Perception and Longevity Control in Invertebrate Model Organisms—A Mini-Review of Recent Advances
Abstract
:1. Introduction
2. Dietary Cues
Food-Related Cues and Dietary Restriction
3. Social Cues
3.1. Mating-Related Cues
3.2. Other Social Cues
4. Stress Perception
5. Light
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, H.A.; Dean, E.S.; Pletcher, S.D.; Leiser, S.F. Cell Non-Autonomous Regulation of Health and Longevity. Elife 2020, 9, e62659. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Riera, C.E.; Dillin, A. Emerging Role of Sensory Perception in Aging and Metabolism. Trends Endocrinol. Metab. 2016, 27, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Dixit, A.; Bhattacharya, B. Sensory Perception of Environmental Cues as a Modulator of Aging and Neurodegeneration: Insights from Caenorhabditis elegans. J. Neurosci. Res. 2021, 99, 2416–2426. [Google Scholar] [CrossRef] [PubMed]
- Gendron, C.M.; Chakraborty, T.S.; Chung, B.Y.; Harvanek, Z.M.; Holme, K.J.; Johnson, J.C.; Lyu, Y.; Munneke, A.S.; Pletcher, S.D. Neuronal Mechanisms that Drive Organismal Aging Through the Lens of Perception. Annu. Rev. Physiol. 2020, 82, 227–249. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flatt, T. Survival Costs of Reproduction in Drosophila. Exp. Gerontol. 2011, 46, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Partridge, L.; Gems, D.; Withers, D.J. Sex and Death: What Is the Connection? Cell 2005, 120, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Krittika, S.; Yadav, P. An Overview of Two Decades of Diet Restriction Studies Using Drosophila. Biogerontology 2019, 20, 723–740. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, I.; Boll, W.; Waterson, M.J.; Chan, T.; Chandra, R.; Pletcher, S.D.; Alcedo, J. Positive and Negative Gustatory Inputs Affect Drosophila Lifespan Partly in Parallel to dFOXO Signaling. Proc. Natl. Acad. Sci. USA 2014, 111, 8143–8148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Apfeld, J.; Kenyon, C. Regulation of Lifespan by Sensory Perception in Caenorhabditis elegans. Nature 1999, 402, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Alcedo, J.; Kenyon, C. Regulation of C. elegans Longevity by Specific Gustatory and Olfactory Neurons. Neuron 2004, 41, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Libert, S.; Zwiener, J.; Chu, X.; Vanvoorhies, W.; Roman, G.; Pletcher, S.D. Regulation of Drosophila Life Span by Olfaction and Food-Derived Odors. Science 2007, 315, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.D.; Kaeberlein, T.L.; Lydum, B.T.; Sager, J.; Welton, K.L.; Kennedy, B.K.; Kaeberlein, M. Age- and Calorie-Independent Life Span Extension from Dietary Restriction by Bacterial Deprivation in Caenorhabditis elegans. BMC Dev. Biol. 2008, 8, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, B.; Jun, H.; Wu, J.; Liu, J.; Xu, X.Z.S. Olfactory Perception of Food Abundance Regulates Dietary Restriction-Mediated Longevity via a Brain-to-Gut Signal. Nat. Aging 2021, 1, 255–268. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miller, H.A.; Huang, S.; Dean, E.S.; Schaller, M.L.; Tuckowski, A.M.; Munneke, A.S.; Beydoun, S.; Pletcher, S.D.; Leiser, S.F. Serotonin and Dopamine Modulate Aging in Response to Food Odor and Availability. Nat. Commun. 2022, 13, 3271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sawin, E.R.; Ranganathan, R.; Horvitz, H.R. C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway. Neuron 2000, 26, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Kitto, E.S.; Beydoun, S.; Leiser, S.F. Food Touch Limits Lifespan Through Bioamine and Neuroendocrine Signaling. bioRxiv 2024. [Google Scholar]
- Lyu, Y.; Promislow, D.E.L.; Pletcher, S.D. Serotonin Signaling Modulates Aging-Associated Metabolic Network Integrity in Response to Nutrient Choice in Drosophila melanogaster. Commun. Biol. 2021, 4, 740. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ro, J.; Pak, G.; Malec, P.A.; Lyu, Y.; Allison, D.B.; Kennedy, R.T.; Pletcher, S.D. Serotonin Signaling Mediates Protein Valuation and Aging. Elife 2016, 5, e16843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lyu, Y.; Weaver, K.J.; Shaukat, H.A.; Plumoff, M.L.; Tjilos, M.; Promislow, D.E.; Pletcher, S.D. Drosophila Serotonin 2A Receptor Signaling Coordinates Central Metabolic Processes to Modulate Aging in Response to Nutrient Choice. Elife 2021, 10, e59399. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strilbytska, O.; Yurkevych, I.; Semaniuk, U.; Gospodaryov, D.; Simpson, S.J.; Lushchak, O. Life-History Trade-Offs in Drosophila: Flies Select a Diet to Maximize Reproduction at the Expense of Lifespan. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae057. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vigne, P.; Frelin, C. Food Presentation Modifies Longevity and the Beneficial Action of Dietary Restriction in Drosophila. Exp. Gerontol. 2010, 45, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Strilbytska, O.; Semaniuk, U.; Bubalo, V.; Storey, K.B.; Lushchak, O. Dietary Choice Reshapes Metabolism in Drosophila by Affecting Consumption of Macronutrients. Biomolecules 2022, 12, 1201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pontillo, N.; Lyu, Y. Rutgers, the State University of New Jersey, New Brunswick, NJ, USA. Unpublished work. 2025. [Google Scholar]
- Kahsai, L.; Winther, A.M. Chemical Neuroanatomy of the Drosophila Central Complex: Distribution of Multiple Neuropeptides in Relation to Neurotransmitters. J. Comp. Neurol. 2011, 519, 290–315. [Google Scholar] [CrossRef] [PubMed]
- Sareen, P.F.; McCurdy, L.Y.; Nitabach, M.N. A Neuronal Ensemble Encoding Adaptive Choice During Sensory Conflict in Drosophila. Nat. Commun. 2021, 12, 4131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Munneke, A.S.; Chakraborty, T.S.; Porter, S.S.; Gendron, C.M.; Pletcher, S.D. The Serotonin Receptor 5-HT2A Modulates Lifespan and Protein Feeding in Drosophila melanogaster. Front. Aging 2022, 3, 1068455. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sizemore, T.R.; Dacks, A.M. Serotonergic Modulation Differentially Targets Distinct Network Elements within the Antennal Lobe of Drosophila melanogaster. Sci. Rep. 2016, 6, 37119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gendron, C.M.; Chakraborty, T.S.; Duran, C.; Dono, T.; Pletcher, S.D. Ring Neurons in the Drosophila Central Complex Act as a Rheostat for Sensory Modulation of Aging. PLoS Biol. 2023, 21, e3002149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gnerer, J.P.; Venken, K.J.; Dierick, H.A. Gene-Specific Cell Labeling Using MiMIC Transposons. Nucleic Acids Res. 2015, 43, e56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yao, Z.; Scott, K. Serotonergic Neurons Translate Taste Detection into Internal Nutrient Regulation. Neuron 2022, 110, 1036–1050.e7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Q.P.; Lin, Y.Q.; Lai, M.L.; Su, Z.; Oyston, L.J.; Clark, T.; Park, S.J.; Khuong, T.M.; Lau, M.T.; Shenton, V.; et al. PGC1α Controls Sucrose Taste Sensitization in Drosophila. Cell Rep. 2020, 31, 107480. [Google Scholar] [CrossRef] [PubMed]
- Uneyama, H.; Niijima, A.; San Gabriel, A.; Torii, K. Luminal Amino Acid Sensing in the Rat Gastric Mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G1163–G1170. [Google Scholar] [CrossRef] [PubMed]
- Mohammad-Zadeh, L.F.; Moses, L.; Gwaltney-Brant, S.M. Serotonin: A Review. J. Vet. Pharmacol. Ther. 2008, 31, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yin, C.; Yang, F.; Zhang, Y.; Huang, H.; Wang, J.; Deng, B.; Cai, T.; Rao, Y.; Xi, R. The Cellular Diversity and Transcription Factor Code of Drosophila Enteroendocrine Cells. Cell Rep. 2019, 29, 4172–4185.e5. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Nouzová, M.; Noriega, F.G.; Tatar, M. Gut-to-Brain Regulation of Drosophila Aging through Neuropeptide F, Insulin, and Juvenile Hormone. Proc. Natl. Acad. Sci. USA 2024, 121, e2411987121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Edwards-Hampton, S.A.; Ard, J. The Latest Evidence and Clinical Guidelines for Use of Meal Replacements in Very-Low-Calorie Diets or Low-Calorie Diets for the Treatment of Obesity. Diabetes Obes. Metab. 2024, 26 (Suppl. S4), 28–38. [Google Scholar] [CrossRef] [PubMed]
- Durbin, C.G.; Hutchison, A.; Colecchi, T.; Mulligan, J.; Bodepudi, S.; Zanni, M.V.; Anekwe, C.V. Meal Replacement Therapy for Obesity and Diabetes Remission: Efficacy Assessment and Considerations of Barriers and Facilitators to Adherence among U.S. Individuals with Low Economic Resources. Rev. Endocr. Metab. Disord. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Murphy, C.T. Sex and Death. Curr. Top. Dev. Biol. 2021, 144, 353–375. [Google Scholar] [CrossRef] [PubMed]
- Harrison, L.M.; Churchill, E.R.; Fairweather, M.; Smithson, C.H.; Chapman, T.; Bretman, A. Ageing Effects of Social Environments in ‘Non-Social’ Insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2024, 379, 20220463. [Google Scholar] [PubMed] [PubMed Central]
- White, M.A.; Wolfner, M.F. The Effects of Male Seminal Fluid Proteins on Gut/Gonad Interactions in Drosophila. Insects 2022, 13, 623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aprison, E.Z.; Ruvinsky, I. Sexually Antagonistic Male Signals Manipulate Germline and Soma of C. elegans Hermaphrodites. Curr. Biol. 2016, 26, 2827–2833. [Google Scholar] [CrossRef] [PubMed]
- Maures, T.J.; Booth, L.N.; Benayoun, B.A.; Izrayelit, Y.; Schroeder, F.C.; Brunet, A. Males Shorten the Life Span of C. elegans Hermaphrodites via Secreted Compounds. Science 2014, 343, 541–544. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, C.; Runnels, A.M.; Murphy, C.T. Mating and Male Pheromone Kill Caenorhabditis Males through Distinct Mechanisms. Elife 2017, 6, e23493. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ludewig, A.H.; Artyukhin, A.B.; Aprison, E.Z.; Rodrigues, P.R.; Pulido, D.C.; Burkhardt, R.N.; Panda, O.; Zhang, Y.K.; Gudibanda, P.; Ruvinsky, I.; et al. An Excreted Small Molecule Promotes C. elegans Reproductive Development and Aging. Nat. Chem. Biol. 2019, 15, 838–845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cordts, R.; Partridge, L. Courtship Reduces Longevity of Male Drosophila melanogaster. Anim. Behav. 1996, 52, 269–278. [Google Scholar] [CrossRef]
- Gendron, C.M.; Kuo, T.H.; Harvanek, Z.M.; Chung, B.Y.; Yew, J.Y.; Dierick, H.A.; Pletcher, S.D. Drosophila Life Span and Physiology Are Modulated by Sexual Perception and Reward. Science 2014, 343, 544–548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harvanek, Z.M.; Lyu, Y.; Gendron, C.M.; Johnson, J.C.; Kondo, S.; Promislow, D.E.L.; Pletcher, S.D. Perceptive Costs of Reproduction Drive Ageing and Physiology in Male Drosophila. Nat. Ecol. Evol. 2017, 1, 152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryvkin, J.; Omesi, L.; Kim, Y.K.; Levi, M.; Pozeilov, H.; Barak-Buchris, L.; Agranovich, B.; Abramovich, I.; Gottlieb, E.; Jacob, A.; et al. Failure to Mate Enhances Investment in Behaviors That May Promote Mating Reward and Impairs the Ability to Cope with Stressors via a Subpopulation of Neuropeptide F receptor neurons. PLoS Genet. 2024, 20, e1011054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fedina, T.Y.; Cummins, E.T.; Promislow, D.E.L.; Pletcher, S.D. The Neuropeptide Drosulfakinin Enhances Choosiness and Protects Males from the Aging Effects of Social Perception. Proc. Natl. Acad. Sci. USA 2023, 120, e2308305120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Corbel, Q.; Serra, M.; García-Roa, R.; Carazo, P. Male Adaptive Plasticity Can Explain the Evolution of Sexual Perception Costs. Am. Nat. 2022, 200, E110–E123. [Google Scholar] [CrossRef] [PubMed]
- García-Roa, R.; Serra, M.; Carazo, P. Ageing via Perception Costs of Reproduction Magnifies Sexual Selection. Proc. Biol. Sci. 2018, 285, 20182136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garratt, M.; Erturk, I.; Alonzo, R.; Zufall, F.; Leinders-Zufall, T.; Pletcher, S.D.; Miller, R.A. Lifespan Extension in Female Mice by Early, Transient Exposure to Adult Female Olfactory Cues. Elife 2022, 11, e84060. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garratt, M.; Try, H.; Neyt, C.; Brooks, R.C. Exposure to Female Olfactory Cues Hastens Reproductive Ageing and Increases Mortality when Mating in Male Mice. Proc. Biol. Sci. 2024, 291, 20231848. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garratt, M.; Try, H.; Smiley, K.O.; Grattan, D.R.; Brooks, R.C. Mating in the Absence of Fertilization Promotes a Growth-Reproduction Versus Lifespan Trade-Off in Female Mice. Proc. Natl. Acad. Sci. USA 2020, 117, 15748–15754. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leech, T.; Sait, S.M.; Bretman, A. Sex-Specific Effects of Social Isolation on Ageing in Drosophila melanogaster. J. Insect Physiol. 2017, 102, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Bretman, A.; Westmancoat, J.D.; Gage, M.J.; Chapman, T. Costs and Benefits of Lifetime Exposure to Mating Rivals in Male Drosophila melanogaster. Evolution 2013, 67, 2413–2422. [Google Scholar] [CrossRef] [PubMed]
- Iliadi, K.G.; Iliadi, N.N.; Boulianne, G.L. Regulation of Drosophila Life-Span: Effect of Genetic Background, Sex, Mating and Social Status. Exp. Gerontol. 2009, 44, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Carazo, P.; Green, J.; Sepil, I.; Pizzari, T.; Wigby, S. Inbreeding Removes Sex Differences in Lifespan in a Population of Drosophila melanogaster. Biol. Lett. 2016, 12, 20160337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bretman, A.; Fricke, C.; Chapman, T. Plastic Responses of Male Drosophila melanogaster to the Level of Sperm Competition Increase Male Reproductive Fitness. Proc. Biol. Sci. 2009, 276, 1705–1711. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smithson, C.H.; Duncan, E.J.; Sait, S.M.; Bretman, A. Sensory Perception of Rivals Has Trait-Dependent Effects on Plasticity in Drosophila melanogaster. Behav. Ecol. 2024, 35, arae031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, Y.C.; Zhang, M.; Wang, S.H.; Chieh, C.W.; Shen, P.Y.; Chen, Y.L.; Chang, Y.C.; Kuo, T.H. The Deleterious Effects of Old Social Partners on Drosophila Lifespan and Stress Resistance. NPJ Aging 2022, 8, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, L.C.; Yu, C.C.; Kao, C.F. Social Perception of Young Adults Prolongs the Lifespan of Aged Drosophila. NPJ Aging Mech. Dis. 2021, 7, 21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruan, H.; Wu, C.F. Social Interaction-Mediated Lifespan Extension of Drosophila Cu/Zn Superoxide Dismutase Mutants. Proc. Natl. Acad. Sci. USA 2008, 105, 7506–7510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garrido, A.; Cruces, J.; Ceprián, N.; Corpas, I.; Tresguerres, J.A.; De la Fuente, M. Social Environment Improves Immune Function and Redox State in Several Organs from Prematurely Aging Female Mice and Increases Their Lifespan. Biogerontology 2019, 20, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Story, D.; Gallien, J.; Al-Gharaibeh, A.; Sandstrom, M.; Rossignol, J.; Dunbar, G.L. Housing R6/2 Mice with Wild-Type Littermates Increases Lifespan. J. Huntingtons Dis. 2021, 10, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.J.; Hunt, M.J.; Morton, A.J. Environmental Stimulation Increases Survival in Mice Transgenic for Exon 1 of the Huntington’s Disease Gene. Mov. Disord. 2000, 15, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhou, X. Corpse Management in Social Insects. Int. J. Biol. Sci. 2013, 9, 313–321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chakraborty, T.S.; Gendron, C.M.; Lyu, Y.; Munneke, A.S.; DeMarco, M.N.; Hoisington, Z.W.; Pletcher, S.D. Sensory Perception of Dead Conspecifics Induces Aversive Cues and Modulates Lifespan through Serotonin in Drosophila. Nat. Commun. 2019, 10, 2365. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clutton-Brock, T.H. Reproductive Effort and Terminal Investment in Iteroparous Animals. Am. Nat. 1984, 123, 212–229. [Google Scholar] [CrossRef]
- Corbel, Q.; Carazo, P. Perception of Dead Conspecifics Increases Reproductive Investment in Fruit Flies. Funct. Ecol. 2022, 36, 1834–1844. [Google Scholar] [CrossRef]
- Hernandez-Lima, M.A.; Seo, B.; Urban, N.D.; Truttmann, M.C. C. elegans Behavior, Fitness, and Lifespan, Are Modulated by AWB/ASH-Dependent Death Perception. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De-Souza, E.A.; Thompson, M.A.; Taylor, R.C. Olfactory Chemosensation Extends Lifespan through TGF-β Signaling and UPR Activation. Nat. Aging 2023, 3, 938–947. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Rosa, M.J.; Veuthey, T.; Florman, J.; Grant, J.; Blanco, M.G.; Andersen, N.; Donnelly, J.; Rayes, D.; Alkema, M.J. The Flight Response Impairs Cytoprotective Mechanisms by Activating the Insulin Pathway. Nature 2019, 573, 135–138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nash, T.R.; Chow, E.S.; Law, A.D.; Fu, S.D.; Fuszara, E.; Bilska, A.; Bebas, P.; Kretzschmar, D.; Giebultowicz, J.M. Daily Blue-Light Exposure Shortens Lifespan and Causes Brain Neurodegeneration in Drosophila. NPJ Aging Mech. Dis. 2019, 5, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hori, M.; Shibuya, K.; Sato, M.; Saito, Y. Lethal Effects of Short-Wavelength Visible Light on Insects. Sci. Rep. 2014, 4, 7383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Magalhaes Filho, C.D.; Henriquez, B.; Seah, N.E.; Evans, R.M.; Lapierre, L.R.; Dillin, A. Visible Light Reduces C. elegans Longevity. Nat. Commun. 2018, 9, 927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cadet, J.; Sage, E.; Douki, T. Ultraviolet Radiation-Mediated Damage to Cellular DNA. Mutat. Res. 2005, 571, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Shostal, O.A.; Moskalev, A.A. The Genetic Mechanisms of the Influence of the Light Regime on the Lifespan of Drosophila melanogaster. Front. Genet. 2013, 3, 325. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dubowy, C.; Sehgal, A. Circadian Rhythms and Sleep in Drosophila melanogaster. Genetics 2017, 205, 1373–1397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McLay, L.K.; Green, M.P.; Jones, T.M. Chronic Exposure to Dim Artificial Light at Night Decreases Fecundity and Adult Survival in Drosophila melanogaster. J. Insect Physiol. 2017, 100, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Pittendrigh, C.S.; Minis, D.H. Circadian Systems: Longevity as a Function of Circadian Resonance in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1972, 69, 1537–1539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, J.; Yang, P.; Luo, X.; Li, H.; Xu, Y.; Shan, J.; Yang, Z.; Liang, B. Green Light Extends Drosophila Longevity. Exp. Gerontol. 2021, 147, 111268. [Google Scholar] [CrossRef] [PubMed]
- Krittika, S.; Yadav, P. Alterations in Lifespan and Sleep:Wake Duration Under Selective Monochromes of Visible Light in Drosophila melanogaster. Biol. Open 2022, 11, bio059273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allemand, R.; Cohet, Y.; David, J. Increase in the Longevity of Adult Drosophila melanogaster Kept in Permanent Darkness. Exp. Gerontol. 1973, 8, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.C.; Munneke, A.S.; Richardson, H.M.; Gendron, C.M.; Pletcher, S.D. Light Modulates Drosophila Lifespan via Perceptual Systems Independent of Circadian Rhythms. Aging 2023, 15, 396–420. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rao, F.; Xue, T. Circadian-Independent Light Regulation of Mammalian Metabolism. Nat. Metab. 2024, 6, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Rupp, A.C.; Ren, M.; Altimus, C.M.; Fernandez, D.C.; Richardson, M.; Turek, F.; Hattar, S.; Schmidt, T.M. Distinct ipRGC Subpopulations Mediate Light’s Acute and Circadian Effects on Body Temperature and Sleep. Elife 2019, 8, e44358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontillo, N.; Lyu, Y. Perception and Longevity Control in Invertebrate Model Organisms—A Mini-Review of Recent Advances. Biomolecules 2025, 15, 187. https://doi.org/10.3390/biom15020187
Pontillo N, Lyu Y. Perception and Longevity Control in Invertebrate Model Organisms—A Mini-Review of Recent Advances. Biomolecules. 2025; 15(2):187. https://doi.org/10.3390/biom15020187
Chicago/Turabian StylePontillo, Nicholas, and Yang Lyu. 2025. "Perception and Longevity Control in Invertebrate Model Organisms—A Mini-Review of Recent Advances" Biomolecules 15, no. 2: 187. https://doi.org/10.3390/biom15020187
APA StylePontillo, N., & Lyu, Y. (2025). Perception and Longevity Control in Invertebrate Model Organisms—A Mini-Review of Recent Advances. Biomolecules, 15(2), 187. https://doi.org/10.3390/biom15020187