Paxillin and Kindlin: Research Progress and Biological Functions
Abstract
:1. Introduction
2. Structure and Function of Paxillin
2.1. Molecular Structure of Paxillin
2.2. The Biological Functions of Paxillin
2.2.1. Regulation of Integrins
2.2.2. Focal Adhesion Assembly and Disassembly
2.2.3. Paxillin Is Involved in Regulating Signal Transduction
2.2.4. Paxillin Functions in Regulating Cell Migration
2.3. Regulatory Mechanism of Paxillin
2.3.1. Regulation of Paxillin Phosphorylation by FAK and Src
2.3.2. Regulation of Paxillin by Serine/Threonine Kinases
2.4. Functions of Paxillin in Different Cell Types
2.4.1. Epithelial Cells
2.4.2. Immune Cells
2.4.3. Tumor Cells
3. The Structure and Function of Kindlin
3.1. The Structure of Kindlin
3.2. The Functions of Kindlin
3.2.1. The Roles of Different Kindlin Isoforms
3.2.2. The Role of Kindlin in Integrin Activation
3.2.3. Role of Kindlin in Cytoskeleton Remodeling and Migration
3.3. Abnormal Functions and Diseases of Kindlin
4. The Mechanism of Interaction Between Paxillin and Kindlin
4.1. The Synergistic Role of Paxillin and Kindlin in Integrin Activation
4.2. Paxillin and Kindlin in the Regulation of Focal Adhesion Dynamics and Cell Migration
4.3. Coordinated Regulation of Cell Migration by Paxillin and Kindlin
5. Paxillin and Kindlin in Signal Transduction
5.1. Rho GTPase Signaling Pathway
5.2. MAPK Signaling Pathway
5.3. PI3K/Akt Signaling Pathway
6. Paxillin and Kindlin in Disease
6.1. Tumor Progression
6.1.1. Regulatory Roles in the Tumor Microenvironment
6.1.2. High Expression in Invasive Tumors
6.2. Nontumor Diseases
6.2.1. Platelet Dysfunction
6.2.2. Osteosclerosis
6.2.3. Cardiovascular Diseases
7. Paxillin and Kindlin as Potential Therapeutic Targets
7.1. Therapeutic Strategies Targeting Paxillin
7.2. Therapeutic Strategies Targeting Kindlin
7.3. Combination Therapy Targeting Paxillin and Kindlin
8. Future Research Directions
8.1. Paxillin and Kindlin in Novel Cellular Processes
8.2. Paxillin and Kindlin in Tissue Repair
8.3. Paxillin and Kindlin Interactions with Other Signaling Pathways
8.4. Future Challenges and Opportunities in Research
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Akt | Activation of _rotein Kinase B |
ArfGAP | ADP-Ribosylation Factor-GTPase-Activating Protein |
ECM | Extracellular Matrix |
EMT | Epithelial-to-Mesenchymal Transition |
ERK | Extracellular Signal-Regulated Kinase |
FA | Focal Adhesion |
FAK | Focal Adhesion Kinase |
GAP | GTPase-Activating Protein |
GEF | Guanine Nucleotide Exchange Factor |
GIT1 | G Protein-Coupled Receptor Kinase-interacting Protein 1 |
GRB2 | Growth Factor Receptor-Bound Protein 2 |
IIK | Integrin-Linked Kinase |
KS | Kindler Syndrome |
LAD | Leukocyte Adhesion Deficiency |
LAD III | Leukocyte Adhesion Deficiency type III |
MAPK | Mitogen-Activated Protein Kinase |
PH | Pleckstrin Homology |
PI3K | Phosphoinositide-3-Kinase |
PIP2 | Phosphatidylinositol 4,5-bisphosphate |
PKC | Protein Kinase C |
PPI | Protein–Protein Interaction |
PtdIn | Phosphatidylinositol |
SFKs | Src family Kinases |
SOS | Son Of Sevenless |
References
- Brock, K.; Alpha, K.M.; Brennan, G.; De Jong, E.P.; Luke, E.; Turner, C.E. A Comparative Analysis of Paxillin and Hic-5 Proximity Interactomes. Cytoskeleton 2024. [Google Scholar] [CrossRef]
- Tumbarello, D.A.; Brown, M.C.; Turner, C.E. The Paxillin LD Motifs. FEBS Lett. 2002, 513, 114–118. [Google Scholar] [CrossRef]
- Koedood Zhao, M.; Wang, Y.; Murphy, K.; Yi, J.; Beckerle, M.C.; Gilmore, T.D. LIM Domain-Containing Protein Trip6 Can Act as a Coactivator for the v-Rel Transcription Factor. Gene Expr. 2018, 8, 207–217. [Google Scholar]
- Nix, D.A.; Beckerle, M.C. Nuclear-Cytoplasmic Shuttling of the Focal Contact Protein, Zyxin: A Potential Mechanism for Communication between Sites of Cell Adhesion and the Nucleus. J. Cell Biol. 1997, 138, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.T.; Xu, Z.; Shi, X.; Liu, S.; Schulte, M.L.; White, G.C.; Ma, Y. Paxillin Binding to the PH Domain of Kindlin-3 in Platelets Is Required to Support Integrin αIIbβ3 Outside-in Signaling. J. Thromb. Haemost. 2021, 19, 3126–3138. [Google Scholar] [CrossRef] [PubMed]
- Baade, T.; Michaelis, M.; Prestel, A.; Paone, C.; Klishin, N.; Herbinger, M.; Scheinost, L.; Nedielkov, R.; Hauck, C.R.; Möller, H.M. A Flexible Loop in the Paxillin LIM3 Domain Mediates Its Direct Binding to Integrin β Subunits. PLoS Biol. 2024, 22, e3002757. [Google Scholar] [CrossRef]
- Zaidel-Bar, R.; Itzkovitz, S.; Ma’ayan, A.; Iyengar, R.; Geiger, B. Functional Atlas of the Integrin Adhesome. Nat. Cell Biol. 2007, 9, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Calderwood, D.A.; Zent, R.; Grant, R.; Rees, D.J.; Hynes, R.O.; Ginsberg, M.H. The Talin Head Domain Binds to Integrin Beta Subunit Cytoplasmic Tails and Regulates Integrin Activation. J. Biol. Chem. 1999, 274, 28071–28074. [Google Scholar] [CrossRef] [PubMed]
- Schaller, M.D.; Hildebrand, J.D.; Parsons, J.T. Complex Formation with Focal Adhesion Kinase: A Mechanism to Regulate Activity and Subcellular Localization of Src Kinases. Mol. Biol. Cell 1999, 10, 3489–3505. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Akiyama, S.K.; Yamada, K.M. Synergistic Roles for Receptor Occupancy and Aggregation in Integrin Transmembrane Function. Science 1995, 267, 883–885. [Google Scholar] [CrossRef]
- Liu, S.; Calderwood, D.A.; Ginsberg, M.H. Integrin Cytoplasmic Domain-Binding Proteins. J. Cell Sci. 2000, 113 Pt 20, 3563–3571. [Google Scholar] [CrossRef] [PubMed]
- Carisey, A.; Tsang, R.; Greiner, A.M.; Nijenhuis, N.; Heath, N.; Nazgiewicz, A.; Kemkemer, R.; Derby, B.; Spatz, J.; Ballestrem, C. Vinculin Regulates the Recruitment and Release of Core Focal Adhesion Proteins in a Force-Dependent Manner. Curr. Biol. 2013, 23, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Choudhury, D.M.; Craig, S.W. Coincidence of Actin Filaments and Talin Is Required to Activate Vinculin. J. Biol. Chem. 2006, 281, 40389–40398. [Google Scholar] [CrossRef]
- Zaidel-Bar, R.; Ballestrem, C.; Kam, Z.; Geiger, B. Early Molecular Events in the Assembly of Matrix Adhesions at the Leading Edge of Migrating Cells. J. Cell Sci. 2003, 116 Pt 22, 4605–4613. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.T.; Bennin, D.A.; Huttenlocher, A. Regulation of Adhesion Dynamics by Calpain-Mediated Proteolysis of Focal Adhesion Kinase (FAK) *. J. Biol. Chem. 2010, 285, 11418–11426. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-Y.; Chiu, C.-H.; Wang, M.-J.; Li, F.-A.; Chen, J.-Y. Proteoglycan Serglycin Promotes Non-Small Cell Lung Cancer Cell Migration through the Interaction of Its Glycosaminoglycans with CD44. J. Biomed. Sci. 2020, 27, 2. [Google Scholar] [CrossRef] [PubMed]
- Deakin, N.O.; Turner, C.E. Paxillin Comes of Age. J. Cell Sci. 2008, 121 Pt 15, 2435–2444. [Google Scholar] [CrossRef]
- Tanimori, Y.; Tsubaki, M.; Yamazoe, Y.; Satou, T.; Itoh, T.; Kidera, Y.; Yanae, M.; Yamamoto, C.; Kaneko, J.; Nishida, S. Nitrogen-Containing Bisphosphonate, YM529/ONO-5920, Inhibits Tumor Metastasis in Mouse Melanoma through Suppression of the Rho/ROCK Pathway. Clin. Exp. Metastasis 2010, 27, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Langlois, B.; Perrot, G.; Schneider, C.; Henriet, P.; Emonard, H.; Martiny, L.; Dedieu, S. LRP-1 Promotes Cancer Cell Invasion by Supporting ERK and Inhibiting JNK Signaling Pathways. PLoS ONE 2010, 5, e11584. [Google Scholar] [CrossRef]
- Zhou, H.; Kramer, R.H. Integrin Engagement Differentially Modulates Epithelial Cell Motility by RhoA/ROCK and PAK1. J. Biol. Chem. 2005, 280, 10624–10635. [Google Scholar] [CrossRef]
- Dong, J.-M.; Lau, L.-S.; Ng, Y.-W.; Lim, L.; Manser, E. Paxillin Nuclear-Cytoplasmic Localization Is Regulated by Phosphorylation of the LD4 Motif: Evidence That Nuclear Paxillin Promotes Cell Proliferation. Biochem. J. 2009, 418, 173–184. [Google Scholar] [CrossRef]
- Fu, P.; Usatyuk, P.V.; Lele, A.; Harijith, A.; Gregorio, C.C.; Garcia, J.G.N.; Salgia, R.; Natarajan, V. c-Abl Mediated Tyrosine Phosphorylation of Paxillin Regulates LPS-Induced Endothelial Dysfunction and Lung Injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 308, L1025–L1038. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Boudreau, C.G.; Brown, C.M.; Khadra, A. Paxillin Phosphorylation at Serine 273 and Its Effects on Rac, Rho and Adhesion Dynamics. PLoS Comput. Biol. 2018, 14, e1006303. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, F.; Baba, K.; Ogawa, T. Enhanced Intracellular Signaling Pathway in Osteoblasts on Ultraviolet Lighttreated Hydrophilic Titanium. Biomed. Res. Tokyo Jpn. 2016, 37, 1–11. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Y.; Gunst, S.J. The Small GTPase RhoA Regulates the Contraction of Smooth Muscle Tissues by Catalyzing the Assembly of Cytoskeletal Signaling Complexes at Membrane Adhesion Sites *. J. Biol. Chem. 2012, 287, 33996–34008. [Google Scholar] [CrossRef] [PubMed]
- Sadok, A.; Marshall, C. Rho GTPases. Small GTPases 2014, 5, e983878. [Google Scholar] [CrossRef] [PubMed]
- Dharmawardhane, S. Rho Family GTPases in Cancer. Cancers 2021, 13, 1271. [Google Scholar] [CrossRef]
- Abiko, H.; Fujiwara, S.; Ohashi, K.; Hiatari, R.; Mashiko, T.; Sakamoto, N.; Sato, M.; Mizuno, K. Rho Guanine Nucleotide Exchange Factors Involved in Cyclic-stretch-induced Reorientation of Vascular Endothelial Cells. J. Cell Sci. 2015, 128, 1683–1695. [Google Scholar] [CrossRef]
- Rajah, A.; Boudreau, C.G.; Ilie, A.; Wee, T.-L.; Tang, K.; Borisov, A.Z.; Orlowski, J.; Brown, C.M. Paxillin S273 Phosphorylation Regulates Adhesion Dynamics and Cell Migration through a Common Protein Complex with PAK1 and βPIX. Sci. Rep. 2019, 9, 11430. [Google Scholar] [CrossRef]
- Zhang, Y.; Kishi, H.; Morita, T.; Kobayashi, S. Paxillin Controls Actin Stress Fiber Formation and Migration of Vascular Smooth Muscle Cells by Directly Binding to the Active Fyn. FASEB J. 2021, 35, e22012. [Google Scholar] [CrossRef]
- Roa-Espitia, A.L.; Hernández-Rendón, E.R.; Baltiérrez-Hoyos, R.; Muñoz-Gotera, R.J.; Cote-Vélez, A.; Jiménez, I.; González-Márquez, H.; Hernández-González, E.O. Focal Adhesion Kinase Is Required for Actin Polymerization and Remodeling of the Cytoskeleton during Sperm Capacitation. Biol. Open 2016, 5, 1189–1199. [Google Scholar] [CrossRef]
- Chen, J.; Gallo, K.A. MLK3 Regulates Paxillin Phosphorylation in Chemokine-Mediated Breast Cancer Cell Migration and Invasion to Drive Metastasis. Cancer Res. 2012, 72, 4130–4140. [Google Scholar] [CrossRef] [PubMed]
- Wangpu, X.; Lu, J.; Xi, R.; Yue, F.; Sahni, S.; Park, K.C.; Menezes, S.; Huang, M.L.H.; Zheng, M.; Kovacevic, Z.; et al. Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling. Mol. Pharmacol. 2016, 89, 521–540. [Google Scholar] [CrossRef]
- St-Pierre, J.; Ostergaard, H.L. A Role for the Protein Tyrosine Phosphatase CD45 in Macrophage Adhesion through the Regulation of Paxillin Degradation. PLoS ONE 2013, 8, e71531. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.-P.; Santen, R.J.; Kim, T.-H.; Park, H.; Fan, P.; Yue, W. Estrogen Stimulation of Cell Migration Involves Multiple Signaling Pathway Interactions. Endocrinology 2010, 151, 5146–5156. [Google Scholar] [CrossRef]
- Wu, G.; Song, Y.; Yin, Z.; Guo, J.; Wang, S.; Zhao, W.; Chen, X.; Zhang, Q.; Lu, J.-J.; Wang, Y. Ganoderiol A-Enriched Extract Suppresses Migration and Adhesion of MDA-MB-231 Cells by Inhibiting FAK-SRC-Paxillin Cascade Pathway. PLoS ONE 2013, 8, e76620. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L.; Antico, G.; Raghunath, P.N.; Tomaszewski, J.E.; Clevenger, C.V. Nek3 Kinase Regulates Prolactin-Mediated Cytoskeletal Reorganization and Motility of Breast Cancer Cells. Oncogene 2007, 26, 4668–4678. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Chang, A.-Y.; Lin-Feng, M.-H.; Tsou, W.-I.; Chiang, I.-H.; Lai, M.-Z. Paxillin Phosphorylation by JNK and p38 Is Required for NFAT Activation. Eur. J. Immunol. 2012, 42, 2165–2175. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; O’Malley, K.; Wang, Z.; Raj, G.V.; DeFranco, D.B.; Hammes, S.R. Paxillin Regulates Androgen- and Epidermal Growth Factor-Induced MAPK Signaling and Cell Proliferation in Prostate Cancer Cells *. J. Biol. Chem. 2010, 285, 28787–28795. [Google Scholar] [CrossRef]
- Webb, D.J.; Donais, K.; Whitmore, L.A.; Thomas, S.M.; Turner, C.E.; Parsons, J.T.; Horwitz, A.F. FAK-Src Signalling through Paxillin, ERK and MLCK Regulates Adhesion Disassembly. Nat. Cell Biol. 2004, 6, 154–161. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Yu, C.F.; Nickel, C.; Thomas, S.; Cantley, L.G. Hepatocyte Growth Factor Induces ERK-Dependent Paxillin Phosphorylation and Regulates Paxillin-Focal Adhesion Kinase Association *. J. Biol. Chem. 2002, 277, 10452–10458. [Google Scholar] [CrossRef] [PubMed]
- Ishibe, S.; Joly, D.; Liu, Z.-X.; Cantley, L.G. Paxillin Serves as an ERK-Regulated Scaffold for Coordinating FAK and Rac Activation in Epithelial Morphogenesis. Mol. Cell 2004, 16, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Case, L.B.; Baird, M.A.; Shtengel, G.; Campbell, S.L.; Hess, H.F.; Davidson, M.W.; Waterman-Storer, C.M. Molecular Mechanism of Vinculin Activation and Nanoscale Spatial Organization in Focal Adhesions. Nat. Cell Biol. 2015, 17, 880–892. [Google Scholar] [CrossRef]
- Pasapera, A.M.; Schneider, I.C.; Rericha, E.; Schlaepfer, D.D.; Waterman-Storer, C.M. Myosin II Activity Regulates Vinculin Recruitment to Focal Adhesions through FAK-Mediated Paxillin Phosphorylation. J. Cell Biol. 2010, 188, 877–890. [Google Scholar] [CrossRef]
- Citi, S.; Spadaro, D.; Schneider, Y.; Stutz, J.; Pulimeno, P. Regulation of Small GTPases at Epithelial Cell-Cell Junctions. Mol. Membr. Biol. 2011, 28, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Etienne-Manneville, S.; Hall, A. Rho GTPases in Cell Biology. Nature 2002, 420, 629–635. [Google Scholar] [CrossRef]
- Jaffe, A.; Hall, A. RHO GTPASES: Biochemistry and Biology. Annu. Rev. Cell Dev. Biol. 2005, 21, 247–269. [Google Scholar] [CrossRef] [PubMed]
- Blanchoin, L.; Boujemaa-Paterski, R.; Sykes, C.; Plastino, J. Actin Dynamics, Architecture, and Mechanics in Cell Motility. Physiol. Rev. 2014, 94, 235–263. [Google Scholar] [CrossRef]
- López-Colomé, A.M.; Lee-Rivera, I.; Benavides-Hidalgo, R.; López, E. Paxillin: A Crossroad in Pathological Cell Migration. J. Hematol. Amp Oncol. 2017, 10, 50. [Google Scholar] [CrossRef]
- Devreotes, P.N.; Horwitz, A.R. Signaling Networks That Regulate Cell Migration. Cold Spring Harb. Perspect. Biol. 2015, 7, a005959. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Borregaard, N.; Wynn, T.A. Phenotypic and Functional Plasticity of Cells of Innate Immunity: Macrophages, Mast cells and Neutrophils. Nat. Immunol. 2011, 12, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.A.; Grinstein, S. Phagocytosis: Receptors, Signal Integration, and the Cytoskeleton. Immunol. Rev. 2014, 262, 193–215. [Google Scholar] [CrossRef]
- Zheng, Q.-S.; Chen, S.-H.; Wu, Y.; Chen, H.; Chen, H.; Wei, Y.; Li, X.; Huang, J.; Xue, X.-Y.; Xu, N. Increased Paxillin Expression in Prostate Cancer Is Associated with Advanced Pathological Features, Lymph Node Metastases and Biochemical Recurrence. J. Cancer 2018, 9, 959–967. [Google Scholar] [CrossRef]
- Chen, B.; Xia, L.; Xu, C.; Xiao, F.; Wang, Y. Paxillin Functions as an Oncogene in Human Gliomas by Promoting Cell Migration and Invasion. OncoTargets Ther. 2016, 9, 6935–6943. [Google Scholar] [CrossRef]
- Huang, C.-C.; Wu, D.W.; Lin, P.-Y.; Lee, H. Paxillin Promotes Colorectal Tumor Invasion and Poor Patient Outcomes via ERK-Mediated Stabilization of Bcl-2 Protein by Phosphorylation at Serine 87. Oncotarget 2015, 6, 8698–8708. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Lai, Y.; Zhang, H.; Ren, K.; Liu, W.; An, Y.; Yao, J.; Fan, H. Hesperetin Inhibits TGF-B1-Induced Migration and Invasion of Triple Negative Breast Cancer MDA-MB-231 Cells via Suppressing Fyn/Paxillin/RhoA Pathway. Integr. Cancer Ther. 2022, 21, 15347354221086900. [Google Scholar] [CrossRef]
- Zhao, Y.; Scott, A.; Zhang, P.; Hao, Y.; Feng, X.; Somasundaram, S.; Khalil, A.M.; Willis, J.E.; Wang, B. Regulation of Paxillin-P130-PI3K-AKT Signaling Axis by Src and PTPRT Impacts Colon Tumorigenesis. Oncotarget 2016, 8, 48782–48793. [Google Scholar] [CrossRef] [PubMed]
- German, A.E.; Mammoto, T.; Jiang, E.; Ingber, D.E.; Mammoto, A. Paxillin Controls Endothelial Cell Migration and Tumor Angiogenesis by Altering Neuropilin 2 Expression. J. Cell Sci. 2014, 127, 1672–1683. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, X.; Qin, H.; Peng, W.-X.; Xue, Q.; Lv, H.; Zhang, H.; Qiu, Y.; Cheng, H.; Zhang, Y.; et al. Modulation of Tumor Cell Migration, Invasion and Cell-Matrix Adhesion by Human Monopolar Spindle-One-Binder 2. Oncol. Rep. 2015, 33, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Rognoni, E.; Ruppert, R.; Fässler, R. The Kindlin Family: Functions, Signaling Properties and Implications for Human Disease. J. Cell Sci. 2016, 129, 17–27. [Google Scholar] [CrossRef]
- Bledzka, K.; Białkowska, K.; Sossey-Alaoui, K.; Vaynberg, J.; Pluskota, E.; Qin, J.; Plow, E. Kindlin-2 Directly Binds Actin and Regulates Integrin Outside-in Signaling. J. Cell Biol. 2016, 213, 97–108. [Google Scholar] [CrossRef]
- Plow, E.F.; Qin, J.; Byzova, T.V. Kindling the Flame of Integrin Activation and Function with Kindlins. Curr. Opin. Hematol. 2009, 16, 323–328. [Google Scholar] [CrossRef]
- Chua, G.-L.; Tan, S.-M.; Bhattacharjya, S. NMR Characterization and Membrane Interactions of the Loop Region of Kindlin-3 F1 Subdomain. PLoS ONE 2016, 11, e0153501. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fukuda, K.; Xu, Z.; Ma, Y.-Q.; Hirbawi, J.; Mao, X.; Wu, C.; Plow, E.F.; Qin, J. Structural Basis of Phosphoinositide Binding to Kindlin-2 Protein Pleckstrin Homology Domain in Regulating Integrin Activation *. J. Biol. Chem. 2011, 286, 43334–43342. [Google Scholar] [CrossRef]
- Perera, H.D.; Qing, Y.; Yang, J.; Hirbawi, J.; Plow, E.F.; Qin, J. Membrane Binding of the N-Terminal Ubiquitin-like Domain of Kindlin-2 Is Crucial for Its Regulation of Integrin Activation. Structure 2011, 19, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Bledzka, K.; Liu, J.; Xu, Z.; Perera, H.D.; Yadav, S.P.; Bialkowska, K.; Qin, J.; Ma, Y.-Q.; Plow, E.F. Spatial Coordination of Kindlin-2 with Talin Head Domain in Interaction with Integrin β Cytoplasmic Tails *. J. Biol. Chem. 2012, 287, 24585–24594. [Google Scholar] [CrossRef]
- Ye, F.; Petrich, B.G.; Anekal, P.; Lefort, C.T.; Kasirer-Friede, A.; Shattil, S.J.; Ruppert, R.; Moser, M.; Fässler, R.; Ginsberg, M.H. The Mechanism of Kindlin-Mediated Activation of Integrin αIIbβ3. Curr. Biol. 2013, 23, 2288–2295. [Google Scholar] [CrossRef] [PubMed]
- Lai-Cheong, J.; Ussar, S.; Arita, K.; Hart, I.R.; McGrath, J.A. Colocalization of Kindlin-1, Kindlin-2, and Migfilin at Keratinocyte Focal Adhesion and Relevance to the Pathophysiology of Kindler Syndrome. J. Invest. Dermatol. 2008, 128, 2156–2165. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Janke, A.; Shimokawa, T.; Zhang, H. Phylogenetic Analysis of Kindlins Suggests Subfunctionalization of an Ancestral Unduplicated Kindlin into Three Paralogs in Vertebrates. Evol. Bioinform. 2011, 7, EBO.S6179-19. [Google Scholar] [CrossRef]
- Yan, M.; Zhang, L.; Wu, Y.; Gao, L.; Yang, W.; Li, J.; Chen, Y.; Jin, X. Increased Expression of Kindlin-2 Is Correlated with Hematogenous Metastasis and Poor Prognosis in Patients with Clear Cell Renal Cell Carcinoma. FEBS Open Bio 2016, 6, 660–665. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, J.; Guan, L.; Qi, L.; Tang, Y.; Ma, B.; Zhan, J.; Wang, Y.; Fang, W.; Zhang, H. Kindlin 2 Promotes Breast Cancer Invasion via Epigenetic Silencing of the microRNA200 Gene Family. Int. J. Cancer 2013, 133, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- Morrison, V.L.; Uotila, L.M.; Asens, M.L.; Savinko, T.; Fagerholm, S.C. Optimal T Cell Activation and B Cell Antibody Responses In Vivo Require the Interaction between Leukocyte Function—Associated Antigen-1 and Kindlin-3. J. Immunol. 2015, 195, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Robert, P.; Canault, M.; Farnarier, C.; Nurden, A.T.; Grosdidier, C.; Barlogis, V.; Bongrand, P.; Pierrès, A.; Chambost, H.; Alessi, M.-C. A Novel Leukocyte Adhesion Deficiency III Variant: Kindlin-3 Deficiency Results in Integrin- and Nonintegrin-Related Defects in Different Steps of Leukocyte Adhesion. J. Immunol. 2011, 186, 5273–5283. [Google Scholar] [CrossRef]
- Kasirer-Friede, A.; Kang, J.; Kahner, B.N.; Ye, F.; Ginsberg, M.H.; Shattil, S.J. ADAP Interactions with Talin and Kindlin Promote Platelet Integrin αIIbβ3 Activation and Stable Fibrinogen Binding. Blood 2014, 123, 3156–3165. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Deng, Y.; Sun, K.; Yang, H.; Liu, J.; Wang, M.; Zhang, Z.; Lin, J.; Wu, C.; Wei, Z.; et al. Structural Basis of Kindlin-Mediated Integrin Recognition and Activation. Proc. Natl. Acad. Sci. USA 2017, 114, 9349–9354. [Google Scholar] [CrossRef] [PubMed]
- Pluskota, E.; Dowling, J.J.; Gordon, N.K.; Golden, J.A.; Szpak, D.; West, X.Z.; Nestor, C.; Qing, Y.; Białkowska, K.; Byzova, T.V.; et al. The Integrin Coactivator Kindlin-2 Plays a Critical Role in Angiogenesis in Mice and Zebrafish. Blood 2011, 117, 4978–4987. [Google Scholar] [CrossRef]
- Kadry, Y.A.; Huet-Calderwood, C.; Simon, B.; Calderwood, D.A. Kindlin-2 Interacts with a Highly-Conserved Surface of ILK to Regulate Focal Adhesion Localization and Cell Spreading. J. Cell Sci. 2018, 131, jcs.221184. [Google Scholar] [CrossRef]
- Haga, R.B.; Ridley, A.J. Rho GTPases: Regulation and Roles in Cancer Cell Biology. Small GTPases 2016, 7, 207–221. [Google Scholar] [CrossRef]
- Hall, A. Rho GTPases and the Control of Cell Behaviour. Biochem. Soc. Trans. 2005, 33, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Calderwood, D.A.; Campbell, I.D.; Critchley, D.R. Talins and Kindlins: Partners in Integrin-Mediated Adhesion. Nat. Rev. Mol. Cell Biol. 2013, 14, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Has, C.; Chmel, N.; Levati, L.; Neri, I.; Sonnenwald, T.; Pigors, M.; Godbole, K.; Dudhbhate, A.; Bruckner-Tuderman, L.; Zambruno, G.; et al. FERMT1 Promoter Mutations in Patients with Kindler Syndrome. Clin. Genet. 2015, 88, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ussar, S.; Moser, M.; Widmaier, M.; Rognoni, E.; Harrer, C.; Genzel-Boroviczeny, O.; Fässler, R. Loss of Kindlin-1 Causes Skin Atrophy and Lethal Neonatal Intestinal Epithelial Dysfunction. PLoS Genet. 2008, 4, e1000289. [Google Scholar] [CrossRef]
- Zhan, J.; Zhang, H. Kindlins: Roles in Development and Cancer Progression. Int. J. Biochem. Cell Biol. 2018, 98, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-Y.; Zhu, M.; Zhang, P.-F.; Yang, X.; Wang, L.; Ying, J.; Luan, W.; Chen, C.; Liu, J.; Zhu, M.; et al. Elevated Kindlin-2 Promotes Tumour Progression and Angiogenesis through the mTOR/VEGFA Pathway in Melanoma. Aging 2019, 11, 6273–6285. [Google Scholar] [CrossRef]
- Sossey-Alaoui, K.; Pluskota, E.; Szpak, D.; Schiemann, W.P.; Plow, E.F. The Kindlin-2 Regulation of Epithelial-to-Mesenchymal Transition in Breast Cancer Metastasis Is Mediated through miR-200b. Sci. Rep. 2018, 8, 7360. [Google Scholar] [CrossRef]
- Shen, Z.; Ye, Y.; Kauttu, T.; Seppänen, H.; Vainionpää, S.; Wang, S.; Mustonen, H.; Puolakkainen, P. Novel Focal Adhesion Protein Kindlin-2 Promotes the Invasion of Gastric Cancer Cells through Phosphorylation of Integrin β1 and β3. J. Surg. Oncol. 2013, 108, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Białkowska, K.; Ma, Y.-Q.; Bledzka, K.; Sossey-Alaoui, K.; Izem, L.; Zhang, X.; Malinin, N.; Qin, J.; Byzova, T.; Plow, E. The Integrin Co-Activator Kindlin-3 Is Expressed and Functional in a Non-Hematopoietic Cell, the Endothelial Cell*. J. Biol. Chem. 2010, 285, 18640–18649. [Google Scholar] [CrossRef] [PubMed]
- Sossey-Alaoui, K.; Pluskota, E.; Białkowska, K.; Szpak, D.; Parker, Y.; Morrison, C.D.; Lindner, D.J.; Schiemann, W.P.; Plow, E.F. Kindlin-2 Regulates the Growth of Breast Cancer Tumors by Activating CSF-1–Mediated Macrophage Infiltration. Cancer Res. 2017, 77, 5129–5141. [Google Scholar] [CrossRef]
- Lü, F.; Zhu, L.; Bromberger, T.; Yang, J.; Yang, Q.; Liu, J.; Plow, E.F.; Moser, M.; Qin, J. Mechanism of Integrin Activation by talin and Its Cooperation with Kindlin. Nat. Commun. 2022, 13, 2362. [Google Scholar] [CrossRef]
- Theodosiou, M.; Widmaier, M.; Böttcher, R.T.; Rognoni, E.; Veelders, M.; Bharadwaj, M.; Lambacher, A.; Austen, K.; Müller, D.J.; Zent, R.; et al. Kindlin-2 Cooperates with Talin to Activate Integrins and Induces Cell Spreading by Directly Binding Paxillin. eLife 2016, 5, e10130. [Google Scholar] [CrossRef]
- Aretz, J.; Aziz, M.; Strohmeyer, N.; Sattler, M.; Fässler, R. Talin and Kindlin Use Integrin Tail Allostery and Direct Binding to Activate Integrins. Nat. Struct. Amp Mol. Biol. 2023, 30, 1913–1924. [Google Scholar] [CrossRef] [PubMed]
- Klapproth, S.; Bromberger, T.; Türk, C.; Krüger, M.; Moser, M. A Kindlin-3—Leupaxin—Paxillin Signaling Pathway Regulates Podosome Stability. J. Cell Biol. 2019, 218, 3436–3454. [Google Scholar] [CrossRef]
- Bachir, A.I.; Zareno, J.; Moissoglu, K.; Plow, E.F.; Gratton, E.; Horwitz, A.R. Integrin-Associated Complexes Form Hierarchically with Variable Stoichiometry in Nascent Adhesions. Curr. Biol. 2014, 24, 3764–3775. [Google Scholar] [CrossRef]
- Gao, J.; Huang, M.; Lai, J.; Mao, K.; Sun, P.; Cao, Z.; Hu, Y.; Zhang, Y.; Schulte, M.L.; Jin, C.; et al. Kindlin Supports Platelet Integrin αIIbβ3 Activation by Interacting with Paxillin. J. Cell Sci. 2017, 130, jcs.205641. [Google Scholar] [CrossRef] [PubMed]
- Haydari, Z.; Shams, H.; Jahed, Z.; Mofrad, M.R.K. Kindlin Assists Talin to Promote Integrin Activation. Biophys. J. 2020, 118, 1977–1991. [Google Scholar] [CrossRef] [PubMed]
- Deakin, N.O.; Turner, C.E. Distinct Roles for Paxillin and Hic-5 in Regulating Breast Cancer Cell Morphology, Invasion, and Metastasis. Mol. Biol. Cell 2011, 22, 327–341. [Google Scholar] [CrossRef]
- Bachmann, M.; Skripka, A.; Weißenbruch, K.; Wehrle-Haller, B.; Bastmeyer, M. Phosphorylated Paxillin and Phosphorylated FAK Constitute Subregions within Focal Adhesions. J. Cell Sci. 2022, 135, jcs258764. [Google Scholar] [CrossRef] [PubMed]
- Ameka, M.; Kahle, M.P.; Perez-Neut, M.; Gentile, S.; Mirza, A.A.; Cuevas, B.D. MEKK2 Regulates Paxillin Ubiquitylation and Localization in MDA-MB 231 Breast Cancer Cells. Biochem. J. 2014, 464, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Le Dévédec, S.E.; Geverts, B.; de Bont, H.; Yan, K.; Verbeek, F.J.; Houtsmuller, A.B.; van de Water, B. The Residence Time of Focal Adhesion Kinase (FAK) and Paxillin at Focal Adhesions in Renal Epithelial Cells Is Determined by Adhesion Size, Strength and Life Cycle Status. J. Cell Sci. 2012, 125, 4498–4506. [Google Scholar] [CrossRef] [PubMed]
- Verkoeijen, S.; Ma, Y.; van Roosmalen, W.; Lalai, R.; van Miltenburg, M.H.A.M.; de Graauw, M.; van de Water, B.; Dévédec, S.E.L. Paxillin Serine 178 Phosphorylation in Control of Cell Migration and Metastasis Formation through Regulation of EGFR Expression in Breast Cancer. J. Cancer Metastasis Treat. 2019, 2019. [Google Scholar] [CrossRef]
- Jahed, Z.; Haydari, Z.; Rathish, A.; Mofrad, M.R. Kindlin Is Mechanosensitive: Force-Induced Conformational Switch Mediates Cross-Talk among Integrins. Biophys. J. 2019, 116, 1011–1024. [Google Scholar] [CrossRef] [PubMed]
- Kechagia, J.Z.; Ivaska, J.; Roca-Cusachs, P. Integrins as Biomechanical Sensors of the Microenvironment. Nat. Rev. Mol. Cell Biol. 2019, 20, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Kintscher, U.; Wakino, S.; Kim, S.; Fleck, E.; Hsueh, W.A.; Law, R.E. Angiotensin II Induces Migration and Pyk2/Paxillin Phosphorylation of Human Monocytes. Hypertension 2001, 37, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Lock, F.E.; Ryan, K.R.; Poulter, N.S.; Parsons, M.; Hotchin, N.A. Differential Regulation of Adhesion Complex Turnover by ROCK1 and ROCK2. PLoS ONE 2012, 7, e31423. [Google Scholar] [CrossRef]
- Hall, A. Rho GTPases and the Actin Cytoskeleton. Science 1998, 279, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Sulzmaier, F.J.; Jean, C.; Schlaepfer, D.D. FAK in Cancer: Mechanistic Findings and Clinical Applications. Nat. Rev. Cancer 2014, 14, 598–610. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, X.; Liu, Z.; Lu, K.; Liu, R.-S.; Guo, X. Integrin-Mediated Signaling via Paxillin-GIT1-PIX Promotes Localized Rac Activation at the Leading Edge and Cell Migration. J. Cancer 2020, 11, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bhetwal, B.P.; Gunst, S.J. Rho Kinase Collaborates with P21-Activated Kinase to Regulate Actin Polymerization and Contraction in Airway Smooth Muscle. J. Physiol. 2018, 596, 3617–3635. [Google Scholar] [CrossRef]
- Asperti, C.; Astro, V.; Pettinato, E.; Paris, S.; Bachi, Á.; de Curtis, I. Biochemical and Functional Characterization of the Interaction between Liprin-A1 and GIT1: Implications for the Regulation of Cell Motility. PLoS ONE 2011, 6, e20757. [Google Scholar] [CrossRef]
- Frank, S.R.; Adelstein, M.R.; Hansen, S.I. GIT2 Represses Crk- and Rac1-Regulated Cell Spreading and Cdc42-Mediated Focal Adhesion Turnover. EMBO J. 2006, 25, 1848–1859. [Google Scholar] [CrossRef] [PubMed]
- Klapholz, B.; Brown, N.H. Talin—The Master of Integrin Adhesions. J. Cell Sci. 2017, 130, 2435–2446. [Google Scholar] [CrossRef] [PubMed]
- Has, C.; Herz, C.; Зимина, Е.П.; Qu, H.; He, Y.; Zhang, Z.; Wen, T.; Gache, Y.; Aumailley, M.; Bruckner-Tuderman, L. Kindlin-1 Is Required for RhoGTPase-Mediated Lamellipodia Formation in Keratinocytes. Am. J. Pathol. 2009, 175, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK Signalling Pathway and Tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Burotto, M.; Chiou, V.L.; Lee, J.; Kohn, E.C. The MAPK Pathway across Different Malignancies: A New Perspective. Cancer 2014, 120, 3446–3456. [Google Scholar] [CrossRef]
- Gujjar, R.S.; Kumar, R.; Goswami, S.K.; Srivastava, S.; Kumar, S. MAPK Signaling Pathway Orchestrates and Fine-Tunes the Pathogenicity of Colletotrichum Falcatum. J. Proteom. 2023, 292, 105056. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, N.; Kobayashi, S. Paxillin Participates in the Sphingosylphosphorylcholine-Induced Abnormal Contraction of Vascular Smooth Muscle by Regulating Rho-Kinase Activation. Cell Commun. Signal. 2024, 22, 58. [Google Scholar] [CrossRef] [PubMed]
- Tumenbayar, B.-I.; Biber, J.C.; Tutino, V.M.; Bae, Y. Unveiling the Impact of FAK and p130Cas on Early Transcriptional Regulation of Cellular Metabolism in Response to ECM Stiffness. Biophys. J. 2024, 123, 242a. [Google Scholar] [CrossRef]
- Chatterji, T.; Varkaris, A.S.; Parikh, N.U.; Song, J.H.; Cheng, C.-J.; Schweppe, R.E.; Alexander, S.; Davis, J.W.; Troncoso, P.; Friedl, P.; et al. Yes-Mediated Phosphorylation of Focal Adhesion Kinase at Tyrosine 861 Increases Metastatic Potential of Prostate Cancer Cells. Oncotarget 2015, 6, 10175–10194. [Google Scholar] [CrossRef]
- Mia, S.; Jarajapu, Y.; Rao, R.; Mathew, S. Integrin B1 Promotes Pancreatic Tumor Growth by Upregulating Kindlin-2 and TGF-β Receptor-2. Int. J. Mol. Sci. 2021, 22, 10599. [Google Scholar] [CrossRef]
- Deakin, N.O.; Pignatelli, J.; Turner, C.E. Diverse Roles for the Paxillin Family of Proteins in Cancer. Genes Cancer 2012, 3, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Bian, F.; Hu, H.; Zhu, T.; Li, C.; Zhou, Q. Effects of Kindlin-2 on Proliferation and Migration of VSMC and Integrin β1 Andβ3 Activity via FAK-PI3K Signaling Pathway. PLoS ONE 2020, 15, e0225173. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Mu, G.-G.; Ding, Q.-S.; Li, Y.-X.; Shi, Y.; Dai, J.-F.; Yu, H.-G. Phosphatase and Tensin Homolog (PTEN) Represses Colon Cancer Progression through Inhibiting Paxillin Transcription via PI3K/AKT/NF-κB Pathway. J. Biol. Chem. 2015, 290, 15018–15029. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Xu, M.; Maeda, N.; Tsunedomi, R.; Kishi, H.; Nagano, H.; Kobayashi, S. Fyn-Mediated Paxillin Tyrosine 31 Phosphorylation Regulates Migration and Invasion of Breast Cancer Cells. Int. J. Mol. Sci. 2023, 24, 15980. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Lin, W.; Ye, Y.; Wang, L.; Chen, X.; Zang, S.; Huang, A. Kindlin-2 Promotes Hepatocellular Carcinoma Invasion and Metastasis by Increasing Wnt/β-Catenin Signaling. J. Exp. Clin. Cancer Res. 2017, 36, 134. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Rana, P.S.; Alkrekshi, A.; Bialkowska, K.; Markovic, V.; Schiemann, W.P.; Plow, E.F.; Pluskota, E.; Sossey-Alaoui, K. Targeted Deletion of Kindlin-2 in Mouse Mammary Glands Inhibits Tumor Growth, Invasion, and Metastasis Downstream of a TGF-β/EGF Oncogenic Signaling Pathway. Cancers 2022, 14, 639. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Tian, Y.; Qian, T.; Li, W.; Liu, C.; Chu, B.; Kong, Q.; Cai, R.; Bai, P.; Ma, L.; et al. Kindlin-2 Promotes Src-Mediated Tyrosine Phosphorylation of Androgen Receptor and Contributes to Breast Cancer Progression. Cell Death Dis. 2022, 13, 482. [Google Scholar] [CrossRef]
- Böttcher, R.T.; Veelders, M.; Rombaut, P.; Faix, J.; Theodosiou, M.; Stradal, T.E.; Rottner, K.; Zent, R.; Herzog, F.; Fässler, R. Kindlin-2 Recruits Paxillin and Arp2/3 to Promote Membrane Protrusions during Initial Cell Spreading. J. Cell Biol. 2017, 216, 3785–3798. [Google Scholar] [CrossRef] [PubMed]
- Klapproth, S.; Richter, K.; Türk, C.; Bock, T.; Bromberger, T.; Dominik, J.; Huck, K.; Pfaller, K.; Hess, M.W.; Reichel, C.A.; et al. Low Kindlin-3 Levels in Osteoclasts of Kindlin-3 Hypomorphic Mice Result in Osteopetrosis Due to Leaky Sealing Zones. J. Cell Sci. 2021, 134, jcs259040. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; DeSelm, C.J.; Broekelmann, T.J.; Mecham, R.P.; Pol, S.V.; Choi, K.; Teitelbaum, S.L. Paxillin Contracts the Osteoclast Cytoskeleton. J. Bone Miner. Res. 2012, 27, 2490. [Google Scholar] [CrossRef]
- Yang, W.-J.; Yang, Y.-N.; Cao, J.; Man, Z.-H.; Li, Y.; Xing, Y.-Q. Paxillin Regulates Vascular Endothelial Growth Factor A-Induced In Vitro Angiogenesis of Human Umbilical Vein Endothelial Cells. Mol. Med. Rep. 2015, 11, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Yu, Y.; Chi, X.; Lu, D.; Song, Y.; Zhang, Y.; Zhang, H. Depletion of Kindlin-2 Induces Cardiac Dysfunction in Mice. Sci. China Life Sci. 2016, 59, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chi, X.; Zhang, X.; Feng, X.; Chu, W.; Zhang, S.; Wu, J.; Song, Y.; Zhang, Y.; Kong, W.; et al. Kindlin-2 Suppresses Transcription Factor GATA4 through Interaction with SUV39H1 to Attenuate Hypertrophy. Cell Death Amp Dis. 2019, 10, 890. [Google Scholar] [CrossRef]
- Kummer, C.; Petrich, B.G.; Rose, D.M.; Ginsberg, M.H. A Small Molecule That Inhibits the Interaction of Paxillin and Alpha 4 Integrin Inhibits Accumulation of Mononuclear Leukocytes at a Site of Inflammation. J. Biol. Chem. 2010, 285, 9462–9469. [Google Scholar] [CrossRef]
- Marlowe, T.; Alvarado, C.; Rivera, A.; Lenzo, F.; Nott, R.; Bondugji, D.; Montoya, J.; Hurley, A.; Kaplan, M.; Capaldi, A.; et al. Development of a High-Throughput Fluorescence Polarization Assay to Detect Inhibitors of the FAK-Paxillin Interaction. SLAS Discov. Adv. Life Sci. R D 2020, 25, 21–32. [Google Scholar] [CrossRef]
- Cui, S.; Wang, J.; Wu, Q.; Qian, J.; Yang, C.; Bo, P. Genistein Inhibits the Growth and Regulates the Migration and Invasion Abilities of Melanoma Cells via the FAK/Paxillin and MAPK Pathways. Oncotarget 2017, 8, 21674–21691. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huang, X.; Luo, W.; Liu, X.; Chen, W. Progerin Inhibits the Proliferation and Migration of Melanoma Cells by Regulating the Expression of Paxillin. OncoTargets Ther. 2024, 17, 227–242. [Google Scholar] [CrossRef]
- Mousson, A.; Legrand, M.; Steffan, T.; Vauchelles, R.; Carl, P.; Gies, J.-P.; Lehmann, M.; Zuber, G.; De Mey, J.; Dujardin, D.; et al. Inhibiting FAK–Paxillin Interaction Reduces Migration and Invadopodia-Mediated Matrix Degradation in Metastatic Melanoma Cells. Cancers 2021, 13, 1871. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Xiao, Y.; Shen, P.; Tan, L.; Zhang, S.; Liu, Q.; Gao, Z.; Zhao, J.; Zhao, Y.; et al. Pan-Cancer Analysis Reveals an Immunological Role and Prognostic Potential of PXN in Human Cancer. Aging 2021, 13, 16248–16266. [Google Scholar] [CrossRef]
- Meng, L.-Q.; Zhang, L.-Y.; Xu, W.-Z. Paxillin Is a Potential Prognostic Biomarker Associated with Immune Cell Infiltration in Ovarian Cancer. Heliyon 2023, 9, e14095. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Bao, Y.; Ge, S.; Sun, P.; Sun, J.; Liu, J.; Chen, F.; Han, L.; Cao, Z.; Qin, J.; et al. Sharpin Suppresses B1-Integrin Activation by Complexing with the B1 Tail and Kindlin-1. Cell Commun. Signal. 2019, 17, 101. [Google Scholar] [CrossRef]
- Anderson, N.R.; Lee, D.; Hammer, D.A. Adhesive Dynamics Simulations Quantitatively Predict Effects of Kindlin-3 Deficiency on T-Cell Homing. Integr. Biol. 2019, 11, 293–300. [Google Scholar] [CrossRef]
- Guenther, C.; Faisal, I.; Uotila, L.M.; Asens, M.L.; Harjunpää, H.; Savinko, T.; Öhman, T.; Yao, S.; Moser, M.; Morris, S.W.; et al. A B2-Integrin/MRTF-a/SRF Pathway Regulates Dendritic Cell Gene Expression, Adhesion, and Traction Force Generation. Front. Immunol. 2019, 10, 1138. [Google Scholar] [CrossRef]
- Zhuo, S.; Tang, C.; Yang, L.; Chen, Z.; Chen, T.; Wang, K.; Yang, K. Independent Prognostic Biomarker FERMT3 Associated with Immune Infiltration and Immunotherapy Response in Glioma. Ann. Med. 2023, 55, 2264325. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.; Gupta, P.; Srivastava, S.K. Penfluridol: An Antipsychotic Agent Suppresses Metastatic Tumor Growth in Triple-Negative Breast Cancer by Inhibiting Integrin Signaling Axis. Cancer Res. 2016, 76, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Danilucci, T.M.; Santos, P.K.; Pachane, B.C.; Pisani, G.F.D.; Lino, R.L.B.; Casali, B.C.; Altei, W.F.; Selistre-de-Araujo, H.S. Recombinant RGD-Disintegrin DisBa-01 Blocks Integrin α(v)β(3) and Impairs VEGF Signaling in Endothelial Cells. Cell Commun. Signal. CCS 2019, 17, 27. [Google Scholar] [CrossRef]
- Plouffe, S.W.; Lin, K.; Moore, J.L.; Tan, F.E.; Ma, S.; Ye, Z.; Qiu, Y.; Ren, B.; Guan, K.-L. The Hippo Pathway Effector Proteins YAP and TAZ Have Both Distinct and Overlapping Functions in the Cell. J. Biol. Chem. 2018, 293, 11230–11240. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Shao, R.; Xin, H.; Zhu, Y.; Jiang, S.; Wu, J.; Yan, H.; Jia, T.; Ge, M.; Shi, X. Paxillin and Kindlin: Research Progress and Biological Functions. Biomolecules 2025, 15, 173. https://doi.org/10.3390/biom15020173
Li Z, Shao R, Xin H, Zhu Y, Jiang S, Wu J, Yan H, Jia T, Ge M, Shi X. Paxillin and Kindlin: Research Progress and Biological Functions. Biomolecules. 2025; 15(2):173. https://doi.org/10.3390/biom15020173
Chicago/Turabian StyleLi, Zijian, Ruonan Shao, Honglei Xin, Yilin Zhu, Suyu Jiang, Jiao Wu, Han Yan, Tongyu Jia, Mengyu Ge, and Xiaofeng Shi. 2025. "Paxillin and Kindlin: Research Progress and Biological Functions" Biomolecules 15, no. 2: 173. https://doi.org/10.3390/biom15020173
APA StyleLi, Z., Shao, R., Xin, H., Zhu, Y., Jiang, S., Wu, J., Yan, H., Jia, T., Ge, M., & Shi, X. (2025). Paxillin and Kindlin: Research Progress and Biological Functions. Biomolecules, 15(2), 173. https://doi.org/10.3390/biom15020173