60 Years of Studies into the Initiation of Chromosome Replication in Bacteria
Abstract
:1. Introduction
2. In Vitro Studies
2.1. A Partially In Vitro System: Toluene-Treated Bacteria
2.2. The ColE1 Plasmid In Vitro Replication System
2.3. oriC-Dependent In Vitro Replication Systems
3. The DnaA Protein
3.1. Domain Traits
Region † | Properties |
---|---|
I1 | Dia interaction [43], Dps interaction [34] |
II78 | Can be deleted or replaced by YFP [44], deletion suppresses seqA obgE [35] |
IIIa136 | Walker ATP-binding motif; ssDNA-binding sites V211 and R245 [37], AAA+ Arg finger motif important for oriC interaction [45], lysine178 can be acetylated by YfiQ, leading to inactivation [46] |
IIIb295 | Loss of membrane-binding due to deletion [38], cAMP-binding site [39], ATPase mutant [40], cold-sensitive mutants: R334H, R42H, E361H [41] |
IV374 | Sequence-specific DNA-binding [30,47] |
3.2. DnaA Interaction with oriC
3.3. Detailed Analysis of oriC Opening by DnaA In Vitro
3.3.1. Loop-Back Model
3.3.2. oriC Opening Without ATP
3.3.3. Single-Molecule Analysis of oriC Opening
3.4. Mechanisms Regulating Initiation
3.4.1. DnaA-ADP and the Negative Control of Initiation
3.4.2. datA Locus
3.4.3. DARS1 and DARS2
3.4.4. DiaA
3.4.5. Membrane and Phospholipid
3.4.6. SeqA
3.4.7. Cell Cycle-Dependent oriC Sequestration
3.4.8. AphA, a Periplasmic Protein with Hemimethylated DNA-Binding Activity
4. Role of RNA Polymerase in the Initiation of Replication at oriC
4.1. Absence of an RNA Primer
4.2. RNA Polymerase-DnaA Complex
4.3. Inhibition of Initiation by (p)ppGpp
4.4. RNA Polymerase-Dependent oriC In Vitro Replication System
4.5. De Novo Synthesis of DnaA Needed for Initiation
5. “The Initiation Mess” Revisited: Conundrums
5.1. The In Vitro/In Vivo RNA Polymerase Conundrum
5.2. The DnaA-ATP:DnaA-ADP Conundrum
5.3. The Chaperone–Hyperstructure Conundrum
5.4. The SeqA, Dam, SAM Conundrum: The Bacterial Cell Cycle as a Redox Oscillator
5.5. The Conundrum of the Initiation–Elongation Correlation
6. The Nucleotypic Effect, Mi, and Growth Rate “Invariance”
7. Discussion
- (1)
- Is the nrdAB gene co-located with oriC at initiation when the hyperstructure forms?
- (2)
- Although some evidence exists that nrdAB levels are elevated in the hda mutant in certain genetic backgrounds (but not wild type), the hda gene itself is found in only a limited number of bacterial species [109]. How, then, is dNTP synthesis coordinated with replication initiation in Hda-deficient species?
- (3)
- The dnaAcos mutant over-initiates because it is refractory to regulatory mechanisms [180], and this raises the question of why nrdAB is not overexpressed in this mutant in proportion to the number of excess forks. Overproducing RNR rescues dnaAcos and dna46 mutants from the lethal hyper-initiation phenotype at non-permissive temperatures, indicating that dNTP levels in ATP-refractory dnaA(ts) mutants like dnaAcos are not elevated and are similar to the wild type. This observation also applies to the hda mutant in which overproducing RNR suppresses the lethal hyper-initiation phenotype at non-permissive temperatures.
- (4)
- If the dnaA gene is auto-repressed [181], does this mean that the negative feedback regulation in rpoC is either relaxed or bypassed since its DnaA pools are elevated five-fold [104]? However, DnaA-ATP is not mutated in this genetic background, and, therefore, it is not clear if its regulation of nrdAB is similarly relaxed or bypassed (since DnaA-ATP represses nrdAB transcription). The high levels of DnaA-ATP in rpoC, for example, should impede fork movement if high (five-fold) levels of DnaA-ATP repress nrdAB transcription and, therefore, limit local dNTP pool sizes at the replication fork.
- (5)
- Does the main difference between in vitro and in vivo replication systems lie in the difference between the hyperstructures that operate in these systems? For example, the in vitro enzymic hyperstructure, which is based on diffusion, may contain only a subset of the constituents required in the full in vivo hyperstructure, which is based on channeling. The latter hyperstructure may comprise not only replication enzymes but also membrane and genes via coupled transcription-translation, which would mean that the proper functioning of an in vivo initiation hyperstructure requires RNA polymerase. Moreover, in the scenario of the phenotype being determined at the level of hyperstructures, transcription and translation have been proposed to be fundamental to the interactions between hyperstructures that result in initiation [182].
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Maaloe, O.; Hanawalt, P.C. Thymine deficiency and the normal DNA replication cycle. I. J. Mol. Biol. 1961, 3, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Jacob, F.; Brenner, S. On the regulation of DNA synthesis in bacteria: The hypothesis of the replicon. C R. Hebd. Seances Acad. Sci. 1963, 256, 298–300. [Google Scholar] [PubMed]
- Cairns, J. The Chromosome of Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 1963, 28, 43–46. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Sueoka, N. Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc. Natl. Acad. Sci. USA 1963, 49, 559–566. [Google Scholar] [CrossRef]
- Kohiyama, M.; Lanfrom, H.; Brenner, S.; Jacob, F. Modifications of Indispensable Functions in Thermosensitive Escherichia coli Mutants. On a Mutation Preventing Replication of the Bacterial Chromosome. C R. Hebd. Seances Acad. Sci. 1963, 257, 1979–1981. [Google Scholar]
- Hirota, Y.; Ryter, A.; Jacob, F. Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb. Symp. Quant. Biol. 1968, 33, 677–693. [Google Scholar] [CrossRef]
- Gilbert, W.; Dressler, D. DNA replication: The rolling circle model. Cold Spring Harb. Symp. Quant. Biol. 1968, 33, 473–484. [Google Scholar] [CrossRef]
- Kohiyama, M. DNA synthesis in temperature sensitive mutants of Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 1968, 33, 317–324. [Google Scholar] [CrossRef]
- Helmstetter, C.E. Fifty-Five Years of Research on B, C and D in Escherichia coli. Life 2023, 13, 977. [Google Scholar] [CrossRef]
- Cooper, S.; Helmstetter, C.E. Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol. 1968, 31, 519–540. [Google Scholar] [CrossRef]
- Norris, V.; den Blaauwen, T.; Cabin-Flaman, A.; Doi, R.H.; Harshey, R.; Janniere, L.; Jimenez-Sanchez, A.; Jin, D.J.; Levin, P.A.; Mileykovskaya, E.; et al. Functional taxonomy of bacterial hyperstructures. Microbiol. Mol. Biol. Rev. 2007, 71, 230–253. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Blaauwen, T.D.; Doi, R.H.; Harshey, R.M.; Janniere, L.; Jimenez-Sanchez, A.; Jin, D.J.; Levin, P.A.; Mileykovskaya, E.; Minsky, A.; et al. Toward a Hyperstructure Taxonomy. Annu. Rev. Microbiol. 2007, 61, 309–329. [Google Scholar] [CrossRef] [PubMed]
- Brangwynne, C.P.; Tompa, P.; Pappu, R.V. Polymer physics of intracellular phase transitions. Nat. Phys. 2015, 11, 899–904. [Google Scholar] [CrossRef]
- Coskuner-Weber, O.; Uversky, V.N. Liquid-Liquid Phase Separation Associated with Intrinsically Disordered Proteins: Experimental and Computational Tools. Curr. Protein Pept. Sci. 2024. [Google Scholar] [CrossRef]
- Monterroso, B.; Margolin, W.; Boersma, A.J.; Rivas, G.; Poolman, B.; Zorrilla, S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem. Rev. 2024, 124, 1899–1949. [Google Scholar] [CrossRef]
- Kohiyama, M.; Herrick, J.; Norris, V. Open Questions about the Roles of DnaA, Related Proteins, and Hyperstructure Dynamics in the Cell Cycle. Life 2023, 13, 1890. [Google Scholar] [CrossRef]
- Gregory, T.R. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. Camb. Philos. Soc. 2001, 76, 65–101. [Google Scholar] [CrossRef]
- Donachie, W.D. Relationship between cell size and time of initiation of DNA replication. Nature 1968, 219, 1077–1079. [Google Scholar] [CrossRef]
- Howard, C.B.; Rabinovitch, A.; Yehezkel, G.; Zaritsky, A. Tight coupling of cell width to nucleoid structure in Escherichia coli. Biophys. J. 2024, 123, 502–508. [Google Scholar] [CrossRef]
- Kohiyama, M.; Kolber, A.R. Temperature Sensitive Mutant of the DNA Replication System in Escherichia coli. Nature 1970, 228, 1157–1160. [Google Scholar] [CrossRef]
- Smith, D.W.; Schaller, H.E.; Bonhoeffer, F.J. DNA synthesis in vitro. Nature 1970, 226, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, Y.; Tomizawa, J.I. Termination point of replication of colicin E1 plasmid DNA in cell extracts. Proc. Natl. Acad. Sci. USA 1974, 71, 4935–4939. [Google Scholar] [CrossRef] [PubMed]
- De Lucia, P.; Cairns, J. Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature 1969, 224, 1164–1166. [Google Scholar] [CrossRef]
- Yasuda, S.; Hirota, Y. Cloning and mapping of the replication origin of Escherichia coli. Proc. Natl. Acad. Sci. USA 1977, 74, 5458–5462. [Google Scholar] [CrossRef]
- von Meyenburg, K.; Hansen, F.G.; Riise, E.; Bergmans, H.E.; Meijer, M.; Messer, W. Origin of replication, oriC, of the Escherichia coli K12 chromosome: Genetic mapping and minichromosome replication. Cold Spring Harb. Symp. Quant. Biol. 1979, 43 Pt 1, 121–128. [Google Scholar] [CrossRef]
- Fuller, R.S.; Kornberg, A. Purified dnaA protein in initiation of replication at the Escherichia coli chromosomal origin of replication. Proc. Natl. Acad. Sci. USA 1983, 80, 5817–5821. [Google Scholar] [CrossRef]
- Kaguni, J.M.; Kornberg, A. Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes. Cell 1984, 38, 183–190. [Google Scholar] [CrossRef]
- Kaguni, J.M.; Kornberg, A. Topoisomerase I confers specificity in enzymatic replication of the Escherichia coli chromosomal origin. J. Biol. Chem. 1984, 259, 8578–8583. [Google Scholar] [CrossRef]
- Ogawa, T.; Baker, T.A.; van der Ende, A.; Kornberg, A. Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: Contributions of RNA polymerase and primase. Proc. Natl. Acad. Sci. USA 1985, 82, 3562–3566. [Google Scholar] [CrossRef]
- Messer, W.; Blaesing, F.; Majka, J.; Nardmann, J.; Schaper, S.; Schmidt, A.; Seitz, H.; Speck, C.; Tungler, D.; Wegrzyn, G.; et al. Functional domains of DnaA proteins. Biochimie 1999, 81, 819–825. [Google Scholar] [CrossRef]
- Kaguni, J.M. DnaA: Controlling the Initiation of Bacterial DNA Replication and More. Annu. Rev. Microbiol. 2006, 60, 351–371. [Google Scholar] [CrossRef] [PubMed]
- Hansen, F.G.; Atlung, T. The DnaA Tale. Front. Microbiol. 2018, 9, 319. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.; Weigel, C.; Messer, W. The interaction domains of the DnaA and DnaB replication proteins of Escherichia coli. Mol. Microbiol. 2000, 37, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Chodavarapu, S.; Gomez, R.; Vicente, M.; Kaguni, J.M. Escherichia coli Dps interacts with DnaA protein to impede initiation: A model of adaptive mutation. Mol. Microbiol. 2008, 67, 1331–1346. [Google Scholar] [CrossRef]
- Molt, K.L.; Sutera, V.A., Jr.; Moore, K.K.; Lovett, S.T. A role for nonessential domain II of initiator protein, DnaA, in replication control. Genetics 2009, 183, 39–49. [Google Scholar] [CrossRef]
- Hwang, D.S.; Kaguni, J.M. Interaction of dnaA46 protein with a stimulatory protein in replication from the Escherichia coli chromosomal origin. J. Biol. Chem. 1988, 263, 10633–10640. [Google Scholar] [CrossRef]
- Duderstadt, K.E.; Chuang, K.; Berger, J.M. DNA stretching by bacterial initiators promotes replication origin opening. Nature 2011, 478, 209–213. [Google Scholar] [CrossRef]
- Regev, T.; Myers, N.; Zarivach, R.; Fishov, I. Association of the chromosome replication initiator DnaA with the Escherichia coli inner membrane in vivo: Quantity and mode of binding. PLoS ONE 2012, 7, e36441. [Google Scholar] [CrossRef]
- Hughes, P.; Landoulsi, A.; Kohiyama, M. A novel role for cAMP in the control of the activity of the E. coli chromosome replication initiator protein, DnaA. Cell 1988, 55, 343–350. [Google Scholar] [CrossRef]
- Nishida, S.; Fujimitsu, K.; Sekimizu, K.; Ohmura, T.; Ueda, T.; Katayama, T. A nucleotide switch in the Escherichia coli DnaA protein initiates chromosomal replication: Evidnece from a mutant DnaA protein defective in regulatory ATP hydrolysis in vitro and in vivo. J. Biol. Chem. 2002, 277, 14986–14995. [Google Scholar] [CrossRef]
- Takata, M.; Guo, L.; Katayama, T.; Hase, M.; Seyama, Y.; Miki, T.; Sekimizu, K. Mutant DnaA proteins defective in duplex opening of oriC, the origin of chromosomal DNA replication in Escherichia coli. Mol. Microbiol. 2000, 35, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Roth, A.; Messer, W. The DNA binding domain of the initiator protein DnaA. EMBO J. 1995, 14, 2106–2111. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Akimitsu, N.; Kashioka, T.; Hatano, M.; Kubota, T.; Ogata, Y.; Sekimizu, K.; Katayama, T. DiaA, a novel DnaA-binding protein, ensures the timely initiation of Escherichia coli chromosome replication. J. Biol. Chem. 2004, 279, 45546–45555. [Google Scholar] [CrossRef]
- Nozaki, S.; Ogawa, T. Determination of the minimum domain II size of Escherichia coli DnaA protein essential for cell viability. Microbiology 2008, 154, 3379–3384. [Google Scholar] [CrossRef]
- Felczak, M.M.; Kaguni, J.M. The box VII motif of Escherichia coli DnaA protein is required for DnaA oligomerization at the E. coli replication origin. J. Biol. Chem. 2004, 279, 51156–51162. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, A.; Li, S.; Ni, J.; Tao, J.; Lu, J.; Wan, B.; Li, S.; Zhang, J.; Zhao, S.; et al. Reversible lysine acetylation is involved in DNA replication initiation by regulating activities of initiator DnaA in Escherichia coli. Sci. Rep. 2016, 6, 30837. [Google Scholar] [CrossRef]
- Fujikawa, N.; Kurumizaka, H.; Nureki, O.; Terada, T.; Shirouzu, M.; Katayama, T.; Yokoyama, S. Structural basis of replication origin recognition by the DnaA protein. Nucleic Acids Res. 2003, 31, 2077–2086. [Google Scholar] [CrossRef]
- Fuller, R.S.; Funnell, B.E.; Kornberg, A. The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 1984, 38, 889–900. [Google Scholar] [CrossRef]
- Sekimizu, K.; Bramhill, D.; Kornberg, A. ATP activates dnaA protein in initiating replication of plasmids bearing the origin of the E. coli chromosome. Cell 1987, 50, 259–265. [Google Scholar] [CrossRef]
- Sakiyama, Y.; Kasho, K.; Noguchi, Y.; Kawakami, H.; Katayama, T. Regulatory dynamics in the ternary DnaA complex for initiation of chromosomal replication in Escherichia coli. Nucleic Acids Res. 2017, 45, 12354–12373. [Google Scholar] [CrossRef]
- Katayama, T.; Kasho, K.; Kawakami, H. The DnaA Cycle in Escherichia coli: Activation, Function and Inactivation of the Initiator Protein. Front. Microbiol. 2017, 8, 2496. [Google Scholar] [CrossRef] [PubMed]
- Wegrzyn, K.; Konieczny, I. Toward an understanding of the DNA replication initiation in bacteria. Front. Microbiol. 2023, 14, 1328842. [Google Scholar] [CrossRef] [PubMed]
- Landoulsi, A.; Kohiyama, M. DnaA protein dependent denaturation of negative supercoiled oriC DNA minicircles. Biochimie 2001, 83, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Soltero, R.; Botello, E.; Jimenez-Sanchez, A. Initiation of heat-induced replication requires DnaA and the L-13-mer of oriC. J. Bacteriol. 2006, 188, 8294–8298. [Google Scholar] [CrossRef]
- Hupp, T.R.; Kaguni, J.M. Activation of mutant forms of DnaA protein of Escherichia coli by DnaK and GrpE proteins occurs prior to DNA replication. J. Biol. Chem. 1993, 268, 13143–13150. [Google Scholar] [CrossRef]
- Zorman, S.; Seitz, H.; Sclavi, B.; Strick, T.R. Topological characterization of the DnaA-oriC complex using single-molecule nanomanipuation. Nucleic Acids Res. 2012, 40, 7375–7383. [Google Scholar] [CrossRef]
- Katayama, T.; Kubota, T.; Kurokawa, K.; Crooke, E.; Sekimizu, K. The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 1998, 94, 61–71. [Google Scholar] [CrossRef]
- Camara, J.E.; Skarstad, K.; Crooke, E. Controlled initiation of chromosomal replication in Escherichia coli requires functional Hda protein. J. Bacteriol. 2003, 185, 3244–3248. [Google Scholar] [CrossRef]
- Kitagawa, R.; Mitsuki, H.; Okazaki, T.; Ogawa, T. A novel DnaA protein-binding site at 94.7 min on the Escherichia coli chromosome. Mol. Microbiol. 1996, 19, 1137–1147. [Google Scholar] [CrossRef]
- Kasho, K.; Katayama, T. DnaA binding locus datA promotes DnaA-ATP hydrolysis to enable cell cycle-coordinated replication initiation. Proc. Natl. Acad. Sci. USA 2013, 110, 936–941. [Google Scholar] [CrossRef]
- Morigen; Molina, F.; Skarstad, K. Deletion of the datA site does not affect once-per-cell-cycle timing but induces rifampin-resistant replication. J. Bacteriol. 2005, 187, 3913–3920. [Google Scholar] [CrossRef] [PubMed]
- Atlung, T.; Lobner-Olesen, A.; Hansen, F.G. Overproduction of DnaA protein stimulates initiation of chromosome and minichromosome replication in Escherichia coli. Mol. Gen. Genet. 1987, 206, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Fujimitsu, K.; Katayama, T. Reactivation of DnaA by DNA sequence-specific nucleotide exchange in vitro. Biochem. Biophys. Res. Commun. 2004, 322, 411–419. [Google Scholar] [CrossRef]
- Charbon, G.; Riber, L.; Cohen, M.; Skovgaard, O.; Fujimitsu, K.; Katayama, T.; Lobner-Olesen, A. Suppressors of DnaA(ATP) imposed overinitiation in Escherichia coli. Mol. Microbiol. 2011, 79, 914–928. [Google Scholar] [CrossRef]
- Boesen, T.; Charbon, G.; Fu, H.; Jensen, C.; Sandler, M.; Jun, S.; Lobner-Olesen, A. Robust control of replication initiation in the absence of DnaA-ATP ⟷ DnaA-ADP regulatory elements in Escherichia coli. bioRxiv 2022. [Google Scholar] [CrossRef]
- Keyamura, K.; Fujikawa, N.; Ishida, T.; Ozaki, S.; Su’etsugu, M.; Fujimitsu, K.; Kagawa, W.; Yokoyama, S.; Kurumizaka, H.; Katayama, T. The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP DnaA-specific initiation complexes. Genes Dev. 2007, 21, 2083–2099. [Google Scholar] [CrossRef]
- Cairns, J.; Denhardt, D.T. Effect of cyanide and carbon monoxide on the replication of bacterial DNA in vivo. J. Mol. Biol. 1968, 36, 335–342. [Google Scholar] [CrossRef]
- Howland, J.L.; Hughes, W.T. Suggested role of respiration in bacterial DNA replication. Biochem. Biophys. Res. Commun. 1969, 37, 106–110. [Google Scholar] [CrossRef]
- Yung, B.Y.; Kornberg, A. Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli. Proc. Natl. Acad. Sci. USA 1988, 85, 7202–7205. [Google Scholar] [CrossRef]
- Sekimizu, K.; Kornberg, A. Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J. Biol. Chem. 1988, 263, 7131–7135. [Google Scholar] [CrossRef]
- Xia, W.; Dowhan, W. In vivo evidence for the involvement of anionic phospholipids in initiation of DNA replication in Escherichia coli. Proc. Natl. Acad. Sci. USA 1995, 92, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Fishov, I.; Woldringh, C.L. Visualization of membrane domains in Escherichia coli. Mol. Microbiol. 1999, 32, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Ogden, G.B.; Pratt, M.J.; Schaechter, M. The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated. Cell 1988, 54, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Waldminghaus, T.; Skarstad, K. The Escherichia coli SeqA protein. Plasmid 2009, 61, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Landoulsi, A.; Malki, A.; Kern, R.; Kohiyama, M.; Hughes, P. The E. coli cell surface specifically prevents the initiation of DNA replication at oriC on hemimethylated DNA templates. Cell 1990, 63, 1053–1060. [Google Scholar] [CrossRef]
- Brendler, T.; Abeles, A.; Austin, S. A protein that binds to the P1 origin core and the oriC 13mer region in a methylation-specific fashion is the product of the host seqA gene. EMBO J 1995, 14, 4083–4089. [Google Scholar] [CrossRef]
- Lu, M.; Campbell, J.L.; Boye, E.; Kleckner, N. SeqA: A negative modulator of replication initiation in E. coli. Cell 1994, 77, 413–426. [Google Scholar] [CrossRef]
- Bach, T.; Krekling, M.A.; Skarstad, K. Excess SeqA prolongs sequestration of oriC and delays nucleoid segregation and cell division. EMBO J 2003, 22, 315–323. [Google Scholar] [CrossRef]
- Nievera, C.; Torgue, J.J.; Grimwade, J.E.; Leonard, A.C. SeqA blocking of DnaA-oriC interactions ensures staged assembly of the E. coli pre-RC. Mol. Cell 2006, 24, 581–592. [Google Scholar] [CrossRef]
- Helgesen, E.; Saetre, F.; Skarstad, K. Topoisomerase IV tracks behind the replication fork and the SeqA complex during DNA replication in Escherichia coli. Sci. Rep. 2021, 11, 474. [Google Scholar] [CrossRef]
- Norris, V.; Fralick, J.; Danchin, A. A SeqA hyperstructure and its interactions direct the replication and sequestration of DNA. Mol. Microbiol. 2000, 37, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Kleckner, N. Chromosome and replisome dynamics in E. coli: Loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell 2005, 121, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.L.; Kleckner, N. E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 1990, 62, 967–979. [Google Scholar] [CrossRef] [PubMed]
- Soufo, C.D.; Soufo, H.J.; Noirot-Gros, M.F.; Steindorf, A.; Noirot, P.; Graumann, P.L. Cell-cycle-dependent spatial sequestration of the DnaA replication initiator protein in Bacillus subtilis. Dev. Cell 2008, 15, 935–941. [Google Scholar] [CrossRef]
- d’Alencon, E.; Taghbalout, A.; Kern, R.; Kohiyama, M. Replication cycle dependent association of SeqA to the outer membrane fraction of E. coli. Biochimie 1999, 81, 841–846. [Google Scholar] [CrossRef]
- Shakibai, N.; Ishidate, K.; Reshetnyak, E.; Gunji, S.; Kohiyama, M.; Rothfield, L. High-affinity binding of hemimethylated oriC by Escherichia coli membranes is mediated by a multiprotein system that includes SeqA and a newly identified factor, SeqB. Proc. Natl. Acad. Sci. USA 1998, 95, 11117–11121. [Google Scholar] [CrossRef]
- Reshetnyak, E.; d’Alencon, E.; Kern, R.; Taghbalout, A.; Guillaud, P.; Kohiyama, M. Hemi-methylated oriC DNA binding activity found in non-specific acid phosphatase. Mol. Microbiol. 1999, 31, 167–175. [Google Scholar] [CrossRef]
- Kohiyama, M.; Bahloul, A.; Kern, R.; Meury, J.; Reshetnyak, E.; Malki, A.; Guha, S. Increased expression of a hemimethylated oriC binding protein, SeqA, in an aphA mutant. Biochimie 1998, 80, 1043–1046. [Google Scholar] [CrossRef]
- Baker, T.A.; Kornberg, A. Transcriptional activation of initiation of replication from the E. coli chromosomal origin: An RNA-DNA hybrid near oriC. Cell 1988, 55, 113–123. [Google Scholar] [CrossRef]
- Bates, D.B.; Boye, E.; Asai, T.; Kogoma, T. The absence of effect of gid or mioC transcription on the initiation of chromosomal replication in Escherichia coli. Proc. Natl. Acad. Sci. USA 1997, 94, 12497–12502. [Google Scholar] [CrossRef]
- Bagdasarian, M.M.; Izakowska, M.; Bagdasarian, M. Suppression of the DnaA phenotype by mutations in the rpoB cistron of ribonucleic acid polymerase in Salmonella typhimurium and Escherichia coli. J. Bacteriol. 1977, 130, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Flatten, I.; Morigen; Skarstad, K. DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. Mol. Microbiol. 2009, 71, 1018–1030. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, G.; Ron, E.Z.; Glaser, G. ppGpp-mediated regulation of DNA replication and cell division in Escherichia coli. Curr. Microbiol. 1995, 30, 27–32. [Google Scholar] [CrossRef]
- Ross, W.; Sanchez-Vazquez, P.; Chen, A.Y.; Lee, J.H.; Burgos, H.L.; Gourse, R.L. ppGpp Binding to a Site at the RNAP-DksA Interface Accounts for Its Dramatic Effects on Transcription Initiation during the Stringent Response. Mol. Cell 2016, 62, 811–823. [Google Scholar] [CrossRef]
- Maciag-Dorszynska, M.; Szalewska-Palasz, A.; Wegrzyn, G. Different effects of ppGpp on Escherichia coli DNA replication in vivo and in vitro. FEBS Open Bio 2013, 3, 161–164. [Google Scholar] [CrossRef]
- Fernandez-Coll, L.; Maciag-Dorszynska, M.; Tailor, K.; Vadia, S.; Levin, P.A.; Szalewska-Palasz, A.; Cashel, M. The Absence of (p)ppGpp Renders Initiation of Escherichia coli Chromosomal DNA Synthesis Independent of Growth Rates. mBio 2020, 11, e03223-19. [Google Scholar] [CrossRef]
- Giramma, C.N.; DeFoer, M.B.; Wang, J.D. The Alarmone (p)ppGpp Regulates Primer Extension by Bacterial Primase. J. Mol. Biol. 2021, 433, 167189. [Google Scholar] [CrossRef]
- Kraemer, J.A.; Sanderlin, A.G.; Laub, M.T. The Stringent Response Inhibits DNA Replication Initiation in E. coli by Modulating Supercoiling of oriC. mBio 2019, 10, e01330-19. [Google Scholar] [CrossRef]
- Filutowicz, M. Requirement of DNA gyrase for the initiation of chromosome replication in Escherichia coli K-12. Mol. Gen. Genet. 1980, 177, 301–309. [Google Scholar] [CrossRef]
- Riber, L.; Lobner-Olesen, A. Inhibition of Escherichia coli chromosome replication by rifampicin treatment or during the stringent response is overcome by de novo DnaA protein synthesis. Mol. Microbiol. 2020, 114, 906–919. [Google Scholar] [CrossRef]
- Herrick, J.; Kohiyama, M.; Atlung, T.; Hansen, F.G. The initiation mess? Mol. Microbiol. 1996, 19, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Lark, K.G. Evidence for the direct involvement of RNA in the initiation of DNA replication in Escherichia coli 15T. J. Mol. Biol. 1972, 64, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Zyskind, J.W. Priming and growth rate regulation questions concerning initiation of DNA replication in Escherichia coli. In The Bacterial Chromosome; Drlica, K., Riley, M., Eds.; American Society For Microbiology: Washington, DC, USA, 1989; pp. 269–278. [Google Scholar]
- Petersen, S.K.; Hansen, F.G. A missense mutation in the rpoC gene affects chromosomal replication control in Escherichia coli. J. Bacteriol. 1991, 173, 5200–5206. [Google Scholar] [CrossRef] [PubMed]
- Boye, E.; Lobner-Olesen, A.; Skarstad, K. Timing of chromosomal replication in Escherichia coli. Biochim. Biophys. Acta 1988, 951, 359–364. [Google Scholar] [CrossRef]
- Maslowska, K.H.; Makiela-Dzbenska, K.; Fijalkowska, I.J. The SOS system: A complex and tightly regulated response to DNA damage. Environ. Mol. Mutagen. 2019, 60, 368–384. [Google Scholar] [CrossRef]
- Feeney, M.A.; Ke, N.; Beckwith, J. Mutations at several loci cause increased expression of ribonucleotide reductase in Escherichia coli. J. Bacteriol. 2012, 194, 1515–1522. [Google Scholar] [CrossRef]
- Ortenberg, R.; Gon, S.; Porat, A.; Beckwith, J. Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli. Proc. Natl. Acad. Sci. USA 2004, 101, 7439–7444. [Google Scholar] [CrossRef]
- Babu, V.M.P.; Homiski, C.; Scotland, M.K.; Chodavarapu, S.; Kaguni, J.M.; Sutton, M.D. Elevated Levels of the Escherichia coli nrdAB-Encoded Ribonucleotide Reductase Counteract the Toxicity Caused by an Increased Abundance of the beta Clamp. J. Bacteriol. 2021, 203, e0030421. [Google Scholar] [CrossRef]
- Olliver, A.; Saggioro, C.; Herrick, J.; Sclavi, B. DnaA-ATP acts as a molecular switch to control levels of ribonucleotide reductase expression in Escherichia coli. Mol. Microbiol. 2010, 76, 1555–1571. [Google Scholar] [CrossRef]
- Speck, C.; Weigel, C.; Messer, W. ATP- and ADP-dnaA protein, a molecular switch in gene regulation. EMBO J. 1999, 18, 6169–6176. [Google Scholar] [CrossRef]
- Pountain, A.W.; Jiang, P.; Yao, T.; Homaee, E.; Guan, Y.; McDonald, K.J.C.; Podkowik, M.; Shopsin, B.; Torres, V.J.; Golding, I.; et al. Transcription-replication interactions reveal bacterial genome regulation. Nature 2024, 626, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Conrad, T.M.; Frazier, M.; Joyce, A.R.; Cho, B.K.; Knight, E.M.; Lewis, N.E.; Landick, R.; Palsson, B.O. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc. Natl. Acad. Sci. USA 2010, 107, 20500–20505. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, R.; Mori, M.; Segota, I.; Zhang, Z.; Aebersold, R.; Ludwig, C.; Hwa, T. Principles of gene regulation quantitatively connect DNA to RNA and proteins in bacteria. Science 2022, 378, eabk2066. [Google Scholar] [CrossRef] [PubMed]
- Namboodiri, S.K.; Aranovich, A.; Hadad, U.; Gheber, L.A.; Feingold, M.; Fishov, I. Relative Distribution of DnaA and DNA in Escherichia coli Cells as a Factor of Their Phenotypic Variability. Int. J. Mol. Sci. 2025, 26, 464. [Google Scholar] [CrossRef]
- Kurokawa, K.; Nishida, S.; Emoto, A.; Sekimizu, K.; Katayama, T. Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli. EMBO J. 1999, 18, 6642–6652. [Google Scholar] [CrossRef]
- Lin, W.H.; Jacobs-Wagner, C. Connecting single-cell ATP dynamics to overflow metabolism, cell growth, and the cell cycle in Escherichia coli. Curr. Biol. 2022, 32, 3911–3924.e4. [Google Scholar] [CrossRef]
- Zheng, H.; Bai, Y.; Jiang, M.; Tokuyasu, T.A.; Huang, X.; Zhong, F.; Wu, Y.; Fu, X.; Kleckner, N.; Hwa, T.; et al. General quantitative relations linking cell growth and the cell cycle in Escherichia coli. Nat. Microbiol. 2020, 5, 995–1001. [Google Scholar] [CrossRef]
- Wold, S.; Skarstad, K.; Steen, H.B.; Stokke, T.; Boye, E. The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. EMBO J. 1994, 13, 2097–2102. [Google Scholar] [CrossRef]
- Schneider, D.A.; Gourse, R.L. Relationship between growth rate and ATP concentration in Escherichia coli: A bioassay for available cellular ATP. J. Biol. Chem. 2004, 279, 8262–8268. [Google Scholar] [CrossRef]
- Buckstein, M.H.; He, J.; Rubin, H. Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J. Bacteriol. 2008, 190, 718–726. [Google Scholar] [CrossRef]
- Hill, N.S.; Kadoya, R.; Chattoraj, D.K.; Levin, P.A. Cell size and the initiation of DNA replication in bacteria. PLoS Genet. 2012, 8, e1002549. [Google Scholar] [CrossRef] [PubMed]
- Si, F.; Li, D.; Cox, S.E.; Sauls, J.T.; Azizi, O.; Sou, C.; Schwartz, A.B.; Erickstad, M.J.; Jun, Y.; Li, X.; et al. Invariance of Initiation Mass and Predictability of Cell Size in Escherichia coli. Curr. Biol. 2017, 27, 1278–1287. [Google Scholar] [CrossRef] [PubMed]
- Hansen, F.G.; Atlung, T.; Braun, R.E.; Wright, A.; Hughes, P.; Kohiyama, M. Initiator (DnaA) protein concentration as a function of growth rate in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1991, 173, 5194–5199. [Google Scholar] [CrossRef] [PubMed]
- Carr, K.M.; Kaguni, J.M. Stoichiometry of DnaA and DnaB protein in initiation at the Escherichia coli chromosomal origin. J. Biol. Chem. 2001, 276, 44919–44925. [Google Scholar] [CrossRef]
- Flatten, I.; Fossum-Raunehaug, S.; Taipale, R.; Martinsen, S.; Skarstad, K. The DnaA Protein Is Not the Limiting Factor for Initiation of Replication in Escherichia coli. PLoS Genet. 2015, 11, e1005276. [Google Scholar] [CrossRef]
- Fujimitsu, K.; Su’etsugu, M.; Yamaguchi, Y.; Mazda, K.; Fu, N.; Kawakami, H.; Katayama, T. Modes of overinitiation, dnaA gene expression, and inhibition of cell division in a novel cold-sensitive hda mutant of Escherichia coli. J. Bacteriol. 2008, 190, 5368–5381. [Google Scholar] [CrossRef]
- Charbon, G.; Bjorn, L.; Mendoza-Chamizo, B.; Frimodt-Moller, J.; Lobner-Olesen, A. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli. Nucleic Acids Res. 2014, 42, 13228–13241. [Google Scholar] [CrossRef]
- von Freiesleben, U.; Krekling, M.A.; Hansen, F.G.; Lobner-Olesen, A. The eclipse period of Escherichia coli. EMBO J. 2000, 19, 6240–6248. [Google Scholar] [CrossRef]
- Miller, D.T.; Grimwade, J.E.; Betteridge, T.; Rozgaja, T.; Torgue, J.J.; Leonard, A.C. Bacterial origin recognition complexes direct assembly of higher-order DnaA oligomeric structures. Proc. Natl. Acad. Sci. USA 2009, 106, 18479–18484. [Google Scholar] [CrossRef]
- Hansen, F.G.; Koefoed, S.; Sorensen, L.; Atlung, T. Titration of DnaA protein by oriC DnaA-boxes increases dnaA gene expression in Escherichia coli. EMBO J. 1987, 6, 255–258. [Google Scholar] [CrossRef]
- Molina, F.; Skarstad, K. Replication fork and SeqA focus distributions in Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism. Mol. Microbiol. 2004, 52, 1597–1612. [Google Scholar] [CrossRef] [PubMed]
- Katayama, T.; Nagata, T. Initiation of chromosomal DNA replication which is stimulated without oversupply of DnaA protein in Escherichia coli. Mol. Gen. Genet. 1991, 226, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Kumar, P.; Aggarwal, M.; Sarkari, F.; Wolcott, K.M.; Chattoraj, D.K.; Crooke, E.; Saxena, R. The linker domain of the initiator DnaA contributes to its ATP binding and membrane association in E. coli chromosomal replication. Sci. Adv. 2022, 8, eabq6657. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.W.; Bell, M.; Mir, M.; Kao, J.A.; Darzacq, X.; Botchan, M.R.; Berger, J.M. A new class of disordered elements controls DNA replication through initiator self-assembly. Elife 2019, 8, e48562. [Google Scholar] [CrossRef]
- Patel, A.; Malinovska, L.; Saha, S.; Wang, J.; Alberti, S.; Krishnan, Y.; Hyman, A.A. ATP as a biological hydrotrope. Science 2017, 356, 753–756. [Google Scholar] [CrossRef]
- Rice, A.M.; Rosen, M.K. ATP controls the crowd. Science 2017, 356, 701–702. [Google Scholar] [CrossRef]
- Song, J. Adenosine Triphosphate: The Primordial Molecule That Controls Protein Homeostasis and Shapes the Genome-Proteome Interface. Biomolecules 2024, 14, 500. [Google Scholar] [CrossRef]
- Boye, E.; Lobner-Olesen, A. The role of dam methyltransferase in the control of DNA replication in E. coli. Cell 1990, 62, 981–989. [Google Scholar] [CrossRef]
- Lobner-Olesen, A.; Kuempel, P.L. Chromosome partitioning in Escherichia coli. J. Bacteriol. 1992, 174, 7883–7889. [Google Scholar] [CrossRef]
- Pedersen, I.B.; Helgesen, E.; Flatten, I.; Fossum-Raunehaug, S.; Skarstad, K. SeqA structures behind Escherichia coli replication forks affect replication elongation and restart mechanisms. Nucleic Acids Res. 2017, 45, 6471–6485. [Google Scholar] [CrossRef]
- Dewachter, L.; Verstraeten, N.; Fauvart, M.; Michiels, J. An integrative view of cell cycle control in Escherichia coli. FEMS Microbiol. Rev. 2018, 42, 116–136. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Lee, H.; Han, J.S.; Hwang, D.S. Interaction of SeqA and Dam methylase on the hemimethylated origin of Escherichia coli chromosomal DNA replication. J. Biol. Chem. 1999, 274, 11463–11468. [Google Scholar] [CrossRef] [PubMed]
- Hartl, J.; Kiefer, P.; Kaczmarczyk, A.; Mittelviefhaus, M.; Meyer, F.; Vonderach, T.; Hattendorf, B.; Jenal, U.; Vorholt, J.A. Untargeted metabolomics links glutathione to bacterial cell cycle progression. Nat. Metab. 2020, 2, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Bergerat, A.; Guschlbauer, W.; Fazakerley, G.V. Allosteric and catalytic binding of S-adenosylmethionine to Escherichia coli DNA adenine methyltransferase monitored by 3H NMR. Proc. Natl. Acad. Sci. USA 1991, 88, 6394–6397. [Google Scholar] [CrossRef]
- Marinus, M.G.; Lobner-Olesen, A. DNA Methylation. EcoSal Plus 2014, 6. [Google Scholar] [CrossRef]
- Lenz, P.; Sogaard-Andersen, L. Temporal and spatial oscillations in bacteria. Nat. Rev. Microbiol. 2011, 9, 565–577. [Google Scholar] [CrossRef]
- Zhang, Z.; Milias-Argeitis, A.; Heinemann, M. Dynamic single-cell NAD(P)H measurement reveals oscillatory metabolism throughout the E. coli cell division cycle. Sci. Rep. 2018, 8, 2162. [Google Scholar] [CrossRef]
- Edgar, R.S.; Green, E.W.; Zhao, Y.; van Ooijen, G.; Olmedo, M.; Qin, X.; Xu, Y.; Pan, M.; Valekunja, U.K.; Feeney, K.A.; et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012, 485, 459–464. [Google Scholar] [CrossRef]
- Eelderink-Chen, Z.; Bosman, J.; Sartor, F.; Dodd, A.N.; Kovacs, A.T.; Merrow, M. A circadian clock in a nonphotosynthetic prokaryote. Sci. Adv. 2021, 7, eabe2086. [Google Scholar] [CrossRef]
- Sengupta, R.; Holmgren, A. Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. World J. Biol. Chem. 2014, 5, 68–74. [Google Scholar] [CrossRef]
- Gon, S.; Faulkner, M.J.; Beckwith, J. In vivo requirement for glutaredoxins and thioredoxins in the reduction of the ribonucleotide reductases of Escherichia coli. Antioxid. Redox Signal. 2006, 8, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Goemans, C.V.; Beaufay, F.; Wahni, K.; Van Molle, I.; Messens, J.; Collet, J.F. An essential thioredoxin is involved in the control of the cell cycle in the bacterium Caulobacter crescentus. J. Biol. Chem. 2018, 293, 3839–3848. [Google Scholar] [CrossRef] [PubMed]
- Uziel, O.; Borovok, I.; Schreiber, R.; Cohen, G.; Aharonowitz, Y. Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J. Bacteriol. 2004, 186, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Zeller, T.; Klug, G. Bacterial Thioredoxins-Genes and Regulation; Global Science Books Ltd.: East Sussex, UK, 2009. [Google Scholar]
- Narayanan, S.; Janakiraman, B.; Kumar, L.; Radhakrishnan, S.K. A cell cycle-controlled redox switch regulates the topoisomerase IV activity. Genes. Dev. 2015, 29, 1175–1187. [Google Scholar] [CrossRef]
- Kang, S.; Han, J.S.; Park, J.H.; Skarstad, K.; Hwang, D.S. SeqA protein stimulates the relaxing and decatenating activities of topoisomerase IV. J. Biol. Chem. 2003, 278, 48779–48785. [Google Scholar] [CrossRef]
- Hanke, P.D.; Fuchs, J.A. Requirement of protein synthesis for the induction of ribonucleoside diphosphate reductase mRNA in Escherichia coli. Mol. Gen. Genet. 1984, 193, 327–331. [Google Scholar] [CrossRef]
- Sun, L.; Fuchs, J.A. Escherichia coli ribonucleotide reductase expression is cell cycle regulated. Mol. Biol. Cell 1992, 3, 1095–1105. [Google Scholar] [CrossRef]
- Le, H.T.; Gautier, V.; Kthiri, F.; Kohiyama, M.; Katayama, T.; Richarme, G. DNA replication defects in a mutant deficient in the thioredoxin homolog YbbN. Biochem. Biophys. Res. Commun. 2011, 405, 52–57. [Google Scholar] [CrossRef]
- Koppes, L.J.; Meyer, M.; Oonk, H.B.; de Jong, M.A.; Nanninga, N. Correlation between size and age at different events in the cell division cycle of Escherichia coli. J. Bacteriol. 1980, 143, 1241–1252. [Google Scholar] [CrossRef]
- El-Hajj, Z.W.; Newman, E.B. An Escherichia coli mutant that makes exceptionally long cells. J. Bacteriol. 2015, 197, 1507–1514. [Google Scholar] [CrossRef]
- Guzmán, E.; Salguero, I.; Mata Martín, C.; López-Acedo, E.; Guarino Almeida, E.; Sánchez-Romero, M.; Norris, V.; Jiménez-Sánchez, A. Relationship between fork progression and initiation of chromosome replication in E. coli. In DNA Replication; Seligmann, H., Ed.; InTechOpen: Rijeka, Croatia, 2011; pp. 203–220. [Google Scholar]
- Hand, R. Deoxyribonucleic acid fiber autoradiography as a technique for studying the replication of the mammalian chromosome. J. Histochem. Cytochem. 1975, 23, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Herrick, J. The dynamic replicon: Adapting to a changing cellular environment. Bioessays 2010, 32, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Rozgaja, T.A.; Grimwade, J.E.; Iqbal, M.; Czerwonka, C.; Vora, M.; Leonard, A.C. Two oppositely oriented arrays of low-affinity recognition sites in oriC guide progressive binding of DnaA during Escherichia coli pre-RC assembly. Mol. Microbiol. 2011, 82, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Vora, M.P.; Czerwonka, C.A.; Rozgaja, T.A.; Grimwade, J.E.; Leonard, A.C. Building the bacterial orisome: High-affinity DnaA recognition plays a role in setting the conformation of oriC DNA. Mol. Microbiol. 2014, 91, 1148–1163. [Google Scholar] [CrossRef]
- Zhu, M.; Dai, X.; Guo, W.; Ge, Z.; Yang, M.; Wang, H.; Wang, Y.P. Manipulating the Bacterial Cell Cycle and Cell Size by Titrating the Expression of Ribonucleotide Reductase. mBio 2017, 8, e01741-17. [Google Scholar] [CrossRef]
- Guzman, E.C.; Caballero, J.L.; Jimenez-Sanchez, A. Ribonucleoside diphosphate reductase is a component of the replication hyperstructure in Escherichia coli. Mol. Microbiol. 2002, 43, 487–495. [Google Scholar] [CrossRef]
- Manor, H.; Deutscher, M.P.; Littauer, U.Z. Rates of DNA chain growth in Escherichia coli. J. Mol. Biol. 1971, 61, 503–524. [Google Scholar] [CrossRef]
- Pritchard, R.H.; Zaritsky, A. Effect of thymine concentration on the replication velocity of DNA in a thymineless mutant of Escherichia coli. Nature 1970, 226, 126–131. [Google Scholar] [CrossRef]
- Filpula, D.; Fuchs, J.A. Regulation of ribonucleoside diphosphate reductase synthesis in Escherichia coli: Increased enzyme synthesis as a result of inhibition of deoxyribonucleic acid synthesis. J. Bacteriol. 1977, 130, 107–113. [Google Scholar] [CrossRef]
- Odsbu, I.; Morigen; Skarstad, K. A reduction in ribonucleotide reductase activity slows down the chromosome replication fork but does not change its localization. PLoS ONE 2009, 4, e7617. [Google Scholar] [CrossRef]
- Govers, S.K.; Campos, M.; Tyagi, B.; Laloux, G.; Jacobs-Wagner, C. Apparent simplicity and emergent robustness in the control of the Escherichia coli cell cycle. Cell Syst. 2023, 15, 19–36.e5. [Google Scholar] [CrossRef] [PubMed]
- Torrents, E.; Grinberg, I.; Gorovitz-Harris, B.; Lundstrom, H.; Borovok, I.; Aharonowitz, Y.; Sjoberg, B.M.; Cohen, G. NrdR controls differential expression of the Escherichia coli ribonucleotide reductase genes. J. Bacteriol. 2007, 189, 5012–5021. [Google Scholar] [CrossRef] [PubMed]
- Sutera, V.A., Jr.; Lovett, S.T. The role of replication initiation control in promoting survival of replication fork damage. Mol. Microbiol. 2006, 60, 229–239. [Google Scholar] [CrossRef]
- Bosdriesz, E.; Molenaar, D.; Teusink, B.; Bruggeman, F.J. How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization. FEBS J. 2015, 282, 2029–2044. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, M.; Ershov, D.; Rozendaal, R.; Walker, N.; Schultz, D.; Kishony, R.; Levin, P.A.; Tans, S.J. Size Laws and Division Ring Dynamics in Filamentous Escherichia coli cells. Curr. Biol. 2018, 28, 972–979.e5. [Google Scholar] [CrossRef]
- Babu, V.M.P.; Itsko, M.; Baxter, J.C.; Schaaper, R.M.; Sutton, M.D. Insufficient levels of the nrdAB-encoded ribonucleotide reductase underlie the severe growth defect of the Deltahda E. coli strain. Mol. Microbiol. 2017, 104, 377–399. [Google Scholar] [CrossRef]
- Felczak, M.M.; Kaguni, J.M. DnaAcos hyperinitiates by circumventing regulatory pathways that control the frequency of initiation in Escherichia coli. Mol. Microbiol. 2009, 72, 1348–1363. [Google Scholar] [CrossRef]
- Braun, R.E.; O’Day, K.; Wright, A. Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell 1985, 40, 159–169. [Google Scholar] [CrossRef]
- Norris, V.; Amar, P. Chromosome Replication in Escherichia coli: Life on the Scales. Life 2012, 2, 286–312. [Google Scholar] [CrossRef]
- Norris, V. Hypothesis: Bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Theory Biosci. 2024, 143, 253–277. [Google Scholar] [CrossRef]
- Watson, J.L.; Seinkmane, E.; Styles, C.T.; Mihut, A.; Kruger, L.K.; McNally, K.E.; Planelles-Herrero, V.J.; Dudek, M.; McCall, P.M.; Barbiero, S.; et al. Macromolecular condensation buffers intracellular water potential. Nature 2023, 623, 842–852. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrick, J.; Norris, V.; Kohiyama, M. 60 Years of Studies into the Initiation of Chromosome Replication in Bacteria. Biomolecules 2025, 15, 203. https://doi.org/10.3390/biom15020203
Herrick J, Norris V, Kohiyama M. 60 Years of Studies into the Initiation of Chromosome Replication in Bacteria. Biomolecules. 2025; 15(2):203. https://doi.org/10.3390/biom15020203
Chicago/Turabian StyleHerrick, John, Vic Norris, and Masamichi Kohiyama. 2025. "60 Years of Studies into the Initiation of Chromosome Replication in Bacteria" Biomolecules 15, no. 2: 203. https://doi.org/10.3390/biom15020203
APA StyleHerrick, J., Norris, V., & Kohiyama, M. (2025). 60 Years of Studies into the Initiation of Chromosome Replication in Bacteria. Biomolecules, 15(2), 203. https://doi.org/10.3390/biom15020203