From Cardiovascular-Kidney-Metabolic Syndrome to Cardiovascular-Renal-Hepatic-Metabolic Syndrome: Proposing an Expanded Framework
Abstract
:1. Introduction
2. Defining and Staging the CRHM Syndrome
- ▪
- Waist circumference ≥88 cm for women and ≥102 cm for men (≥80 cm for women and ≥90 cm for men in individuals of Asian descent).
- ▪
- HDL-C <40 mg/dL for men and <50 mg/dL for women.
- ▪
- Triglycerides (TG) ≥150 mg/dL.
- ▪
- Elevated blood pressure (systolic ≥130 mm Hg or diastolic ≥80 mm Hg, or use of antihypertensive medications).
- ▪
- Fasting blood glucose ≥100 mg/dL, or the use of antidiabetic medications.
3. Pathophysiology of the CRHM Syndrome
3.1. Excess Adiposity
3.1.1. Adiposity and Insulin Resistance
3.1.2. Adiposity and Dyslipidemia
3.1.3. Adiposity and Arterial Hypertension
3.1.4. Adiposity and Renal Dysfunction
3.1.5. Adiposity, MASLD and HFpEF
3.2. Coexistence of Diabetes and Hypertension and Progression to CKD
- ▪
- Glomerular Hyperfiltration: Both conditions elevate glomerular pressure and exacerbate hyperfiltration, accelerating damage to podocytes and other glomerular cells. In diabetes, chronic hyperglycemia increases glucose filtration through the kidneys. To compensate, renal tubules reabsorb more glucose and sodium, raising intraglomerular pressure and promoting hyperfiltration. Similarly, systemic hypertension transmits high pressure to the glomeruli, leading to hyperfiltration in early stages and eventually progressing to glomerular sclerosis (hardening and scarring) [20,21].
- ▪
- RAAS: Insulin resistance and hyperglycemia can enhance RAAS activity, which is often elevated in idiopathic arterial hypertension. Elevated angiotensin II causes preferential constriction of the efferent arteriole, increasing intraglomerular pressure. Increased aldosterone secretion and sodium and fluid retention further compound this pressure, leading to chronic glomerular injury. Over time, RAAS-driven damage contributes to structural changes in renal vasculature, such as hyaline arteriosclerosis in afferent arterioles and hyperplastic arteriosclerosis in more severe cases [20,21].
- ▪
- ▪
- ▪
- Endothelial Dysfunction and Chronic Inflammation: Endothelial dysfunction, driven by pro-inflammatory cytokines and oxidative stress from both diabetes and hypertension, damages glomeruli and renal vessels. Chronic inflammation activates mesangial cells and fibroblasts, leading to extracellular matrix deposition, nephron loss, and a gradual decline in GFR [20,21].
3.3. Liver-Cardiovascular Interactions
3.3.1. How Cardiac Dysfunction Affects the Liver
- ▪
- Reduced Hepatic Perfusion: In cardiac dysfunction, particularly HF with reduced ejection fraction (HFrEF), decreased CO leads to diminished hepatic perfusion. This inadequate perfusion limits nutrient and oxygen delivery to the liver, causing metabolic stress to the hepatocytes and contributing to hepatocellular injury [22].
- ▪
- Congestive Hepatopathy: In HF, elevated central venous pressure is transmitted to the hepatic veins, resulting in sinusoidal congestion, a condition often referred to as congestive hepatopathy. HF also activates the RAAS, promoting sodium and water retention, further exacerbating hepatic congestion. Persistent congestion impairs hepatic microcirculation, diminishing oxygen and nutrient delivery to hepatocytes. The combination of sinusoidal congestion and low-grade inflammation activates hepatic stellate cells, leading to collagen production and extracellular matrix deposition. Over time, this process can contribute to ascites development and even progress to significant fibrosis and “cardiac cirrhosis” [23].
- ▪
- Neurohormonal Activation: Cardiac dysfunction, particularly HFrEF, and to a lesser extent HFpEF, are associated with neurohormonal activation (activation of the SNS and RAAS), which increases systemic and splanchnic vascular resistance. While cirrhosis is often associated with low systemic vascular resistance, HF-driven RAAS activation can disrupt this balance, worsening portal hypertension and ascites. Aldosterone and angiotensin II contribute to tissue fibrosis, potentially exacerbating liver fibrosis in patients with ongoing liver injury [24,25].
- ▪
3.3.2. How Hepatic Dysfunction Affects the Cardiovascular System
- ▪
- Hyperdynamic Circulation: In advanced liver cirrhosis, excessive production of vasodilatory mediators like NO, particularly in the splanchnic circulation, leads to a hyperdynamic circulatory state characterized by reduced systemic vascular resistance. Although arterial blood pressure may drop, the heart compensates by increasing CO to maintain perfusion. Over time, this cardiac stress can result in cardiac remodeling, reduced contractility, and eventual HF—a condition often termed “cirrhotic cardiomyopathy” [28].
- ▪
- Neurohormonal Activation: In cirrhosis or severe liver dysfunction, overproduction of vasodilatory mediators such as NO in the splanchnic circulation which, together with hypoalbuminemia and decreased oncotic pressure, leads to markedly reduced effective arterial blood volume. This triggers compensatory activation of the RAAS and the SNS. RAAS activation induces vasoconstriction and increases afterload, leading to chronic left ventricular pressure overload. This can contribute to or exacerbate left ventricular hypertrophy and myocardial fibrosis, contributing to the development of “cirrhotic cardiomyopathy”. Additionally, elevated aldosterone levels drive sodium and water retention, causing volume overload [24,25].
- ▪
- Ascites: Tense ascites may compromise venous return and cardiac filling, worsening HF symptoms [29].
- ▪
- Toxic Metabolite Accumulation: In liver failure, the liver cannot efficiently clear ammonia and other metabolic byproducts, resulting in their accumulation. These toxins can stimulate systemic inflammation, oxidative stress, increase the risk of arrhythmias, promote atherosclerosis, and contribute to the development of “cirrhotic cardiomyopathy” [30].
- ▪
- Chronic Inflammation and Oxidative Stress: Chronic liver disease, such as in MASH or cirrhosis, activates Kupffer cells and other immune cells, resulting in the release of pro-inflammatory cytokines (e.g., TNF-α, IL-6) and oxidative stress. This can directly damage cardiomyocytes and endothelial cells, contributing to atherosclerosis and the development of “cirrhotic cardiomyopathy” [31].
- ▪
- Promotion of Dyslipidemia and Insulin Resistance in MASLD: In patients with MASLD, factors including lipotoxicity and meta-inflammation result in dysregulated hepatic lipid metabolism and decreased hepatic insulin sensitivity, leading to dyslipidemia, as well as increased glycogenolysis and gluconeogenesis resulting in hyperglycemia, significant risk factors for atherosclerosis [31].
3.4. Cardiovascular-Kidney Interactions
3.4.1. How Cardiovascular Dysfunction Affects the Kidneys
- ▪
- Reduced Renal Perfusion: In cardiac dysfunction, particularly HFrEF, decreased CO leads to diminished renal perfusion. This reduction lowers the GFR and is a hallmark of the cardiorenal syndrome, while it can also cause chronic ischemic renal damage and atrophy [32].
- ▪
- Congestive nephropathy: Elevated central venous pressure resulting from cardiac dysfunction transmits backward into the renal veins, resulting in renal congestion. HF also activates the RAAS, promoting sodium and water retention, further exacerbating renal congestion. High venous pressure reduces the transrenal pressure gradient, impairing glomerular filtration. Over time, this process can cause fibrosis and progressive nephron loss [32].
- ▪
- Neurohormonal Activation: Cardiac dysfunction, particularly HFrEF, and in less extent HFpEF, are associated with neurohormonal activation (activation of the SNS and RAAS), which increases systemic and splanchnic vascular resistance. Chronic RAAS activation is associated with glomerular damage, resulting in proteinuria, fibrosis, and progressive nephron loss. Chronic SNS activation exacerbates renal vasoconstriction, further reducing GFR and promoting ischemic renal injury [25,32].
- ▪
3.4.2. How Renal Dysfunction Affects the Cardiovascular System
- ▪
- Volume Overload and Neurohormonal Activation: As kidney function declines, reduced sodium delivery to the distal tubule stimulates renin release, triggering activation of the RAAS. RAAS activation induces vasoconstriction and increases afterload, leading to chronic left ventricular pressure overload. This can contribute to or exacerbate left ventricular hypertrophy and myocardial fibrosis, resulting in stiffened ventricular walls and promoting diastolic dysfunction. Additionally, elevated aldosterone levels drive sodium and water retention, causing volume overload and increased right ventricular preload. This volume overload may lead to interventricular interaction through the leftward displacement of the interventricular septum, reducing left ventricular preload and subsequently diminishing CO. Furthermore, excessive fluid retention can contribute to or worsen pulmonary edema [34].
- ▪
- Uremic Toxin Accumulation: Uremic toxins, such as urea and indoxyl sulfate, accumulate in advanced CKD and can directly impair myocardial function. These toxins also impair endothelial function by reducing NO production, and promote vasoconstriction, inflammation, atherosclerosis, and arrhythmogenesis [35].
- ▪
- Anemia of CKD: Anemia of CKD occurs because failing kidneys produce less erythropoietin (EPO), leading to normocytic anemia. Furthermore, the uremic toxin indoxyl sulfate increases apoptosis in red cells, further contributing to the anemia in CKD [36]. In response, the heart attempts to increase the CO to meet peripheral oxygen demands, which can elevate left ventricular filling pressures and cause dyspnea. Chronic hyperdynamic circulation due to anemia of CKD places stress on the heart, potentially leading to a decline in cardiac function. Additionally, severe anemia may reduce the myocardial oxygen supply, causing ischemia and further impairing cardiac function, potentially resulting in type 2 myocardial infarction [36,37].
- ▪
- Dysregulated Mineral Metabolism: CKD disrupts mineral metabolism, promoting vascular calcification, arterial stiffness, and aortic calcification. This increases afterload, further straining the heart and exacerbating cardiac dysfunction, while it can also contribute to accelerated atherosclerosis and myocardial ischemia [38].
- ▪
- Chronic Inflammation and Oxidative Stress: CKD is associated with elevated levels of pro-inflammatory cytokines (e.g., TNF-α, IL-6) and oxidative stress markers. Indoxyl sulfate, in particular, acts as a significant endotheliotoxin contributing to the development of cardiovascular disease in individuals with CKD. Within endothelial cells, it triggers oxidative stress, inflammation, and thrombosis, all of which play a central role in endothelial dysfunction, myocardial dysfunction, and atherosclerosis [39].
3.5. Liver-Kidney Interactions
3.5.1. How Hepatic Dysfunction Affects the Kidneys
- ▪
- Splanchnic Vasodilation and Hypoalbuminemia: In cirrhosis or severe liver dysfunction, overproduction of vasodilatory mediators such as NO in the splanchnic circulation which, together with hypoalbuminemia and decreased oncotic pressure, leads to markedly reduced effective arterial blood volume, which can progress to hepatorenal syndrome [40].
- ▪
- Neurohormonal Activation: Reduced effective arterial blood volume above compensatory activation of the RAAS and the SNS. Chronic RAAS activation can lead to with glomerular damage, proteinuria, fibrosis, and progressive nephron loss. Chronic SNS activation exacerbates renal vasoconstriction, further reducing GFR and promoting ischemic renal injury [24].
- ▪
- Ascites: Tense ascites can directly impair renal arterial blood supply and venous return, further compromising kidney function [41].
- ▪
- Toxic Metabolite Accumulation: In liver failure, the liver cannot efficiently clear ammonia and other metabolic byproducts, resulting in their accumulation. These toxins contribute to endothelial dysfunction, worsening renal vasoconstriction and promoting systemic and renal inflammation, further impairing kidney function [31,42].
- ▪
- Systemic Inflammation and Oxidative Stress: Chronic liver injury, such as MASH or cirrhosis, activates Kupffer cells and other immune cells, resulting in the release of pro-inflammatory cytokines (e.g., TNF-α, IL-6) and oxidative stress. These mediators can directly damage renal tubular cells and blood vessels, contributing to renal dysfunction [31].
3.5.2. How Renal Dysfunction Affects the Liver
- ▪
- Volume Overload: As kidney function declines, reduced sodium and water excretion promotes fluid retention. In patients with liver disease who are already prone to fluid overload (e.g., ascites, edema), this exacerbates portal hypertension and venous congestion. Increased intra-abdominal pressure from worsening ascites can impair hepatic venous outflow, further deteriorating liver function [43].
- ▪
- Neurohormonal Activation: Persistent activation of the RAAS and SNS in CKD increases systemic and splanchnic vascular resistance. While cirrhosis is often associated with low systemic vascular resistance, kidney-driven RAAS activation can disrupt this balance, worsening portal hypertension and ascites. Aldosterone and angiotensin II contribute to tissue fibrosis, potentially exacerbating liver fibrosis in patients with ongoing liver injury [44].
- ▪
- Uremic Toxin Accumulation: CKD leads to the accumulation of uremic toxins such as urea, indoxyl sulfate, and p-cresol sulfate. At high concentrations, these toxins induce systemic inflammation and oxidative stress, adding to the burden on a compromised liver and exacerbating hepatic encephalopathy. Uremic toxins also damage endothelial cells, reducing hepatic microcirculation efficiency and aggravating hepatic inflammation and fibrosis [45].
- ▪
- Chronic Inflammation and Oxidative Stress: CKD is associated with elevated levels of pro-inflammatory cytokines (e.g., TNF-α, IL-6) and oxidative stress markers. These mediators can exacerbate underlying liver disease and perpetuate the cycle of hepatic injury and fibrosis [39].
3.6. Additional Modifying Factors in the Pathophysiology of CRHM Syndrome
4. Evaluation of the CRHM Syndrome
Key Takeaways
- ▪
- Multidimensional Screening: The CRHM syndrome spans various organ systems, and a thorough workup is necessary for recognizing early dysfunction. By evaluating adiposity, insulin resistance, blood pressure, lipid profile, renal function, hepatic health, and cardiovascular risk, clinicians can gain a complete picture of a patient’s metabolic and organ status.
- ▪
- Risk Stratification and Staging: Each domain contributes to staging the CRHM syndrome. Early detection and classification allow for more targeted, timely interventions—whether they are lifestyle modifications, pharmacotherapies, or further investigations.
- ▪
- Role of Specialized Tests: Secondary causes of obesity and hypertension, genetic testing for monogenic diabetes or familial hypercholesterolemia, advanced lipid testing (e.g., lipoprotein particle size, cholesterol efflux capacity), and advanced cardiovascular imaging studies may be indicated in complex or resistant cases. In patients with HF screening for multiple hormonal deficiency syndrome (growth hormone, testosterone, and/or triiodothyronine deficiency) could provide important additional insights [50,52,53,54]. Identifying these factors can significantly alter treatment strategies and improve outcomes.
- ▪
- Patient-Centered Approach: Tailoring the diagnostic strategy to each patient’s clinical history, symptoms, and risk profile is essential. For instance, those with resistant hypertension warrant screening for primary hyperaldosteronism, whereas individuals with unusual patterns of dyslipidemia may need genetic testing for familial hypercholesterolemia.
5. Novel Therapeutic Options for the CRHM Syndrome
6. Implications for Clinical Practice and Patient Care
7. Conclusions
Funding
Conflicts of Interest
References
- Nikolaou, M.; Theodorakis, N.; Feretzakis, G.; Vamvakou, G.; Hitas, C.; Kalantzi, S.; Spyridaki, A.; Apostolos, A.; Verykios, V.S.; Toutouzas, K. Nationwide Mortality Trends from 2001 to 2020 in Greece: Health Policy Implications under the Scope of Aging Societies. Hellenic J. Cardiol. 2024, S1109-9666, 00177–5. [Google Scholar] [CrossRef]
- Angelidi, A.M.; Sanoudou, D.; Hill, M.A.; Mantzoros, C.S. Management of Patients with the Cardio Renal Liver Metabolic Syndrome: The Need for a Multidisciplinary Approach in Research, Education, and Practice. Metabolism 2024, 159, 155997. [Google Scholar] [CrossRef] [PubMed]
- Theodorakis, N.; Nikolaou, M. Integrated Management of Cardiovascular–Renal–Hepatic–Metabolic Syndrome: Expanding Roles of SGLT2is, GLP-1RAs, and GIP/GLP-1RAs. Biomedicines 2025, 13, 135. [Google Scholar] [CrossRef]
- International Cardiometabolic Working Group; Krentz, A.; Jacob, S.; Heiss, C.; Sattar, N.; Lim, S.; Khunti, K.; Eckel, R.H. Corrigendum to “Rising to the Challenge of Cardio-Renal-Metabolic Disease in the 21st Century: Translating Evidence into Best Clinical Practice to Prevent and Manage Atherosclerosis” [Atherosclerosis, Vol. 396 (September 2024), 118528]. Atherosclerosis 2024, 398, 118610. [Google Scholar] [CrossRef]
- Ndumele, C.E.; Neeland, I.J.; Tuttle, K.R.; Chow, S.L.; Mathew, R.O.; Khan, S.S.; Coresh, J.; Baker-Smith, C.M.; Carnethon, M.R.; Després, J.P.; et al. A Synopsis of the Evidence for the Science and Clinical Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A Scientific Statement From the American Heart Association. Circulation 2023, 148, 1636–1664. [Google Scholar] [CrossRef] [PubMed]
- Ndumele, C.E.; Rangaswami, J.; Chow, S.L.; Neeland, I.J.; Tuttle, K.R.; Khan, S.S.; Coresh, J.; Mathew, R.O.; Baker-Smith, C.M.; Carnethon, M.R.; et al. Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory From the American Heart Association. Circulation 2023, 148, 1606–1635. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes. Facts. 2024, 17, 374–444. [Google Scholar] [CrossRef] [PubMed]
- Hagström, H.; Vessby, J.; Ekstedt, M.; Shang, Y. 99% of Patients with NAFLD Meet MASLD Criteria and Natural History Is Therefore Identical. J. Hepatol. 2024, 80, e76–e77. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; McNamara, J.; Hummel, S.L.; Konerman, M.C.; Tincopa, M.A. Prevalence and Staging of Non-Alcoholic Fatty Liver Disease Among Patients with Heart Failure with Preserved Ejection Fraction. Sci. Rep. 2020, 10, 12440. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and Diagnostic Criteria of Clinical Obesity. Lancet Diabetes Endocrinol. 2025. [CrossRef]
- Arneth, B. Mechanisms of Insulin Resistance in Patients with Obesity. Endocrines 2024, 5, 153–165. [Google Scholar] [CrossRef]
- Theodorakis, N.; Kreouzi, M.; Pappas, A.; Nikolaou, M. Beyond Calories: Individual Metabolic and Hormonal Adaptations Driving Variability in Weight Management—A State-of-the-Art Narrative Review. Int. J. Mol. Sci. 2024, 25, 13438. [Google Scholar] [CrossRef] [PubMed]
- Theodorakis, N.; Kreouzi, M.; Hitas, C.; Anagnostou, D.; Nikolaou, M. Adipokines and Cardiometabolic Heart Failure with Preserved Ejection Fraction: A State-of-the-Art Review. Diagnostics 2024, 14, 2677. [Google Scholar] [CrossRef]
- Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef]
- El Meouchy, P.; Wahoud, M.; Allam, S.; Chedid, R.; Karam, W.; Karam, S. Hypertension Related to Obesity: Pathogenesis, Characteristics and Factors for Control. Int. J. Mol. Sci. 2022, 23, 12305. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Chen, Y.; Dong, Y. Kidney Damage Caused by Obesity and Its Feasible Treatment Drugs. Int. J. Mol. Sci. 2022, 23, 747. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.K.; Lee, J.K.; Hsu, J.C.; Su, M.M.; Wu, Y.F.; Lin, T.T.; Lan, C.W.; Hwang, J.J.; Lin, L.Y. Myocardial Adipose Deposition and the Development of Heart Failure with Preserved Ejection Fraction. Eur. J. Heart Fail. 2020, 22, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Beyoğlu, D.; Popov, Y.V.; Idle, J.R. Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease. Int. J. Mol. Sci. 2024, 25, 12809. [Google Scholar] [CrossRef] [PubMed]
- Capone, F.; Vettor, R.; Schiattarella, G.G. Cardiometabolic HFpEF: NASH of the Heart. Circulation 2023, 147, 451–453. [Google Scholar] [CrossRef]
- Jha, R.; Lopez-Trevino, S.; Kankanamalage, H.R.; Jha, J.C. Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines 2024, 12, 1098. [Google Scholar] [CrossRef]
- Costantino, V.V.; Gil Lorenzo, A.F.; Bocanegra, V.; Vallés, P.G. Molecular Mechanisms of Hypertensive Nephropathy: Renoprotective Effect of Losartan through Hsp70. Cells 2021, 10, 3146. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.M.; Mukherjee, D. Liver Abnormalities in Cardiac Diseases and Heart Failure. Int. J. Angiol. 2011, 20, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Fortea, J.I.; Puente, Á.; Cuadrado, A.; Huelin, P.; Pellón, R.; González Sánchez, F.J.; Mayorga, M.; Cagigal, M.L.; García Carrera, I.; Cobreros, M.; et al. Congestive Hepatopathy. Int. J. Mol. Sci. 2020, 21, 9420. [Google Scholar] [CrossRef] [PubMed]
- McGrath, M.S.; Wentworth, B.J. The Renin–Angiotensin System in Liver Disease. Int. J. Mol. Sci. 2024, 25, 5807. [Google Scholar] [CrossRef]
- Manolis, A.A.; Manolis, T.A.; Manolis, A.S. Neurohumoral Activation in Heart Failure. Int. J. Mol. Sci. 2023, 24, 15472. [Google Scholar] [CrossRef] [PubMed]
- Arvunescu, A.M.; Ionescu, R.F.; Cretoiu, S.M.; Dumitrescu, S.I.; Zaharia, O.; Nanea, I.T. Inflammation in Heart Failure—Future Perspectives. J. Clin. Med. 2023, 12, 7738. [Google Scholar] [CrossRef]
- Shi, S.; Zhou, Y.; Zhang, H.; Zhu, Y.; Jiang, P.; Xie, C.; Feng, T.; Zeng, Y.; He, H.; Luo, Y.; et al. The Causal Relationship between Inflammatory Cytokines and Liver Cirrhosis in European Descent: A Bidirectional Two-Sample Mendelian Randomization Study and the First Conclusions. Biomedicines 2024, 12, 2264. [Google Scholar] [CrossRef] [PubMed]
- Somnay, K.; Wadgaonkar, P.; Sridhar, N.; Roshni, P.; Rao, N.; Wadgaonkar, R. Liver Fibrosis Leading to Cirrhosis: Basic Mechanisms and Clinical Perspectives. Biomedicines 2024, 12, 2229. [Google Scholar] [CrossRef] [PubMed]
- Zaccherini, G.; Tufoni, M.; Iannone, G.; Caraceni, P. Management of Ascites in Patients with Cirrhosis: An Update. J. Clin. Med. 2021, 10, 5226. [Google Scholar] [CrossRef] [PubMed]
- Fede, G.; Privitera, G.; Tomaselli, T.; Spadaro, L.; Purrello, F. Cardiovascular Dysfunction in Patients with Liver Cirrhosis. Ann. Gastroenterol. 2015, 28, 31–40. [Google Scholar] [PubMed]
- Dąbrowska, A.; Wilczyński, B.; Mastalerz, J.; Kucharczyk, J.; Kulbacka, J.; Szewczyk, A.; Rembiałkowska, N. The Impact of Liver Failure on the Immune System. Int. J. Mol. Sci. 2024, 25, 9522. [Google Scholar] [CrossRef] [PubMed]
- Szlagor, M.; Dybiec, J.; Młynarska, E.; Rysz, J.; Franczyk, B. Chronic Kidney Disease as a Comorbidity in Heart Failure. Int. J. Mol. Sci. 2023, 24, 2988. [Google Scholar] [CrossRef]
- Kadatane, S.P.; Satariano, M.; Massey, M.; Mongan, K.; Raina, R. The Role of Inflammation in CKD. Cells 2023, 12, 1581. [Google Scholar] [CrossRef]
- Xanthopoulos, A.; Papamichail, A.; Briasoulis, A.; Loritis, K.; Bourazana, A.; Magouliotis, D.E.; Sarafidis, P.; Stefanidis, I.; Skoularigis, J.; Triposkiadis, F. Heart Failure in Patients with Chronic Kidney Disease. J. Clin. Med. 2023, 12, 6105. [Google Scholar] [CrossRef] [PubMed]
- El Chamieh, C.; Liabeuf, S.; Massy, Z. Uremic Toxins and Cardiovascular Risk in Chronic Kidney Disease: What Have We Learned Recently beyond the Past Findings? Toxins 2022, 14, 280. [Google Scholar] [CrossRef] [PubMed]
- Hamza, E.; Vallejo-Mudarra, M.; Ouled-Haddou, H.; García-Caballero, C.; Guerrero-Hue, M.; Santier, L.; Rayego-Mateos, S.; Larabi, I.A.; Alvarez, J.C.; Garçon, L.; et al. Indoxyl Sulfate Impairs Erythropoiesis at BFU-E Stage in Chronic Kidney Disease. Cell. Signal. 2023, 104, 110583. [Google Scholar] [CrossRef] [PubMed]
- Scicchitano, P.; Iacoviello, M.; Massari, A.; De Palo, M.; Potenza, A.; Landriscina, R.; Abruzzese, S.; Tangorra, M.; Guida, P.; Ciccone, M.M.; et al. Anaemia and Congestion in Heart Failure: Correlations and Prognostic Role. Biomedicines 2023, 11, 972. [Google Scholar] [CrossRef] [PubMed]
- Izzo, C.; Secondulfo, C.; Bilancio, G.; Visco, V.; Virtuoso, N.; Migliarino, S.; Ciccarelli, M.; Di Pietro, P.; La Mura, L.; Damato, A.; et al. Chronic Kidney Disease with Mineral Bone Disorder and Vascular Calcification: An Overview. Life 2024, 14, 418. [Google Scholar] [CrossRef] [PubMed]
- Lano, G.; Burtey, S.; Sallée, M. Indoxyl Sulfate, a Uremic Endotheliotoxin. Toxins 2020, 12, 229. [Google Scholar] [CrossRef] [PubMed]
- Badura, K.; Frąk, W.; Hajdys, J.; Majchrowicz, G.; Młynarska, E.; Rysz, J.; Franczyk, B. Hepatorenal Syndrome—Novel Insights into Diagnostics and Treatment. Int. J. Mol. Sci. 2023, 24, 17469. [Google Scholar] [CrossRef]
- Carrier, P.; Debette-Gratien, M.; Jacques, J.; Loustaud-Ratti, V. Non-Cirrhotic Ascites: Causes and Management. Gastroenterol. Insights 2024, 15, 926–943. [Google Scholar] [CrossRef]
- Ozturk, N.B.; Dinc, E.J.; Swami, A.; Gurakar, A. Acute Kidney Injury and Hepatorenal Syndrome in Patients with Cirrhosis. J. Clin. Med. 2024, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Sai Spandana, G.; Viswanathan, S.; Barathi, S.D.; Selvaraj, J. Etiology and Outcomes in Patients with Chronic Kidney Disease and Ascites. Cureus 2024, 16, e64113. [Google Scholar] [CrossRef] [PubMed]
- Tain, Y.-L.; Hsu, C.-N. The Renin–Angiotensin System and Cardiovascular–Kidney–Metabolic Syndrome: Focus on Early-Life Programming. Int. J. Mol. Sci. 2024, 25, 3298. [Google Scholar] [CrossRef] [PubMed]
- Rajakumar, A.; Appuswamy, E.; Kaliamoorthy, I.; Rela, M. Renal Dysfunction in Cirrhosis: Critical Care Management. Indian J. Crit. Care Med. 2021, 25, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Theodorakis, N.; Hitas, C.; Vamvakou, G.; Kalantzi, S.; Spyridaki, A.; Kollia, Z.; Feretzakis, G.; Nikolaou, M. Complexities in Geriatric Cardiology: Clinical Dilemmas and Gaps in Evidence. J. Geriatr. Cardiol. 2025, 22, 190–209. [Google Scholar] [CrossRef]
- Theodorakis, N.; Nikolaou, M.; Hitas, C.; Anagnostou, D.; Kreouzi, M.; Kalantzi, S.; Spyridaki, A.; Triantafylli, G.; Metheniti, P.; Papaconstantinou, I. Comprehensive Peri-Operative Risk Assessment and Management of Geriatric Patients. Diagnostics 2024, 14, 2153. [Google Scholar] [CrossRef]
- Anagnostou, D.; Theodorakis, N.; Hitas, C.; Kreouzi, M.; Pantos, I.; Vamvakou, G.; Nikolaou, M. Sarcopenia and Cardiogeriatrics: The Links Between Skeletal Muscle Decline and Cardiovascular Aging. Nutrients 2025, 17, 282. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Aggarwal, B.; Beckie, T.M.; Hodis, H.N.; Johnson, A.E.; Langer, R.D.; Limacher, M.C.; Manson, J.E.; Stefanick, M.L.; Allison, M.A.; et al. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement From the American Heart Association. Circulation. 2020, 142, e506–e532. [Google Scholar] [CrossRef]
- Theodorakis, N.; Feretzakis, G.; Vamvakou, G.; Verykios, V.S.; Polymeris, A.; Nikolaou, M. Testosterone Therapy for Functional Hypogonadism in Middle-Aged and Elderly Males: Current Evidence and Future Perspectives. Hormones 2024, 23, 801–817. [Google Scholar] [CrossRef]
- Krittanawong, C.; Qadeer, Y.K.; Hayes, R.B.; Wang, Z.; Thurston, G.D.; Virani, S.; Lavie, C.J. PM2.5 and Cardiovascular Diseases: State-of-the-Art Review. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 19, 200217. [Google Scholar] [CrossRef] [PubMed]
- Theodorakis, N.; Feretzakis, G.; Kreouzi, M.; Anagnostou, D.; Hitas, C.; Verykios, V.S.; Nikolaou, M. Growth Hormone Therapy in Chronic Heart Failure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Endocrinol. Metab. 2024. [Google Scholar] [CrossRef] [PubMed]
- Theodorakis, N.; Kreouzi, M.; Hitas, C.; Anagnostou, D.; Nikolaou, M. Growth Hormone and Heart Failure: Implications for Patient Stratification, Prognosis, and Precision Medicine. Diagnostics 2024, 14, 2831. [Google Scholar] [CrossRef] [PubMed]
- Theodorakis, N.; Feretzakis, G.; Kreouzi, M.; Anagnostou, D.; Hitas, C.; Verykios, V.S.; Nikolaou, M. Ghrelin: An Emerging Therapy for Heart Failure. Clin. Endocrinol. 2024, in press. [Google Scholar] [CrossRef]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.; le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Bergenstal, R.; Bode, B.; Kushner, R.F.; Lewin, A.; Skjøth, T.V.; Andreasen, A.H.; Jensen, C.B.; DeFronzo, R.A.; NN8022-1922 Study Group. Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial. JAMA 2015, 314, 687–699. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Færch, L.; Jeppesen, O.K.; Pakseresht, A.; Pedersen, S.D.; Perreault, L.; Rosenstock, J.; Shimomura, I.; Viljoen, A.; Wadden, T.A.; et al. Semaglutide 2.4 mg Once a Week in Adults with Overweight or Obesity, and Type 2 Diabetes (STEP 2): A Randomised, Double-Blind, Double-Dummy, Placebo-Controlled, Phase 3 Trial. Lancet 2021, 397, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Le Roux, C.W.; Stefanski, A.; Aronne, L.J.; Halpern, B.; Wharton, S.; Wilding, J.P.H.; Perreault, L.; Zhang, S.; Battula, R.; et al. Tirzepatide for Obesity Treatment and Diabetes Prevention. N. Engl. J. Med. 2024, 394, 1445–1463. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Frias, J.P.; Jastreboff, A.M.; Le Roux, C.W.; Sattar, N.; Aizenberg, D.; Mao, H.; Zhang, S.; Ahmad, N.N.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity in People with Type 2 Diabetes (SURMOUNT-2): A Double-Blind, Randomised, Multicentre, Placebo-Controlled, Phase 3 Trial. Lancet 2023, 402, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; Shah, S.J.; Lindholm, D.; et al. Dapagliflozin in Heart Failure with Preserved and Mildly Reduced Ejection Fraction: Rationale and Design of the DELIVER Trial. Eur. J. Heart Fail. 2021, 23, 1217–1225. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.N.; Abildstrøm, S.Z.; Borlaug, B.A.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, G.K.; Kitzman, D.W.; Lindegaard, M.L.; Møller, D.V.; et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.N.; Petrie, M.C.; Borlaug, B.A.; Butler, J.; Davies, M.J.; Hovingh, G.K.; Kitzman, D.W.; Møller, D.V.; Treppendahl, M.B.; Verma, S.; et al. Semaglutide in Patients with Obesity-Related Heart Failure and Type 2 Diabetes. N. Engl. J. Med. 2024, 390, 1394–1407. [Google Scholar] [CrossRef]
- Butler, J.; Shah, S.J.; Petrie, M.C.; Borlaug, B.A.; Abildstrøm, S.Z.; Davies, M.J.; Hovingh, G.K.; Kitzman, D.W.; Møller, D.V.; Verma, S.; et al. Semaglutide Versus Placebo in People with Obesity-Related Heart Failure with Preserved Ejection Fraction: A Pooled Analysis of the STEP-HFpEF and STEP-HFpEF DM Randomised Trials. Lancet 2024, 403, 1635–1648. [Google Scholar] [CrossRef]
- Deanfield, J.; Verma, S.; Scirica, B.M.; Kahn, S.E.; Emerson, S.S.; Ryan, D.; Lingvay, I.; Colhoun, H.M.; Plutzky, J.; Kosiborod, M.N.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Obesity and Prevalent Heart Failure: A Prespecified Analysis of the SELECT Trial. Lancet 2024, 404, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.N.; Deanfield, J.; Pratley, R.; Borlaug, B.A.; Butler, J.; Davies, M.J.; Emerson, S.S.; Kahn, S.E.; Kitzman, D.W.; Lingvay, I.; et al. Semaglutide Versus Placebo in Patients with Heart Failure and Mildly Reduced or Preserved Ejection Fraction: A Pooled Analysis of the SELECT, FLOW, STEP-HFpEF, and STEP-HFpEF DM Randomised Trials. Lancet 2024, 404, 949–961. [Google Scholar] [CrossRef]
- Pratley, R.E.; Tuttle, K.R.; Rossing, P.; Rasmussen, S.; Perkovic, V.; Nielsen, O.W.; Mann, J.F.E.; MacIsaac, R.J.; Kosiborod, M.N.; Kamenov, Z.; et al. Effects of Semaglutide on Heart Failure Outcomes in Diabetes and Chronic Kidney Disease in the FLOW Trial. J. Am. Coll. Cardiol. 2024, 84, 1615–1628. [Google Scholar] [CrossRef]
- Packer, M.; Zile, M.R.; Kramer, C.M.; Baum, S.J.; Litwin, S.E.; Menon, V.; Ge, J.; Weerakkody, G.J.; Ou, Y.; Bunck, M.C.; et al. Tirzepatide for Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2024, 392, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.V.; Vaduganathan, M.; Claggett, B.; Jhund, P.S.; Desai, A.S.; Henderson, A.D.; Lam, C.S.P.; Pitt, B.; Senni, M.; et al. Finerenone in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2024, 391, 1475–1485. [Google Scholar] [CrossRef]
- Bayer. Additional Studies with Finerenone Across a Wide Range of Heart Failure Patients Initiated. Available online: https://www.bayer.com/media/en-us/additional-studies-with-finerenone-across-a-wide-range-of-heart-failure-patients-initiated/ (accessed on 28 January 2025).
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients With Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef]
- Biegus, J.; Voors, A.A.; Collins, S.P.; Kosiborod, M.N.; Teerlink, J.R.; Angermann, C.E.; Tromp, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; et al. Impact of Empagliflozin on Decongestion in Acute Heart Failure: The EMPULSE Trial. Eur. Heart J. 2023, 44, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity Without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef]
- McGuire, D.K.; Shih, W.J.; Cosentino, F.; Charbonnel, B.; Cherney, D.Z.I.; Dagogo-Jack, S.; Pratley, R.; Greenberg, M.; Wang, S.; Huyck, S.; et al. Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes: A Meta-Analysis. JAMA Cardiol. 2021, 6, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, Mortality, and Kidney Outcomes With GLP-1 Receptor Agonists in Patients With Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Filippatos, G.; Pitt, B.; Anker, S.D.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Gebel, M.; Ruilope, L.M.; et al. Cardiovascular and Kidney Outcomes with Finerenone in Patients with Type 2 Diabetes and Chronic Kidney Disease: The FIDELITY Pooled Analysis. Eur. Heart J. 2022, 43, 474–484. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- The EMPA-KIDNEY Collaborative Group; Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.S.; Harrison, S.A.; NN9931-4296 Investigators. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Newsome, P.N.; Sanyal, A.J.; Engebretsen, K.A.; Kliers, I.; Østergaard, L.; Vanni, D.; Bugianesi, E.; Rinella, M.E.; Roden, M.; Ratziu, V. Semaglutide 2.4 mg in Participants with Metabolic Dysfunction-Associated Steatohepatitis: Baseline Characteristics and Design of the Phase 3 ESSENCE Trial. Aliment. Pharmacol. Ther. 2024, 60, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Hartman, M.L.; Lawitz, E.J.; Vuppalanchi, R.; Boursier, J.; Bugianesi, E.; Yoneda, M.; Behling, C.; Cummings, O.W.; Tang, Y.; et al. Tirzepatide for Metabolic Dysfunction-Associated Steatohepatitis with Liver Fibrosis. N. Engl. J. Med. 2024, 391, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef] [PubMed]
CRHM health stages | Definition |
---|---|
Stage 0: No CRHM risk factors | Individuals without overweight/obesity, abdominal obesity, metabolic risk factors (arterial hypertension, hypertriglyceridemia, MetS, diabetes mellitus), CKD, MASLD, or subclinical/clinical CVD |
Stage I: Excess and/or dysfunctional adiposity |
|
Stage II: Metabolic risk factors, CKD, or MASLD |
|
Stage III: Subclinical CVD |
|
Stage IV: Clinical CVD |
|
Domain | Primary Assessments | Additional/Follow-up Tests | Rationale |
Adiposity |
|
| Identifies excess adiposity and addresses possible secondary hormonal factors contributing to obesity. A precise measure of body composition aids in tailoring lifestyle or medical interventions. Screening for OSA is crucial given its frequent association with obesity and cardiometabolic disorders. |
Insulin Resistance & Diabetes Mellitus |
|
| Detects impaired glucose metabolism and clarifies the diabetes subtype, which is crucial for guiding appropriate therapy. Early diagnosis of insulin resistance helps prevent progression to overt diabetes and associated microvascular and macrovascular complications. |
Arterial Hypertension |
|
|
|
Dyslipidemia and hyperuricemia |
|
|
|
CKD | Serum creatinine, eGFR, serum or urea nitrogen, urine ACR |
|
|
MASLD |
|
| Screens for hepatic steatosis and early fibrosis linked to metabolic dysfunction, essential for diagnosing MASLD/MASH and guiding therapeutic decisions. Detecting and staging MASLD enables targeted interventions to reduce liver-related morbidity. |
Cardiovascular Assessment |
|
|
|
Reproductive Hormonal Assessment |
|
|
|
Condition | Emerging/Novel Therapies | Rationale/Evidence | References |
---|---|---|---|
Obesity | GLP-1RAs, GIP/GLP-1RAs | SCALE Program, STEP Program, SURMOUNT Program | [55,56,57,58,59,60] |
HFpEF/HFmrEF | SGLT2i, GLP-1RAs, GIP/GLP-1RAs, finerenone | EMPEROR-Preserved, DELIVER, SELECT, STEP-HFpEF, FLOW, SUMMIT, FINE-ARTS, FINALITY-HF* | [61,62,63,64,65,66,67,68,69,70,71] |
HFrEF | SGLT2i, GLP-1RAs, GIP/GLP-1RAs | Emperor-Reduced, DAPA-HF, FLOW, SELECT | [66,68,72,73] |
Acute HF | SGLT2i | EMPULSE, SOLOIST-WHF, REDEFINE-HF*, CONFIRMATION-HF* | [71,74,75] |
ASCVD | SGLT2i, GLP-1RAs | Meta-analyses of RCTs (for diabetic patients), SELECT (for non-diabetic patients) | [76,77,78] |
Diabetic CKD | SGLT2i, GLP-1RAs, finerenone | Meta-analyses of RCTs, FLOW, FIGARO-DKD, FIDELIO-DKD, FIDELITY, EMPA-KIDNEY, DAPA-CKD, FINE-ONE* | [71,77,78,79,80,81,82] |
Non-diabetic CKD | SGLT2i | EMPA-KIDNEY, DAPA-CKD, FIND-CKD* | [71,83,84] |
MASLD | Resmetirom, GLP-1RAs, GIP/GLP-1RAs | MAESTRO-NASH, ESSENCE, SYNEGY-NASH | [85,86,87,88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodorakis, N.; Nikolaou, M. From Cardiovascular-Kidney-Metabolic Syndrome to Cardiovascular-Renal-Hepatic-Metabolic Syndrome: Proposing an Expanded Framework. Biomolecules 2025, 15, 213. https://doi.org/10.3390/biom15020213
Theodorakis N, Nikolaou M. From Cardiovascular-Kidney-Metabolic Syndrome to Cardiovascular-Renal-Hepatic-Metabolic Syndrome: Proposing an Expanded Framework. Biomolecules. 2025; 15(2):213. https://doi.org/10.3390/biom15020213
Chicago/Turabian StyleTheodorakis, Nikolaos, and Maria Nikolaou. 2025. "From Cardiovascular-Kidney-Metabolic Syndrome to Cardiovascular-Renal-Hepatic-Metabolic Syndrome: Proposing an Expanded Framework" Biomolecules 15, no. 2: 213. https://doi.org/10.3390/biom15020213
APA StyleTheodorakis, N., & Nikolaou, M. (2025). From Cardiovascular-Kidney-Metabolic Syndrome to Cardiovascular-Renal-Hepatic-Metabolic Syndrome: Proposing an Expanded Framework. Biomolecules, 15(2), 213. https://doi.org/10.3390/biom15020213