
- Kim, E.S.; Park, S.-H.; Park, R. Attenuation of ROS Generation by KCNE1 Genes in Cisplatin-treated Auditory Cells. Korean J. Clin. Lab. Sci. 2013, 45, 114–119. [Google Scholar]
- Feng, Y.H.; Tang, R.J.; Zhang, Y.Y.; Lin, J.; Liu, Y.J.; Li, Y.K.; Li, C.J.; Zhou, C.; Liu, F.; Shen, J.F. Contribution of inwardly rectifying potassium channel 4.1 in orofacial neuropathic pain: Regulation of pannexin 3 via the reactive oxygen species-activated P38 MAPK signal pathway. Eur. J. Neurosci. 2024, 60, 4569–4585. [Google Scholar] [CrossRef]
- Mapps, A.A.; Boehm, E.; Beier, C.; Keenan, W.T.; Langel, J.; Liu, M.; Thomsen, M.B.; Hattar, S.; Zhao, H.; Tampakakis, E.; et al. Satellite glia modulate sympathetic neuron survival, activity, and autonomic function. eLife 2022, 11, e74295. [Google Scholar] [CrossRef] [PubMed]
- Kelley, K.W.; Ben Haim, L.; Schirmer, L.; Tyzack, G.E.; Tolman, M.; Miller, J.G.; Tsai, H.-H.; Chang, S.M.; Molofsky, A.V.; Yang, Y.; et al. Kir4.1-dependent astrocyte-fast motor neuron interactions are required for peak strength. Neuron 2018, 98, 306–319.e7. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, H.-B. The role of an inwardly rectifying K+ channel (Kir4.1) in the inner ear and hearing loss. Neuroscience 2014, 265, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, G.; Noble, K.V.; Li, Y.; Barth, J.L.; Schulte, B.A.; Lang, H. Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea. Neurobiol. Aging. 2019, 80, 210–222. [Google Scholar] [CrossRef]
- Vieira, W.F.; Coelho, D.R.A.; Litwiler, S.T.; McEachern, K.M.; Clancy, J.A.; Morales-Quezada, L.; Cassano, P. Neuropathic pain, mood, and stress-related disorders: A literature review of comorbidity and co-pathogenesis. Neurosci. Biobehav. Rev. 2024, 161, 105673. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Q.; Chen, Y.; Ren, H.; Zhang, Q.; Yang, H.; Zhang, W.; Ding, T.; Wang, S.; Zhang, Y.; et al. Gut microbiota in chronic pain: Novel insights into mechanisms and promising therapeutic strategies. Int. Immunopharmacol. 2023, 115, 109685. [Google Scholar] [CrossRef] [PubMed]
- Torta, R.; Ieraci, V.; Zizzi, F. A Review of the Emotional Aspects of Neuropathic Pain: From Comorbidity to Co-Pathogenesis. Pain Ther. 2017, 6, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Currie, S.R.; Wang, J. Chronic back pain and major depression in the general Canadian population. Pain 2004, 107, 54–60. [Google Scholar] [CrossRef]
- Wang, S.; Tian, Y.; Song, L.; Lim, G.; Tan, Y.; You, Z.; Chen, L.; Mao, J. Exacerbated mechanical hyperalgesia in rats with genetically predisposed depressive behavior: Role of melatonin and NMDA receptors. Pain 2012, 153, 2448–2457. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Wang, S.; Lim, G.; Yang, L.; Mao, J.; Sung, B.; Chang, Y.; Lim, J.-A.; Guo, G.; Mao, J. Exacerbated mechanical allodynia in rats with depression-like behavior. Brain Res. 2008, 1200, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J.; Barrot, M.; DiLeone, R.J.; Eisch, A.J.; Gold, S.J.; Monteggia, L.M. Neurobiology of depression. Neuron 2002, 34, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Disner, S.G.; Beevers, C.G.; Haigh, E.A.P.; Beck, A.T. Neural mechanisms of the cognitive model of depression. Nat. Rev. Neurosci. 2011, 12, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Tang, H.D.; Dong, W.Y.; Kang, F.; Liu, A.; Mao, Y.; Xie, W.; Zhang, X.; Cao, P.; Zhou, W.; et al. Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states. Nat. Neurosci. 2021, 24, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.; Keshavan, M. The neurobiology of depression: An integrated view. Asian J. Psychiatr. 2017, 27, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Gao, X.; Wang, A.; Wang, Y.; Du, Y.; Li, L.; Li, M.; Li, C.; Jin, X.; Zhao, M. Depression comorbid with hyperalgesia: Different roles of neuroinflammation induced by chronic stress and hypercortisolism. J. Affect. Disord. 2019, 256, 117–124. [Google Scholar] [CrossRef]
- Johnson, A.C.; Tran, L.; Greenwood-Van Meerveld, B. Knockdown of corticotropin-releasing factor in the central amygdala reverses persistent viscerosomatic hyperalgesia. Transl. Psychiatry 2015, 5, e517. [Google Scholar] [CrossRef] [PubMed]
- Manning-Bennett, A.T.; Hopkins, A.M.; Sorich, M.J.; Proudman, S.M.; Foster, D.J.R.; Abuhelwa, A.Y.; Wiese, M.D. The association of depression and anxiety with treatment outcomes in patients with rheumatoid arthritis–a pooled analysis of five randomised controlled trials. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221111613. [Google Scholar] [CrossRef]
- Patel, R. The circuit basis for chronic pain and its comorbidities. Curr. Opin. Support. Palliat. Care 2023, 17, 156–160. [Google Scholar] [CrossRef]
- Chen, T.; Wang, J.; Wang, Y.Q.; Chu, Y.X. Current Understanding of the Neural Circuitry in the Comorbidity of Chronic Pain and Anxiety. Neural Plast. 2022, 2022, 4217593. [Google Scholar] [CrossRef]
- Coelho, D.R.A.; Gersten, M.; Jimenez, A.S.; Fregni, F.; Cassano, P.; Vieira, W.F. Treating neuropathic pain and comorbid affective disorders: Preclinical and clinical evidence. Pain Pract. 2024, 24, 937–955. [Google Scholar] [CrossRef]
- Fiest, K.M.; Hitchon, C.A.; Bernstein, C.N.; Peschken, C.A.; Walker, J.R.; Graff, L.A.; Zarychanski, R.; Abou-Setta, A.; Patten, S.B.; Sareen, J.; et al. Systematic Review and Meta-analysis of Interventions for Depression and Anxiety in Persons with Rheumatoid Arthritis. J. Clin. Rheumatol. 2017, 23, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Bruffaerts, R.; Demyttenaere, K.; Kessler, R.C.; Tachimori, H.; Bunting, B.; Hu, C.; Florescu, S.; Haro, J.M.; Lim, C.C.W.; Kovess-Masfety, V.; et al. The associations between preexisting mental disorders and subsequent onset of chronic headaches: A worldwide epidemiologic perspective. J. Pain 2015, 16, 42–52. [Google Scholar] [CrossRef]
- Kremer, M.; Becker, L.J.; Barrot, M.; Yalcin, I. How to study anxiety and depression in rodent models of chronic pain? Eur. J. Neurosci. 2021, 53, 236–270. [Google Scholar] [CrossRef] [PubMed]
- McCarson, K.E.; Fehrenbacher, J.C. Models of Inflammation: Carrageenan- or Complete Freund’s Adjuvant (CFA)-Induced Edema and Hypersensitivity in the Rat. Curr. Protoc. 2021, 1, e202. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cui, Y.; Sang, K.; Dong, Y.; Ni, Z.; Ma, S.; Hu, H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 2018, 554, 317–322. [Google Scholar] [CrossRef]
- Zhou, W.; Jin, Y.; Meng, Q.; Zhu, X.; Bai, T.; Tian, Y.; Mao, Y.; Wang, L.; Xie, W.; Zhong, H.; et al. A neural circuit for comorbid depressive symptoms in chronic pain. Nat. Neurosci. 2019, 22, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Llorca-Torralba, M.; Camarena-Delgado, C.; Suárez-Pereira, I.; Bravo, L.; Mariscal, P.; Garcia-Partida, J.A.; López-Martín, C.; Wei, H.; Pertovaara, A.; Mico, J.A.; et al. Pain and depression comorbidity causes asymmetric plasticity in the locus coeruleus neurons. Brain 2022, 145, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Pan, X.; Zhou, Y.; Wu, Z.; Ren, K.; Liu, H.; Huang, C.; Yu, Y.; He, T.; Zhang, X.; et al. Lateral septum-lateral hypothalamus circuit dysfunction in comorbid pain and anxiety. Mol. Psychiatry 2023, 28, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Fiore, N.T.; Austin, P.J. Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav. Immun. 2016, 56, 397–411. [Google Scholar] [PubMed]
- Walker, A.K.; Kavelaars, A.; Heijnen, C.J.; Dantzer, R. Neuroinflammation and comorbidity of pain and depression. Pharmacol. Rev. 2014, 66, 80–101. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, M.; Kubo, A.; Hayashi, Y.; Iwata, K. Peripheral and central mechanisms of persistent orofacial pain. Front. Neurosci. 2019, 13, 1227. [Google Scholar] [CrossRef]
- Li, C.; Kim, H.J.; Back, S.K.; Na, H.S. Common and discrete mechanisms underlying chronic pain and itch: Peripheral and central sensitization. Pflug. Arch. 2021, 473, 1603–1615. [Google Scholar]
- Zhang, Y.-Y.; Liu, F.; Fang, Z.-H.; Li, Y.-L.; Liao, H.-L.; Song, Q.-X.; Zhou, C.; Shen, J.-F. Differential roles of NMDAR subunits 2A and 2B in mediating peripheral and central sensitization contributing to orofacial neuropathic pain. Brain Behav. Immun. 2022, 106, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.K.; Zhang, Y.Y.; Lin, J.; Liu, Y.J.; Li, Y.L.; Feng, Y.H.; Zhao, J.S.; Zhou, C.; Liu, F.; Shen, J.F. Metabotropic glutamate receptor 5-mediated inhibition of inward-rectifying K(+) channel 4.1 contributes to orofacial ectopic mechanical allodynia following inferior alveolar nerve transection in male mice. J. Neurosci. Res. 2023, 101, 1170–1187. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chung, M.-K. Orthodontic force induces nerve injury-like transcriptomic changes driven by TRPV1-expressing afferents in mouse trigeminal ganglia. Mol. Pain 2020, 16, 1744806920973141. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Jiang, C.; Xu, J.; Chandra, S.; McGinnis, A.; Luo, X.; He, Q.; Li, Y.; Wang, Z.; Ao, X.; et al. Satellite glial GPR37L1 and its ligand maresin 1 regulate potassium channel signaling and pain homeostasis. J. Clin. Investig. 2024, 134, e173537. [Google Scholar] [CrossRef]
- Meyer, R.C.; Giddens, M.M.; Schaefer, S.A.; Hall, R.A. GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Proc. Natl. Acad. Sci. USA 2013, 110, 9529–9534. [Google Scholar] [CrossRef]
- Xia, L.P.; Luo, H.; Ma, Q.; Xie, Y.K.; Li, W.; Hu, H.; Xu, Z.Z. GPR151 in nociceptors modulates neuropathic pain via regulating P2X3 function and microglial activation. Brain 2021, 144, 3405–3420. [Google Scholar] [CrossRef]
- Tang, X.; Schmidt, T.M.; Perez-Leighton, C.E.; Kofuji, P. Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia. Neuroscience 2010, 166, 397–407. [Google Scholar] [CrossRef]
- Pajarillo, E.; Rizor, A.; Lee, J.; Aschner, M.; Lee, E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019, 161, 107559. [Google Scholar] [PubMed]
- Li, X.; Li, Q.; Xu, L.; Ma, Z.; Shi, Y.; Zhang, X.; Yang, Y.; Wang, J.; Fan, L.; Wu, L. Involvement of Kir4.1 in pain insensitivity of the BTBR mouse model of autism spectrum disorder. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166700. [Google Scholar] [CrossRef] [PubMed]
- Jessen, K.R.; Mirsky, R. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 2005, 6, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Merighi, A.; Salio, C.; Ghirri, A.; Lossi, L.; Ferrini, F.; Betelli, C.; Bardoni, R. BDNF as a pain modulator. Prog. Neurobiol. 2008, 85, 297–317. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, T.; Kondo, E.; Dai, Y.; Hashimoto, N.; Noguchi, K. Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J. Neurosci. 2001, 21, 4891–4900. [Google Scholar] [CrossRef]
- Frizzo, M.E. Can a Selective Serotonin Reuptake Inhibitor Act as a Glutamatergic Modulator? Curr. Ther. Res. Clin. Exp. 2017, 87, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Khakh, B.S.; Beaumont, V.; Cachope, R.; Munoz-Sanjuan, I.; Goldman, S.A.; Grantyn, R. Unravelling and Exploiting Astrocyte Dysfunction in Huntington’s Disease. Trends Neurosci. 2017, 40, 422–437. [Google Scholar] [CrossRef]
- Della Vecchia, S.; Marchese, M.; Santorelli, F.M.; Sicca, F. Kir4.1 dysfunction in the pathophysiology of depression: A systematic review. Cells 2021, 10, 2628. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Watson, S.J.; Bunney, W.; Myers, R.M.; Schatzberg, A.; Barchas, J.; Akil, H.; Thompson, R.C. Evidence for alterations of the glial syncytial function in major depressive disorder. J. Psychiatr. Res. 2016, 72, 15–21. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, K.; Ishima, T.; Ren, Q.; Ma, M.; Pu, Y.; Chang, L.; Chen, J.; Hashimoto, K. Lack of rapid antidepressant effects of Kir4.1 channel inhibitors in a chronic social defeat stress model: Comparison with (R)-ketamine. Pharmacol Biochem Behav. 2019, 176, 57–62. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, K.; Ren, Q.; Chang, L.; Chen, J.; Hashimoto, K. Increased expression of inwardly rectifying Kir4.1 channel in the parietal cortex from patients with major depressive disorder. J. Affect. Disord. 2019, 245, 265–269. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Z.; Shen, F.; Xie, P.; Wang, J.; Zhu, A.-S.; Zhu, G. Ginsenoside Rg1 prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing Kir4.1 and TNF-α in the hippocampus. Mol. Neurobiol. 2021, 58, 1550–1563. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Lin, L.; Xu, C.; Xiong, Y.; Qiu, H.; Li, X.; Li, S.; Cao, H. Unveiling the hidden pathways: Exploring astrocytes as a key target for depression therapy. J. Psychiatr. Res. 2024, 174, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019, 102, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Athira, K.V.; Mohan, A.S.; Chakravarty, S. Rapid acting antidepressants in the mTOR pathway: Current evidence. Brain Res. Bull. 2020, 163, 170–177. [Google Scholar]
- Božić, M.; Pirnat, S.; Fink, K.; Potokar, M.; Kreft, M.; Zorec, R.; Stenovec, M. Ketamine Reduces the Surface Density of the Astroglial Kir4.1 Channel and Inhibits Voltage-Activated Currents in a Manner Similar to the Action of Ba2+ on K+ Currents. Cells 2023, 12, 1360. [Google Scholar] [CrossRef]
- Murrough, J.W.; Abdallah, C.G.; Mathew, S.J. Targeting glutamate signalling in depression: Progress and prospects. Nat. Rev. Drug Discov. 2017, 16, 472–486. [Google Scholar] [CrossRef] [PubMed]
- Paul, I.A.; Skolnick, P. Glutamate and depression. Ann. N. Y. Acad. Sci. 2003, 1003, 250–272. [Google Scholar] [CrossRef]
- Dvorzhak, A.; Vagner, T.; Kirmse, K.; Grantyn, R. Functional Indicators of Glutamate Transport in Single Striatal Astrocytes and the Influence of Kir4.1 in Normal and Huntington Mice. J. Neurosci. 2016, 36, 4959–4975. [Google Scholar] [CrossRef] [PubMed]
- Sanacora, G.; Zarate, C.A.; Krystal, J.H.; Manji, H.K. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat. Rev. Drug Discov. 2008, 7, 426–437. [Google Scholar]
- Wang, C.S.; Kavalali, E.T.; Monteggia, L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022, 185, 62–76. [Google Scholar] [CrossRef]
- Carniel, B.P.; da Rocha, N.S. Brain-derived neurotrophic factor (BDNF) and inflammatory markers: Perspectives for the management of depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 108, 110151. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, F.; Zhai, M.; He, M.; Hu, Y.; Feng, L.; Li, Y.; Yang, J.; Wu, C. Hyperactive neuronal autophagy depletes BDNF and impairs adult hippocampal neurogenesis in a corticosterone-induced mouse model of depression. Theranostics 2023, 13, 1059–1075. [Google Scholar] [CrossRef]
- Shirayama, Y.; Chen, A.C.-H.; Nakagawa, S.; Russell, D.S.; Duman, R.S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 2002, 22, 3251–3261. [Google Scholar] [CrossRef]
- Iwata, M.; Ota, K.T.; Duman, R.S. The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses. Brain Behav. Immun. 2013, 31, 105–114. [Google Scholar] [CrossRef]
- Zhu, W.; Cao, F.-S.; Feng, J.; Chen, H.-W.; Wan, J.-R.; Lu, Q.; Wang, J. NLRP3 inflammasome activation contributes to long-term behavioral alterations in mice injected with lipopolysaccharide. Neuroscience 2017, 343, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Craske, M.G.; Rauch, S.L.; Ursano, R.; Prenoveau, J.; Pine, D.S.; Zinbarg, R.E. What is an anxiety disorder? Focus 2011, 9, 369–388. [Google Scholar] [CrossRef]
- Zheng, C.; Wei, L.; Liu, B.; Wang, Q.; Huang, Y.; Wang, S.; Li, X.; Gong, H.; Wang, Z. Dorsal BNST DRD2+ neurons mediate sex-specific anxiety-like behavior induced by chronic social isolation. Cell Rep. 2023, 42, 112799. [Google Scholar] [CrossRef]
- Ding-yi, C.; Hai-bo, W.; Jie-Hui, Z.; Wei, D.; Chen, Z.; Tao, R. Knockdown of astroglial Kir4.1 in the paraventricular nucleus attenuates depression and anxiety behavior induced by lipopolysaccharide. SSRN, 2023; preprint. [Google Scholar]
- Zhou, X.; Zhao, C.; Xu, H.; Xu, Y.; Zhan, L.; Wang, P.; He, J.; Lu, T.; Gu, Y.; Yang, Y.; et al. Pharmacological inhibition of Kir4.1 evokes rapid-onset antidepressant responses. Nat. Chem. Biol. 2024, 20, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Hu, H. Reward and aversion. Annu. Rev. Neurosci. 2016, 39, 297–324. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 2007, 447, 1111–1115. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A.M.; Stuber, G.D. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat. Neurosci. 2012, 15, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Ohno, Y.; Lossin, C.; Hibino, H.; Inanobe, A.; Kurachi, Y. Inhibition of astroglial inwardly rectifying Kir4.1 channels by a tricyclic antidepressant, nortriptyline. J. Pharmacol. Exp. Ther. 2007, 320, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Hibino, H.; Lossin, C.; Inanobe, A.; Kurachi, Y. Inhibition of astroglial Kir4.1 channels by selective serotonin reuptake inhibitors. Brain Res. 2007, 1178, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.D.; Denton, J.S. Next-generation inward rectifier potassium channel modulators: Discovery and molecular pharmacology. Am. J. Physiol. Cell Physiol. 2021, 320, C1125–C1140. [Google Scholar] [CrossRef] [PubMed]
- Kharade, S.V.; Kurata, H.; Bender, A.M.; Blobaum, A.L.; Figueroa, E.E.; Duran, A.; Kramer, M.; Days, E.; Vinson, P.; Flores, D.; et al. Discovery, characterization, and effects on renal fluid and electrolyte excretion of the Kir4.1 potassium channel pore blocker, VU0134992. Mol. Pharmacol. 2018, 94, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Aréchiga-Figueroa, I.A.; Marmolejo-Murillo, L.G.; Cui, M.; Delgado-Ramírez, M.; van der Heyden, M.A.G.; Sánchez-Chapula, J.A.; Rodríguez-Menchaca, A.A. High-potency block of Kir4.1 channels by pentamidine: Molecular basis. Eur. J. Pharmacol. 2017, 815, 56–63. [Google Scholar] [CrossRef]
- Zhao, M.; Bousquet, E.; Valamanesh, F.; Farman, N.; Jeanny, J.-C.; Jaisser, F.; Behar-Cohen, F.F. Differential regulations of AQP4 and Kir4.1 by triamcinolone acetonide and dexamethasone in the healthy and inflamed retina. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6340–6347. [Google Scholar] [CrossRef]
- Mukai, T.; Kinboshi, M.; Nagao, Y.; Shimizu, S.; Ono, A.; Sakagami, Y.; Okuda, A.; Fujimoto, M.; Ito, H.; Ikeda, A.; et al. Antiepileptic Drugs Elevate Astrocytic Kir4.1 Expression in the Rat Limbic Region. Front. Pharmacol. 2018, 9, 845. [Google Scholar] [CrossRef] [PubMed]
- Marmolejo-Murillo, L.G.; Aréchiga-Figueroa, I.A.; Cui, M.; Moreno-Galindo, E.G.; Navarro-Polanco, R.A.; Sánchez-Chapula, J.A.; Ferrer, T.; Rodríguez-Menchaca, A.A. Inhibition of Kir4.1 potassium channels by quinacrine. Brain Res. 2017, 1663, 87–94. [Google Scholar] [CrossRef]
- Marmolejo-Murillo, L.G.; Aréchiga-Figueroa, I.A.; Moreno-Galindo, E.G.; Navarro-Polanco, R.A.; Rodríguez-Menchaca, A.A.; Cui, M.; Sánchez-Chapula, J.A.; Ferrer, T. Chloroquine blocks the Kir4.1 channels by an open-pore blocking mechanism. Eur. J. Pharmacol. 2017, 800, 40–47. [Google Scholar] [CrossRef]
- Morán-Zendejas, R.; Delgado-Ramírez, M.; Xu, J.; Valdés-Abadía, B.; Aréchiga-Figueroa, I.A.; Cui, M.; Rodríguez-Menchaca, A.A. In vitro and in silico characterization of the inhibition of Kir4.1 channels by aminoglycoside antibiotics. Br. J. Pharmacol. 2020, 177, 4548–4560. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.E.; Maust, D.T. Update to Gabapentinoid Use in the United States, 2002-2021. Ann. Fam. Med. 2024, 22, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Mathieson, S.; Lin, C.C.; Underwood, M.; Eldabe, S. Pregabalin and gabapentin for pain. BMJ 2020, 369, m1315. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Jaime, H.; Sánchez-Salcedo, J.A.; Estevez-Cabrera, M.M.; Molina-Jiménez, T.; Cortes-Altamirano, J.L.; Alfaro-Rodríguez, A. Depression and pain: Use of antidepressants. Curr. Neuropharmacol. 2022, 20, 384–402. [Google Scholar] [CrossRef] [PubMed]
- Behlke, L.M.; Lenze, E.J.; Carney, R.M. The Cardiovascular Effects of Newer Antidepressants in Older Adults and Those With or At High Risk for Cardiovascular Diseases. CNS Drugs 2020, 34, 1133–1147. [Google Scholar] [CrossRef]
- Zhdanava, M.; Pilon, D.; Ghelerter, I.; Chow, W.; Joshi, K.; Lefebvre, P.; Sheehan, J.J. The Prevalence and National Burden of Treatment-Resistant Depression and Major Depressive Disorder in the United States. J. Clin. Psychiatry 2021, 82, 20m13699. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Haroutounian, S.; Palanca, B.J.A.; Lenze, E.J. Ketamine as a therapeutic agent for depression and pain: Mechanisms and evidence. J. Neurol. Sci. 2022, 434, 120152. [Google Scholar] [PubMed]
- Bloomfield, A.; Chan, N.; Fryml, L.; Horace, R.; Pyati, S. Ketamine for Chronic Pain and Mental Health: Regulations, Legalities, and the Growth of Infusion Clinics. Curr. Pain Headache Rep. 2023, 27, 579–585. [Google Scholar] [CrossRef]
- Lim, S.W.; Shiue, Y.L.; Ho, C.H.; Yu, S.C.; Kao, P.H.; Wang, J.J.; Kuo, J.R. Anxiety and Depression in Patients with Traumatic Spinal Cord Injury: A Nationwide Population-Based Cohort Study. PLoS ONE 2017, 12, e0169623. [Google Scholar] [CrossRef]
- Sanguinetti, R.D.; Soriano, J.E.; Squair, J.W.; Cragg, J.J.; Larkin-Kaiser, K.A.; McGirr, A.; Phillips, A.A. National survey of mental health and suicidal thoughts in people with spinal cord injury. Spinal Cord 2022, 60, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Cheng, J.; Dai, J.; Ma, Z.; Luo, S.; Yan, R.; Wang, L.; Zhou, J.; Yu, B.; Tong, X.; et al. Chronic stress hinders sensory axon regeneration via impairing mitochondrial cristae and OXPHOS. Sci. Adv. 2023, 9, eadh0183. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, H.; Andlauer, T.F.M.; Korn, T.; Mühlau, M.; Henningsen, P.; Hemmer, B.; Ploner, M. Fatigue, depression, and pain in multiple sclerosis: How neuroinflammation translates into dysfunctional reward processing and anhedonic symptoms. Mult. Scler. 2022, 28, 1020–1027. [Google Scholar] [CrossRef]
- Imamura, M.; Higuchi, O.; Maeda, Y.; Mukaino, A.; Ueda, M.; Matsuo, H.; Nakane, S. Anti-Kir4.1 antibodies in multiple sclerosis: Specificity and pathogenicity. Int. J. Mol. Sci. 2020, 21, 9632. [Google Scholar] [CrossRef]
- Furutani, K.; Inanobe, A.; Kurachi, Y. The Structural Basis for Antidepressants Block Being Confined to Kir4.1. Biophys. J. 2009, 96, 465a. [Google Scholar] [CrossRef]
- Li, N.; Wu, J.-X.; Ding, D.; Cheng, J.; Gao, N.; Chen, L. Structure of a pancreatic ATP-sensitive potassium channel. Cell 2017, 168, 101–110.e10. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Balbuena, D.; López-Izquierdo, A.; Ferrer, T.; Rodríguez-Menchaca, A.A.; Aréchiga-Figueroa, I.A.; Sánchez-Chapula, J.A. Tamoxifen inhibits inward rectifier K+ 2.x family of inward rectifier channels by interfering with phosphatidylinositol 4,5-bisphosphate-channel interactions. J. Pharmacol. Exp. Ther. 2009, 331, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Su, X.T.; Wang, W.H. The expression, regulation, and function of Kir4.1 (Kcnj10) in the mammalian kidney. Am. J. Physiol. Renal. Physiol. 2016, 311, F12–F15. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Zhao, G.L.; Cheng, S.; Wang, Z.; Yang, X.L. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog. Retin. Eye Res. 2023, 93, 101169. [Google Scholar] [PubMed]
- Smith, T.J.; Staats, P.S.; Deer, T.; Stearns, L.J.; Rauck, R.L.; Boortz-Marx, R.L.; Buchser, E.; Català, E.; Bryce, D.A.; Coyne, P.J.; et al. Randomized clinical trial of an implantable drug delivery system compared with comprehensive medical management for refractory cancer pain: Impact on pain, drug-related toxicity, and survival. J. Clin. Oncol. 2002, 20, 4040–4049. [Google Scholar] [CrossRef] [PubMed]
- Giglio, M.; Preziosa, A.; Mele, R.; Brienza, N.; Grasso, S.; Puntillo, F. Effects of an Intrathecal Drug Delivery System Connected to a Subcutaneous Port on Pain, Mood and Quality of Life in End Stage Cancer Patients: An Observational Study. Cancer Control 2022, 29, 10732748221133752. [Google Scholar] [CrossRef] [PubMed]
- Alberto, M.; Paiva-Santos, A.C.; Veiga, F.; Pires, P.C. Lipid and Polymeric Nanoparticles: Successful Strategies for Nose-to-Brain Drug Delivery in the Treatment of Depression and Anxiety Disorders. Pharmaceutics 2022, 14, 2742. [Google Scholar] [CrossRef]
- Lapidus, K.A.; Levitch, C.F.; Perez, A.M.; Brallier, J.W.; Parides, M.K.; Soleimani, L.; Feder, A.; Iosifescu, D.V.; Charney, D.S.; Murrough, J.W. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol. Psychiatry. 2014, 76, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Antunes, J.L.; Amado, J.; Veiga, F.; Paiva-Santos, A.C.; Pires, P.C. Nanosystems, Drug Molecule Functionalization and Intranasal Delivery: An Update on the Most Promising Strategies for Increasing the Therapeutic Efficacy of Antidepressant and Anxiolytic Drugs. Pharmaceutics 2023, 15, 998. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.A.; Bimbo, L.M.; Das Neves, J.; Sarmento, B. INEB. 9—Nanoparticulate targeted drug delivery using peptides and proteins. In Nanomedicine; Woodhead Publishing: Sawston, UK, 2012; pp. 236–301. [Google Scholar]
- Vitorino, C.; Silva, S.; Gouveia, F.; Bicker, J.; Falcão, A.; Fortuna, A. QbD-driven development of intranasal lipid nanoparticles for depression treatment. Eur. J. Pharm. Biopharm. 2020, 153, 106–120. [Google Scholar] [CrossRef]
- Gleichman, A.J.; Kawaguchi, R.; Sofroniew, M.V.; Carmichael, S.T. A toolbox of astrocyte-specific, serotype-independent adeno-associated viral vectors using microRNA targeting sequences. Nat. Commun. 2023, 14, 7426. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhan, W.; Gallagher, T.L.; Gao, G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol. Ther. 2024, 32, 4185–4207. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.M.; Choi, Y.H.; Tu, M.J. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacol. Rev. 2020, 72, 862–898. [Google Scholar]
- Bradley, P.; Shiekh, M.; Mehra, V.; Vrbicky, K.; Layle, S.; Olson, M.C.; Maciel, A.; Cullors, A.; Garces, J.A.; Lukowiak, A.A. Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: A randomized clinical trial demonstrating clinical utility. J. Psychiatr. Res. 2018, 96, 100–107. [Google Scholar] [CrossRef] [PubMed]
Subfamily | Kir Channel Subtype |
---|---|
G protein-gated channels | Kir3.4, Kir3.2, Kir3.3, Kir3.1 |
ATP-sensitive channels | Kir6.1, Kir6.2 |
Classical channels | Kir2.2, Kir2.3, Kir2.1, Kir2.4 |
K+ transport channels | Kir1.1, Kir7.1, Kir5.1, Kir4.1, Kir4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zha, T.; Fang, X.; Wan, J.; Chen, X.; Lin, J.; Chen, Q. Preclinical Insights into the Role of Kir4.1 in Chronic Pain and Depression: Mechanisms and Therapeutic Potential. Biomolecules 2025, 15, 165. https://doi.org/10.3390/biom15020165
Zha T, Fang X, Wan J, Chen X, Lin J, Chen Q. Preclinical Insights into the Role of Kir4.1 in Chronic Pain and Depression: Mechanisms and Therapeutic Potential. Biomolecules. 2025; 15(2):165. https://doi.org/10.3390/biom15020165
Chicago/Turabian StyleZha, Tingfeng, Xinyi Fang, Jiamin Wan, Xiaoyan Chen, Jiu Lin, and Qianming Chen. 2025. "Preclinical Insights into the Role of Kir4.1 in Chronic Pain and Depression: Mechanisms and Therapeutic Potential" Biomolecules 15, no. 2: 165. https://doi.org/10.3390/biom15020165
APA StyleZha, T., Fang, X., Wan, J., Chen, X., Lin, J., & Chen, Q. (2025). Preclinical Insights into the Role of Kir4.1 in Chronic Pain and Depression: Mechanisms and Therapeutic Potential. Biomolecules, 15(2), 165. https://doi.org/10.3390/biom15020165