APOL1 Dynamics in Diabetic Kidney Disease and Hypertension
Abstract
:1. APOL1 and CKD
2. What Is APOL1-Mediated Kidney Disease (AMKD)?
3. APOL1 and Its Variants
4. Do APOL1RRVs Activate Intra-Renal RAS?
5. What Is RAS Status in Diabetic and APOL1 Milieus?
6. Why Does APOLRRV-Mediated RAS Activation Not Affect the Course of DKD?
7. Is miR193a Involved in Masking APOL1RRVs’ Role in DKD?
8. Do High Glucose and APOL1RRVs Escalate miR193a Expression?
9. What Are the Effects of miR193a on CKD Progression?
10. APOL1RRVs and Hypertension
11. BioMe Repository Data Analysis on AMKD Time Course
12. Discrepancy in the Manifestation of Disease Markers in CKD
13. APOL1RRV-Mediated Hypertension vs. Essential Hypertension
14. Role of RAS Blockade in AMKD
15. How Do APOL1 Variants Interact with the RAS, and How Does It Affect CKD Progression?
16. Therapeutic Strategies for DKD and Hypertension in the APOL1 Variant Milieu
17. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freedman, B.I.; Spray, B.J.; Tuttle, A.B.; Buckalew, V.M., Jr. The familial risk of end-stage renal disease in African Americans. Am. J. Kidney Dis. 1993, 21, 387–393. [Google Scholar] [CrossRef]
- Genovese, G.; Friedman, D.J.; Ross, M.D.; Lecordier, L.; Uzureau, P.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; Oleksyk, T.K.; Knob, A.L.U.; et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010, 329, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Tzur, S.; Rosset, S.; Shemer, R.; Yudkovsky, G.; Selig, S.; Tarekegn, A.; Bekele, E.; Bradman, N.; Wasser, W.G.; Behar, D.M.; et al. Missense mutations in the APOL1 gene are highly associated with end-stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 2010, 128, 345–350. [Google Scholar] [CrossRef]
- Fine, D.M.; Wasser, W.G.; Estrella, M.M.; Atta, M.G.; Kuperman, M.; Shemer, R.; Rajasekaran, A.; Tzur, S.; Racusen, L.C.; Skorecki, K. APOL1 risk variants predict histopathology and progression to ESRD in HIV-related kidney disease. J. Am. Soc. Nephrol. 2012, 23, 343–350. [Google Scholar] [CrossRef]
- Lin, J.S.; Susztak, K. Podocytes: The Weakest Link in Diabetic Kidney Disease? Curr. Diabetes Rep. 2016, 16, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Besse, W.; Mansour, S.; Jatwani, K.; Nast, C.C.; Brewster, U.C. Collapsing glomerulopathy in a young woman with APOL1 risk alleles following acute parvovirus B19 infection: A case report investigation. BMC Nephrol. 2016, 17, 125. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Larsen, C.P.; Hernandez-Arroyo, C.F.; Mohamed, M.M.; Caza, T.; Sharshir, M.; Chughtai, A.; Xie, L.; Gimenez, J.M.; Sandow, T.A.; et al. AKI and Collapsing Glomerulopathy Associated with COVID-19 and APOL1 High-Risk Genotype. J. Am. Soc. Nephrol. 2020, 31, 1688–1695. [Google Scholar] [CrossRef]
- Velez, J.C.Q.; Caza, T.; Larsen, C.P. COVAN is the new HIVAN: The re-emergence of collapsing glomerulopathy with COVID-19. Nat. Rev. Nephrol. 2020, 16, 565–567. [Google Scholar] [CrossRef] [PubMed]
- Kudose, S.; Batal, I.; Santoriello, D.; Xu, K.; Barasch, J.; Peleg, Y.; Canetta, P.; Ratner, L.E.; Marasa, M.; Gharavi, A.G.; et al. Kidney Biopsy Findings in Patients with COVID-19. J. Am. Soc. Nephrol. 2020, 31, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.J.; Kozlitina, J.; Genovese, G.; Jog, P.; Pollak, M.R. Population-based risk assessment of APOL1 on renal disease. J. Am. Soc. Nephrol. 2011, 22, 2098–2105. [Google Scholar] [CrossRef]
- Gbadegesin, R.A.; Ulasi, I.; Ajayi, S.; Raji, Y.; Olanrewaju, T.; Osafo, C.; Asinobi, A.; Winkler, C.A.; Burke, D.; Arogundade, F.; et al. APOL1 Bi- and Monoallelic Variants and Chronic Kidney Disease in West Africans. N. Engl. J. Med. 2025, 392, 228–238. [Google Scholar] [CrossRef]
- Kopp, J.B.; Nelson, G.W.; Sampath, K.; Johnson, R.C.; Genovese, G.; An, P.; Friedman, D.; Briggs, W.; Dart, R.; Korbet, S.; et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-asso-ciated nephropathy. J. Am. Soc. Nephrol. 2011, 22, 2129–2137. [Google Scholar] [CrossRef]
- Foster, M.C.; Coresh, J.; Fornage, M.; Astor, B.C.; Grams, M.; Franceschini, N.; Boerwinkle, E.; Parekh, R.S.; Kao, W.L. APOL1 variants are associated with increased risk of CKD among African Americans. J. Am. Soc. Nephrol. 2013, 24, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.I.; Kopp, J.B.; Langefeld, C.D.; Genovese, G.; Friedman, D.J.; Nelson, G.W.; Winkler, C.A.; Bowden, D.W.; Pollak, M.R. The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J. Am. Soc. Nephrol. 2010, 21, 1422–1426. [Google Scholar] [CrossRef] [PubMed]
- Parsa, A.; Kao, W.L.; Xie, D.; Astor, B.C.; Li, M.; Hsu, C.Y.; Feldman, H.I.; Parekh, R.S.; Kusek, J.W.; Greene, T.H.; et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 2013, 369, 2183–2196. [Google Scholar] [CrossRef] [PubMed]
- Ulasi, I.I.; Tzur, S.; Wasser, W.G.; Shemer, R.; Kruzel, E.; Feigin, E.; Ijoma, C.K.; Onodugo, O.D.; Okoye, J.U.; Arodiwe, E.B.; et al. High population frequencies of APOL1 risk variants are associated with increased prevalence of non-diabetic chronic kidney disease in the Igbo people from south-eastern Nigeria. Nephron Clin. Pract. 2013, 123, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Skorecki, K.L.; Lee, J.H.; Langefeld, C.D.; Rosset, S.; Tzur, S.; Wasser, W.G.; Shemer, R.; Hawkins, G.A.; Divers, J.; Parekh, R.S.; et al. A null variant in the apolipoprotein L3 gene is associated with non-diabetic nephropathy. Nephrol. Dial. Transplant. 2017, 33, 323–330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lannon, H.; Shah, S.S.; Dias, L.; Blackler, D.; Alper, S.L.; Pollak, M.R.; Friedman, D.J. Apolipoprotein L1 (APOL1) risk variant toxicity depends on the haplotype background. Kidney Int. 2019, 96, 1303–1307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Madhavan, S.M.; Schlöndorff, J.S. Variant upon variant: Kidney-disease risk associated with APOL1 G2 genetic variants is abrogated by the APOL1 p.N264K variant. Kidney Int. 2024, 106, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Levin, M.G.; Duda, J.T.; Landry, L.G.; Witschey, W.R.; Damrauer, S.M.; Ritchie, M.D.; Rader, D.J. Protein-truncating variant in APOL3 increases chronic kidney disease risk in epistasis with APOL1 risk alleles. J. Clin. Investig. 2024, 9, e181238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Narjoz, C.; Tran, V.-H.J.; Rabant, M.; Karras, A.; Pallet, N. Diagnostic Yield of APOL1 p.N264K Variant Screening in Daily Practice. Kidney Int. Rep. 2024, 9, 1916–1918. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gbadegesin, R.; Martinelli, E.; Gupta, Y.; Friedman, D.J.; Sampson, M.G.; Pollak, M.R.; Sanna-Cherchi, S. APOL1 Genotyping Is Incomplete without Testing for the Protective M1 Modifier p.N264K Variant. Glomerular Dis. 2024, 4, 43–48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, Y.; Friedman, D.J.; McNulty, M.T.; Khan, A.; Lane, B.; Wang, C.; Ke, J.; Jin, G.; Wooden, B.; Knob, A.L.; et al. Strong protective effect of the APOL1 p.N264K variant against G2-associated focal segmental glomerulosclerosis and kidney disease. Nat. Commun. 2023, 14, 7836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, E.E.; Malik, H.S. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions. Genome Res. 2009, 19, 850–858. [Google Scholar] [CrossRef]
- Monajemi, H.; Fontijn, R.D.; Pannekoek, H.; Horrevoets, A.J. The apolipoprotein L gene cluster has emerged recently in evolution and is expressed in human vascular tissue. Genomics 2002, 79, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Page, N.M.; Butlin, D.J.; Lomthaisong, K.; Lowry, P.J. The human apolipoprotein L gene cluster: Identification, classification, and sites of distribution. Genomics 2001, 74, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.; Genovese, G.; Canon, C.; Kovacsics, D.; Higgins, M.K.; Carrington, M.; Winkler, C.A.; Kopp, J.; Rotimi, C.; Adeyemo, A.; et al. Evolution of the primate trypanolytic factor APOL1. Proc. Natl. Acad. Sci. USA 2014, 111, E2130–E2139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Friedman, D.J.; Pollak, M.R. APOL1 and Kidney Disease: From Genetics to Biology. Annu. Rev. Physiol. 2020, 82, 323–342. [Google Scholar] [CrossRef] [PubMed]
- Van Xong, H.; Vanhamme, L.; Chamekh, M.; Chimfwembe, C.E.; Abbeele, J.V.D.; Pays, A.; Van Meirvenne, N.; Hamers, R.; De Baetselier, P.; Pays, E. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 1998, 95, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Pays, E.; Vanhollebeke, B. Mutual self-defence: The trypanolytic factor story. Microbes Infect. 2008, 10, 985–989. [Google Scholar] [CrossRef]
- Cunningham, P.N.; Wang, Z.; Grove, M.L.; Cooper-DeHoff, R.M.; Beitelshees, A.L.; Gong, Y.; Gums, J.G.; Johnson, J.A.; Turner, S.T.; Boerwinkle, E.; et al. Hypertensive APOL1, risk allele carriers, demonstrate greater blood pressure reduction with angiotensin receptor blockade compared to low-risk carriers. PLoS ONE 2019, 14, e0221957. [Google Scholar] [CrossRef]
- Han, J.; Srisuwananukorn, A.; Shah, B.N.; Molokie, R.E.; Lash, J.P.; Gordeuk, V.R.; Saraf, S.L. Effects of Renin-Angiotensin Blockade and APOL1 on Kidney Function in Sickle Cell Disease. eJHaem 2021, 2, 483–484. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Dominguez, M.; Golestaneh, L. Diabetic Kidney Disease: An Update. Med. Clin. N. Am. 2023, 107, 689–7058. [Google Scholar] [CrossRef] [PubMed]
- Wolf, G.; Ziyadeh, F.N. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol. 2007, 106, p26–p31. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.N.; Leung, J.C.K.; Tang, S.C.W. The renin-angiotensin system. Contrib. Nephrol. 2011, 170, 135–144. [Google Scholar]
- Kruzel-Davila, E.; Divers, J.; Russell, G.B.; Kra-Oz, Z.; Cohen, M.S.; Langefeld, C.D.; Ma, L.; Lyles, D.S.; Hicks, P.J.; Skorecki, K.L.; et al. JC Viruria Is Associated with Reduced Risk of Diabetic Kidney Disease. J. Clinl. Endocrinol. Metabol. 2019, 104, 2286–2294. [Google Scholar] [CrossRef] [PubMed]
- Karreci, E.S.; Jacas, S.; Donovan, O.; Pintye, D.; Wiley, N.; Zsengeller, Z.K.; Schlondorff, J.; Alper, S.L.; Friedman, D.J.; Pollak, M.R. Differing sensitivities to angiotensin converting enzyme inhibition of kidney disease mediated by APOL1 high-risk variants G1 and G2. Kidney Int. 2024, 106, 1072–1085. [Google Scholar] [CrossRef]
- Kumar, V.; Kaur, P.; Ayasolla, K.; Jha, A.; Wiqas, A.; Vashistha, H.; Saleem, M.A.; Popik, W.; Malhotra, A.; Gebeshuber, C.A.; et al. APOL1 Modulates Renin-Angiotensin System. Biomolecules 2024, 14, 1575. [Google Scholar] [CrossRef]
- Márquez, E.; Riera, M.; Pascual, J.; Soler, M.J. Renin-angiotensin system within the diabetic podocyte. Am. J. Physiol. Physiol. 2015, 308, F1–F10. [Google Scholar] [CrossRef] [PubMed]
- Durvasula, R.V.; Shankland, S.J. Activation of a local renin angiotensin system in podocytes by glucose. Am. J. Physiol. Renal Physiol. 2008, 294, F830–F839. [Google Scholar] [CrossRef]
- Yoo, T.-H.; Li, J.-J.; Kim, J.-J.; Jung, D.-S.; Kwak, S.-J.; Ryu, D.-R.; Choi, H.; Kim, H.; Han, S.; Lee, J.; et al. Activation of the renin-angiotensin system within podocytes in diabetes. Kidney Int. 2007, 71, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Kietzmann, L.; Guhr, S.S.; Meyer, T.N.; Ni, L.; Sachs, M.; Panzer, U.; Stahl, R.A.; Saleem, M.A.; Kerjaschki, D.; Gebeshuber, C.A.; et al. MicroRNA-193a Regulates the Transdifferentiation of Human Parietal Epithelial Cells toward a Podocyte Phenotype. J. Am. Soc. Nephrol. 2015, 26, 1389–1401. [Google Scholar] [CrossRef] [PubMed]
- Appel, D.; Kershaw, D.B.; Smeets, B.; Yuan, G.; Fuss, A.; Frye, B.D.; Elger, M.; Kriz, W.; Floege, J.D.; Moeller, M.J. Recruitment of podocytes from glomerular parietal epithelial cells. J. Am. Soc. Nephrol. 2009, 20, 333–343. [Google Scholar] [CrossRef]
- Wharram, B.L.; Goyal, M.; Wiggins, J.E.; Sanden, S.K.; Hussain, S.; Filipiak, W.E.; Saunders, T.L.; Dysko, R.C.; Kohno, K.; Holzman, L.B.; et al. Podocyte depletion causes glomerulosclerosis: Diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 2005, 16, 2941–2952. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, A.; Sato, Y.; Shibata, H.; Fujimoto, S.; Wiggins, R.C. Urinary podocyte markers of disease activity, therapeutic efficacy, and long-term outcomes in acute and chronic kidney diseases. Clin. Exp. Nephrol. 2024, 28, 496–504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mishra, A.; Ayasolla, K.; Kumar, V.; Lan, X.; Vashistha, H.; Aslam, R.; Hussain, A.; Chowdhary, S.; Shoshtari, S.M.; Paliwal, N.; et al. Modulation of apolipoprotein L1-microRNA-193a axis prevents podocyte dedifferentiation in high-glucose milieu. Am. J. Physiol. Physiol. 2018, 314, F832–F843. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Paliwal, N.; Ayasolla, K.; Vashistha, H.; Jha, A.; Chandel, N.; Chowdhary, S.; Saleem, M.A.; Malhotra, A.; Chander, P.N.; et al. Disruption of APOL1-miR193a Axis Induces Disorganization of Podocyte Actin Cytoskeleton. Sci. Rep. 2019, 9, 3582. [Google Scholar] [CrossRef] [PubMed]
- Hakroush, S.; Cebulla, A.; Schaldecker, T.; Behr, D.; Mundel, P.; Weins, A. Extensive podocyte loss triggers a rapid parietal epithelial cell response. J. Am. Soc. Nephrol. 2014, 25, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Vashistha, H.; Lan, X.; Chandel, N.; Ayasolla, K.; Shoshtari, S.S.M.; Aslam, R.; Paliwal, N.; Abbruscato, F.; Mikulak, J.; et al. Role of Apolipoprotein L1 in Human Parietal Epithelial Cell Transition. Am. J. Pathol. 2018, 188, 2508–2528. [Google Scholar] [CrossRef]
- Gebeshuber, C.A.; Kornauth, C.; Dong, L.; Sierig, R.; Seibler, J.; Reiss, M.; Tauber, S.; Bilban, M.; Wang, S.; Kain, R.; et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 2013, 19, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Wang, J.; Zhang, L.; Sun, W.; Xu, X.; Zhang, K. Plasma miR-193a-3p can be a potential biomarker for the diagnosis of diabetic nephropathy. Ann. Clin. Biochem. 2020, 58, 141–148. [Google Scholar] [CrossRef]
- Gao, D.; Yu, P.; Jing, S.; Yan, C.; Ding, D.; Qiao, Y.; Wu, G. miR-193a as a potential mediator of WT-1/synaptopodin in the renoprotective effect of Losartan on diabetic kidney. Can. J. Physiol. Pharmacol. 2022, 100, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Skorecki, K.L.; Wasser, W.G. Hypertension-misattributed kidney disease in African Americans. Kidney Int. 2013, 83, 6–9. [Google Scholar] [CrossRef]
- Lipkowitz, M.S.; Freedman, B.I.; Langefeld, C.D.; Comeau, M.E.; Bowden, D.W.; Kao, W.L.; Astor, B.C.; Bottinger, E.P.; Iyengar, S.K.; Klotman, P.E.; et al. Apolipoprotein L1 gene variants are associated with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans. Kidney Int. 2013, 83, 114–120. [Google Scholar] [CrossRef]
- Freedman, B.I.; Cohen, A.H. Hypertension-attributed nephropathy: What’s in a name? Nat. Rev. Nephrol. 2016, 12, 27–36. [Google Scholar] [CrossRef]
- Nadkarni, G.N.; Galarneau, G.; Ellis, S.B.; Nadukuru, R.; Zhang, J.; Scott, S.A.; Schurmann, C.; Li, R.; Rasmussen-Torvik, L.J.; Kho, A.N.; et al. Apolipoprotein L1 Variants and Blood Pressure Traits in African Americans. J. Am. Coll. Cardiol. 2017, 69, 1564–1574. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; de Almeida, L.F.; Yamaguchi, H.; Liang, X.; Smith, J.P.; Medrano, S.; Lopez, M.L.S.S.; Gomez, R.A. Transformation of the Kidney into a Pathological Neuro-Immune-Endocrine Organ. Circ. Res. 2024, 135, 1025–1027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bomback, A.S.; Toto, R. Dual blockade of the renin-angiotensin-aldosterone system: Beyond the ACE inhibitor and angiotensin-II receptor blocker combination. Am. J. Hypertens. 2009, 22, 1032–1040. [Google Scholar] [CrossRef]
- Li, Y.C.; Kong, J.; Wei, M.; Chen, Z.F.; Liu, S.Q.; Cao, L.P. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Investig. 2002, 110, 229–238. [Google Scholar] [CrossRef]
- Chandel, N.; Ayasolla, K.; Wen, H.; Lan, X.; Haque, S.; Saleem, M.A.; Malhotra, A.; Singhal, P.C. Vitamin D receptor deficit induces renin-angiotensin system activation via SIRT1 modulation in podocytes. Exp. Mol. Patho. 2017, 102, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Abbate, M.; Zoja, C.; Corna, D.; Capitanio, M.; Bertani, T.; Remuzzi, G. In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J. Am. Soc. Nephrol. 1998, 9, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Ruggenenti, P.; Perna, A.; Mosconi, L.; Pisoni, R.; Remuzzi, G. Urinary protein excretion rate is the best independent predictor of ESRF in non-diabetic proteinuric chronic nephropathies. Kidney Int. 1998, 53, 1209–1216. [Google Scholar] [CrossRef]
- Sarafidis, P.A.; Stafylas, P.C.; Kanaki, A.I.; Lasaridis, A.N. Effects of renin angiotensin system blockers on renal outcomes and all-cause mortality in patients with diabetic nephropathy: An updated meta-analysis. Am. J. Hypertens. 2008, 21, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.I.; Dekkers, C.C.J.; Barbour, S.J.; Cattran, D.; Gafor, A.H.A.; Greasley, P.J.; Laverman, G.D.; Lim, S.K.; Di Tanna, G.L.; Reich, H.N.; et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020, 8, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Na Kim, M.; Moon, J.H.; Cho, Y.M. Sodium–glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation. Diabetes Obes. Metab. 2021, 23, 2561–2571. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, B.; Dakin, L.A.; Fortier, A.; Nanou, E.; Blasio, A.; Mann, J.; Miller, H.; Fletcher, M.; Wang, T.; Nanthakumar, S.; et al. Small molecule APOL1 inhibitors as a precision medicine approach for APOL1-mediated kidney disease. Nat. Commun. 2025, 16, 167. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singhal, P.C.; Skorecki, K. APOL1 Dynamics in Diabetic Kidney Disease and Hypertension. Biomolecules 2025, 15, 205. https://doi.org/10.3390/biom15020205
Singhal PC, Skorecki K. APOL1 Dynamics in Diabetic Kidney Disease and Hypertension. Biomolecules. 2025; 15(2):205. https://doi.org/10.3390/biom15020205
Chicago/Turabian StyleSinghal, Pravin C., and Karl Skorecki. 2025. "APOL1 Dynamics in Diabetic Kidney Disease and Hypertension" Biomolecules 15, no. 2: 205. https://doi.org/10.3390/biom15020205
APA StyleSinghal, P. C., & Skorecki, K. (2025). APOL1 Dynamics in Diabetic Kidney Disease and Hypertension. Biomolecules, 15(2), 205. https://doi.org/10.3390/biom15020205