Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea
Abstract
:1. Herbal Medicines Comprise the Second Largest Therapeutic Market Globally
2. Echinacea Plant Extracts Exert Immunomodulatory Properties
3. General Function of Fructans in the Human Body
3.1. Fructans as Immunomodulatory and Antiviral Compounds
3.2. Fructans as Antioxidative and Anti-inflammatory Compounds
4. ITFs and Polyphenols in Echinacea Preparations May Exert Synergistic Effects
5. Possible Significance of ITFs in Commercial Echinacea Preparations
6. Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Licciardi, P.V.; Underwood, J.R. Plant-derived medicines: A novel class of immunological adjuvants. Int. Immunopharmacol. 2011, 11, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Sato, A. Revealing the popularity of traditional medicine in light of multiple recourses and outcome measurements from a user’s perspective in Ghana. Health Policy Plan. 2012, 27, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Ernst, E.; Pittler, M.H. Herbal medicine. Med. Clin. N. Am. 2002, 86, 149–161. [Google Scholar] [CrossRef]
- Schneiderman, L.J. The (alternative) medicalization of life. J. Law Med. Ethics 2003, 31, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Demicheli, V.; Jefferson, T.; Ferroni, E.; Rivetti, A.; Di Pietrantonj, C. Vaccines for preventing influenza in healthy adults. Cochrane Database Syst. Rev. 2003, 2, CD001269. [Google Scholar]
- Burch, J.; Corbett, M.; Stock, C.; Nicholson, K.; Elliot, A.J.; Duffy, S.; Westwood, M.; Palmer, S.; Stewart, L. Prescription of anti-influenza drugs for healthy adults: A systematic review and meta-analysis. Lancet Infect. Dis. 2009, 9, 537–545. [Google Scholar] [CrossRef]
- Nahas, R.; Balla, A. Complementary and alternative medicine for prevention and treatment of the common cold. Can. Fam. Phys. 2011, 57, 31–36. [Google Scholar]
- Jantan, I.; Ahmad, W.; Bukhari, S.N.A. Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Front. Plant Sci. 2015, 6, 655. [Google Scholar] [CrossRef]
- Nair, A.; Chattopadhyay, D.; Saha, B. Plant-derived immunomodulators. In New Look to Phytomedicine, 1st ed.; Ahmad Khan, M.S., Ahmad, I., Chattopadhyay, D., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 435–499. [Google Scholar]
- Sultan, M.T.; Buttxs, M.S.; Qayyum, M.M.; Suleria, H.A. Immunity: Plants as Effective Mediators. Crit. Rev. Food Sci. Nutr. 2014, 54, 1298–1308. [Google Scholar] [CrossRef]
- Barrett, B. Medicinal properties of Echinacea: A critical review. Phytomedicine 2003, 10, 66–86. [Google Scholar] [CrossRef]
- Sharma, M.; Arnason, J.T.; Burt, A.; Hudson, J.B. Echinacea extracts modulate the pattern of chemokine and cytokine secretion in rhinovirus-infected and uninfected epithelial cells. Phytother. Res. 2006, 20, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Blaschek, W.; Döll, M.; Franz, G. Echinacea-Polysaccharide. Z. Phytother. 1998, 19, 255–262. [Google Scholar]
- Bruni, R.; Brighenti, V.; Caesar, L.K.; Bertelli, D.; Cech, N.B.; Pellati, F. Analytical methods for the study of bioactive compounds from medicinally used Echinacea species. J. Pharm. Biomed. Anal. 2018, 160, 443–477. [Google Scholar] [CrossRef] [PubMed]
- Classen, B. Arabinogalaktan-Proteine (AGPs) aus dem kurzzeiterhitzten presssaft von Echinacea purpurea. Z. Phytother. 2018, 39, 152–158. [Google Scholar] [CrossRef]
- Classen, B.; Pferschy-Wenzig, E.; Geske, T.; Ardjomand-Wölkart, K.; Bauer, R. Analytische charakterisierung und vergleich medizinisch genutzter Echinacea-haltiger zubereitungen. Z. Phytother. 2019, 40, 148–157. [Google Scholar] [CrossRef]
- Pugh, N.D.; Jackson, C.R.; Pasco, D.S. Total bacterial load within Echinacea purpurea, determined using a new PCR-based quantification method, is correlated with LPS levels and in vitro macrophage activity. Planta Med. 2013, 79, 9–14. [Google Scholar] [PubMed]
- Kim, D.H.; Heber, D.; Still, D.W. Genetic diversity of Echinacea species based upon amplified fragment length polymorphism markers. Genome 2004, 47, 102–111. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Mnayer, D.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Bezerra, C.F.; Coutinho, H.D.M.; Salehi, B.; Martorell, M.; del Mar Contreras, M.; Soltani-Nejad, A.; et al. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phyther. Res. 2018, 32, 1653–1663. [Google Scholar] [CrossRef]
- El-Ashmawy, N.E.; El-Zamarany, E.A.; Salem, M.L.; El-Bahrawy, H.A.; Al-Ashmawy, G.M. In vitro and in vivo studies of the immunomodulatory effect of Echinacea purpurea on dendritic cells. J. Genet. Eng. Biotechnol. 2015, 13, 185–192. [Google Scholar] [CrossRef]
- Goldrosen, M.H.; Straus, S.E. Complementary and alternative medicine: Assessing the evidence for immunological benefits. Nat. Rev. Immunol. 2004, 4, 912–921. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chiao, M.T.; Yen, P.J.; Huang, W.C.; Hou, C.C.; Chien, S.C.; Yeh, K.C.; Yang, W.C.; Shyur, L.F.; Yang, N.S. Modulatory effects of Echinacea purpurea extracts on human dendritic cells: A cell- and gene-based study. Genomics 2006, 88, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Dalby-Brown, L.; Barsett, H.; Landbo, A.K.R.; Meyer, A.S.; Molgaard, P. Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human low-density lipoproteins. J. Agric. Food Chem. 2005, 53, 9413–9423. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Pillai, C.; Mitscher, L.A.; Cooper, R. Use of quantitative flow cytometry to measure ex vivo immunostimulant activity of Echinacea: The case for polysaccharides. J. Altern. Complement. Med. 2007, 13, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Ramasahayam, S.; Baraka, H.N.; Abdel Bar, F.M.; Abuasal, B.S.; Widrlechner, M.P.; El Sayed, K.A.; Meyer, S.A. Effects of chemically characterized fractions from aerial parts of Echinacea purpurea and E. angustifolia on myelopoiesis in rats. Planta Med. 2011, 77, 1883–1889. [Google Scholar] [CrossRef]
- Rondanelli, M.; Miccono, A.; Lamburghini, S.; Avanzato, I.; Riva, A.; Allegrini, P.; Faliva, M.A.; Peroni, G.; Nichetti, M.; Perna, S. Self-care for common colds: The pivotal role of vitamin D, vitamin C, zinc, and Echinacea in three main immune interactive clusters (physical barriers, innate and adaptive immunity) involved during an episode of common colds-practical advice on dosages and on the time to take these nutrients/botanicals in order to prevent or treat common colds. Evidence-based complementary and alternative medicine. Evid. Based Complement. Altern. Med. 2018, 2018, 5813095. [Google Scholar]
- Kour, K.; Bani, S. Augmentation of immune response by chicoric acid through the modulation of CD28/CTLA-4 and Th1 pathway in chronically stressed mice. Neuropharmacology 2011, 60, 852–860. [Google Scholar] [CrossRef]
- Park, C.M.; Jin, K.; Lee, Y.; Song, Y.S. Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-κB translocation in LPS stimulated RAW 264.7 cells. Eur. J. Pharmacol. 2011, 660, 454–459. [Google Scholar] [CrossRef]
- Raduner, S.; Majewska, A.; Chen, J.Z.; Xie, X.Q.; Hamon, J.; Faller, B.; Altmann, K.H.; Gertsch, J. Alkylamides from Echinacea are a new class of cannabinomimetics-Cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. J. Biol. Chem. 2006, 281, 14192–14206. [Google Scholar] [CrossRef]
- Vos, A.P.; van Esch, B.C.; Stahl, B.; M’Rabet, L.; Folkerts, G.; Nijkamp, F.P.; Garssen, J. Dietary supplementation with specific oligosaccharide mixtures decreases parameters of allergic asthma in mice. Int. Immunopharmacol. 2007, 7, 1582–1587. [Google Scholar] [CrossRef]
- Delgado, G.T.C.; Tamashiro, W.; Pastore, G.M. Immunomodulatory effects of fructans. Food Res. Int. 2010, 43, 1231–1236. [Google Scholar] [CrossRef]
- Hendry, G.A.F. Evolutionary origins and natural functions of fructans – a climatological, biogeographic and mechanistic appraisal. New Phytol. 1993, 123, 3–14. [Google Scholar] [CrossRef]
- De Sadeleer, E.; Struyf, T.; Vergauwen, R.; Le Roy, K.; Van den Ende, W. 1-FFT amino acids involved in high DP inulin accumulation in Viguiera discolor. Front. Plant Sci. 2015, 6, 616. [Google Scholar] [CrossRef] [PubMed]
- Van den Ende, W. Multifunctional fructans and raffinose family oligosaccharides. Front. Plant Sci. 2013, 4, 247. [Google Scholar] [PubMed] [Green Version]
- Vogt, L.; Ramasamy, U.; Meyer, D.; Pullens, G.; Venema, K.; Faas, M.M.; Schols, H.A.; de Vos, P. Immune modulation by different types of beta 2->1-fructans is toll-like receptor dependent. PLoS ONE 2013, 8, e68367. [Google Scholar] [CrossRef]
- Allsopp, P.; Possemiers, S.; Campbell, D.; Oyarzábal, I.S.; Gill, C.; Rowland, I. An exploratory study into the putative prebiotic activity of fructans isolated from Agave angustifolia and the associated anticancer activity. Anaerobe 2013, 22, 38–44. [Google Scholar] [CrossRef]
- Terpend, K.; Possemiers, S.; Daguet, D.; Marzorati, M. Arabinogalactan and fructo-oligosaccharides have a different fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Environ. Microbiol. Rep. 2013, 5, 595–603. [Google Scholar] [CrossRef]
- Peshev, D.; Van den Ende, W. Fructans: Prebiotics and immunomodulators. J. Funct. Foods 2014, 8, 348–357. [Google Scholar] [CrossRef]
- Guarner, F. Inulin and oligofructose: Impact on intestinal diseases and disorders. Br. J. Nutr. 2005, 93, S61–S65. [Google Scholar] [CrossRef]
- Roberfroid, M. Prebiotics: The concept revisited. J. Nutr. 2007, 137, 830S–837S. [Google Scholar] [CrossRef]
- Matros, A.; Peshev, D.; Peukert, M.; Mock, H.P.; Van den Ende, W. Sugars as hydroxyl radical scavengers: Proof-of-concept by studying the fate of sucralose in Arabidopsis. Plant J. 2015, 82, 822–839. [Google Scholar] [CrossRef]
- Van den Ende, W.; Peshev, D.; De Gara, L. Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends Food Sci. Technol. 2011, 22, 689–697. [Google Scholar] [CrossRef]
- Ito, H.; Takemura, N.; Sonoyama, K.; Kawagishi, H.; Topping, D.; Conlon, M.; Morita, T. Degree of Polymerization of Inulin-Type Fructans Differentially Affects Number of Lactic Acid Bacteria, Intestinal Immune Functions, and Immunoglobulin A Secretion in the Rat Cecum. J. Agric. Food Chem. 2011, 59, 5771–5778. [Google Scholar] [CrossRef] [PubMed]
- Zenhom, M.; Hyder, A.; de Vrese, M.; Heller, K.J.; Roeder, T.; Schrezenmeir, J. Prebiotic oligosaccharides reduce proinflammatory cytokines in iIntestinal caco-2 cells via activation of PPARγ and peptidoglycan recognition Protein 3. J. Nutr. 2011, 141, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Di Giacomo, E.; Benedetti, E.; Cristiano, L.; Antonosante, A.; d’Angelo, M.; Fidoamore, A.; Barone, D.; Moreno, S.; Ippoliti, R.; Cerù, M.P.; et al. Roles of PPAR transcription factors in the energetic metabolic switch occurring during adult neurogenesis. Cell Cycle 2017, 16, 59–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabrowski, A.N.; Conrad, C.; Behrendt, U.; Shrivastav, A.; Baal, N.; Wienhold, S.M.; Hackstein, H.; N’Guessan, P.D.; Aly, S.; Reppe, K.; et al. Peptidoglycan recognition protein 2 regulates neutrophil recruitment into the lungs after Streptococcus pneumoniae infection. Front. Microbiol. 2019, 10, 199. [Google Scholar] [CrossRef]
- Roxas, M.; Jurenka, J. Colds and influenza: A review of diagnosis and conventional, botanical, and nutritional considerations. Altern. Med. Rev. 2007, 12, 25–48. [Google Scholar]
- Pleschka, S.; Stein, M.; Schoop, R.; Hudson, J.B. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol. J. 2009, 6, 197. [Google Scholar] [CrossRef]
- Senchina, D.S.; Martin, A.E.; Buss, J.E.; Kohut, M.L. Effects of Echinacea extracts on macrophage antiviral activities. Phyther. Res. 2010, 24, 810–816. [Google Scholar]
- Vimalanathan, S.; Schoop, R.; Hudson, J. High-potency anti-influenza therapy by a combination of Echinacea purpurea fresh herb and root tinctures. J. Appl. Pharm. Sci. 2013, 3, 1–5. [Google Scholar]
- Lee, J.B.; Fukai, T.; Hayashi, K.; Hayashi, T. Characterization of fructan from Chikuyo-Sekko-To, a Kampo prescription, and its antiherpetic activity in vitro and in vivo. Carbohydr. Polym. 2011, 85, 408–412. [Google Scholar] [CrossRef]
- Thakur, M.; Weng, A.; Fuchs, H.; Sharma, V.; Bhargava, C.S.; Chauhan, N.S.; Dixit, V.K.; Bhargava, S. Rasayana properties of Ayurvedic herbs: Are polysaccharides a major contributor. Carbohydr. Polym. 2012, 87, 3–15. [Google Scholar] [CrossRef]
- Koo, H.N.; Hong, S.H.; Seo, H.G.; Yoo, T.S.; Lee, K.N.; Kim, N.S.; Kim, C.H.; Kim, H.M. Inulin stimulates NO synthesis via activation of PKC-alpha and protein tyrosine kinase, resulting in the activation of NF-kappa B by IFN-gamma-primed RAW 264.7 cells. J. Nutr. Biochem. 2003, 14, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Umetsu, R.; Chijimatsu, T.; Hayashi, T.; Miyake, S.; Lee, J.B. Anti-influenza A virus effects of fructan from Welsh onion (Allium fistulosum L.). Food Chem. 2012, 134, 2164–2168. [Google Scholar]
- Guo, Y.; Guo, M.; Zhao, W.; Chen, K.; Zhang, P. Burdock fructooligosaccharide induces stomatal closure in Pisum sativum. Carbohydr. Polym. 2013, 97, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, P.M.; Prashanth, K.V.H.; Venkatesh, Y.P. Isolation, structural elucidation and immunomodulatory activity of fructans from aged garlic extract. Phytochemistry 2011, 72, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekara, P.M.; Venkatesh, Y.P. Immunostimulatory properties of fructans derived from raw garlic (Allium sativum L.). Bioact. Carbohydrates Diet. Fibre 2016, 8, 65–70. [Google Scholar] [CrossRef]
- Balasubramani, S.P.; Venkatasubramanian, P.; Kukkupuni, S.K.; Patwardhan, B. Plant-based Rasayana drugs from Ayurveda. Chin. J. Integr. Med. 2011, 17, 88–94. [Google Scholar] [CrossRef]
- Mishra, A.; Thakur, M.; Alok, S. Evaluation of immunomodulatory activity of polysacchride fraction of Inula racemosa, Bombax ceiba and Allium sativum. Int. J. Pharm. Sci. Res. 2016, 7, 3749–3755. [Google Scholar]
- Li, S.P.; Yu, Q.T.; Deng, Y.; Yan, Y.X.; Zhao, J.; Ge, Y.Z.; Wang, Y.; Wu, D.T.; Li, M. Comparison of immunomodulatory effects of fresh garlic and black garlic polysaccharides on RAW 264.7 macrophages. J. Food Sci. 2017, 82, 765–771. [Google Scholar] [CrossRef]
- Dong, C.X.; Zhang, L.J.; Xu, R.; Zhang, G.; Zhou, Y.B.; Han, X.Q.; Zhang, Y.; Sun, Y.X. Structural characterization and immunostimulating activity of a levan-type fructan from Curcuma kwangsiensis. Int. J. Biol. Macromol. 2015, 77, 99–104. [Google Scholar] [CrossRef]
- Kumar, V.P.; Prashanth, K.V.H.; Venkatesh, Y.P. Structural analyses and immunomodulatory properties of fructo-oligosaccharides from onion (Allium cepa). Carbohydr. Polym. 2015, 117, 115–122. [Google Scholar] [CrossRef]
- Corrêa-Ferreira, M.L.; Verdan, M.H.; dos Reis Lívero, F.A.; Galuppo, L.F.; Telles, J.E.Q.; Alves Stefanello, M.É.; Acco, A.; de Oliveira Petkowicz, C.L. Inulin-type fructan and infusion of Artemisia vulgaris protect the liver against carbon tetrachloride-induced liver injury. Phytomedicine 2017, 24, 68–76. [Google Scholar]
- Gutiérrez Nava, Z.J.; Jiménez-Aparicio, A.R.; Herrera-Ruiz, M.L.; Jiménez-Ferrer, E. Immunomodulatory effect of Agave tequilana evaluated on an autoimmunity like-SLE model induced in Balb/c mice with pristane. Molecules 2017, 22, 848. [Google Scholar]
- Paredes, L.L.R.; Smiderle, F.R.; Santana-Filho, A.P.; Kimura, A.; Iacomini, M.; Sassaki, G.L. Yacon fructans (Smallanthus sonchifolius) extraction, characterization and activation of macrophages to phagocyte yeast cells. Int. J. Biol. Macromol. 2018, 108, 1074–1081. [Google Scholar] [CrossRef]
- Stoyanova, S.; Geuns, J.; Hideg, E.; Van den Ende, W. The food additives inulin and stevioside counteract oxidative stress. Int. J. Food Sci. Nutr. 2011, 62, 207–214. [Google Scholar] [CrossRef]
- Keunen, E.; Peshev, D.; Vangronsveld, J.; Van den Ende, W.; Cuypers, A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant Cell Environ. 2013, 36, 1242–1255. [Google Scholar] [CrossRef]
- Peshev, D.; Vergauwen, R.; Moglia, A.; Hideg, E.; Van den Ende, W. Towards understanding vacuolar antioxidant mechanisms: A role for fructans? J. Exp. Bot. 2013, 64, 1025–1038. [Google Scholar] [CrossRef]
- Geronikaki, A.; Gavalas, A. Antioxidants and inflammatory disease: Synthetic and natural antioxidants with anti-inflammatory activity. Comb. Chem. High Throughput Screen. 2006, 9, 425–442. [Google Scholar] [CrossRef]
- Shang, H.M.; Zhou, H.Z.; Yang, J.Y.; Li, R.; Song, H.; Wu, H.X. In vitro and in vivo antioxidant activities of inulin. PLoS ONE 2018, 13, e0192273. [Google Scholar] [CrossRef]
- Petkova, N.T.; Ivanov, I.G.; Raeva, M.; Topuzova, M.G.; Todorova, M.M.; Denev, P.P. Fructans and antioxidants in leaves of culinary herbs from asteraceae and amaryllidaceae families. Food Res. 2019, 3, 407–415. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiang, Y.; Mao, X.; Wang, K.; Hu, C.; Jia, Y.; Li, Q.; Tang, B.; Tong, Y.; Han, D. TLR2/TLR4 activation induces Tregs and suppresses intestinal inflammation caused by Fusobacterium nucleatum in vivo. PLoS ONE 2017, 12, e0186179. [Google Scholar]
- Amarante, M.K.; Ariza, C.B.; de Oliveira, C.E.C.; Gualtieri, K.A.; Oda, J.M.M.; Watanabe, M.A.E. Inulin induces IL-10 secretion and increased FOXP3 gene expression in human peripheral blood mononuclear cells. Braz. Arch. Biol. Technol. 2018, 61, e1816059. [Google Scholar] [CrossRef]
- Cario, E.; Gerken, G.; Podolsky, D.K. Toll-Like Receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 2007, 132, 1359–1374. [Google Scholar] [CrossRef]
- Suzuki, T. Regulation of intestinal epithelial permeability by tight junctions. Cell. Mol. Life Sci. 2013, 70, 631–659. [Google Scholar] [CrossRef]
- Fransen, F.; Sahasrabudhe, N.M.; Elderman, M.; Bosveld, M.; El Aidy, S.; Hugenholtz, F.; Borghuis, T.; Kousemaker, B.; Winkel, S.; van der Gaast-de Jongh, C.; et al. β2→1-fructans modulate the immune system in vivo in a microbiota-dependent and -independent fashion. Front. Immunol. 2017, 8, 154. [Google Scholar] [CrossRef]
- Peng, L.; Li, Z.; Green, R.S.; Holzman, I.R.; Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 2009, 139, 1619–1625. [Google Scholar] [CrossRef]
- Kim, H.G.; Han, E.H.; Hwang, Y.P.; Choi, J.H.; Kwon, K.I.; Kim, B.H.; Kim, S.K.; Song, G.Y.; Jeong, H.G.; Hien, T.T.; et al. Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br. J. Pharmacol. 2011, 162, 1096–1108. [Google Scholar] [CrossRef]
- Xue, J.; Li, X.; Liu, P.; Li, K.; Sha, L.; Yang, X.; Zhu, L.; Wang, Z.; Dong, Y.; Zhang, L.; et al. Inulin and metformin ameliorate polycystic ovary syndrome via anti-inflammation and modulating gut microbiota in mice. Endocr. J. 2019. [Google Scholar] [CrossRef]
- Lee, W.H.; Kim, S.G. AMPK-Dependent Metabolic Regulation by PPAR Agonists. PPAR Res. 2010, 2010, 549101. [Google Scholar] [CrossRef]
- Tak, P.P.; Firestein, G.S. NF-κB: A key role in inflammatory diseases. J. Clin. Investig. 2001, 107, 7–11. [Google Scholar] [CrossRef]
- Peng, X.W.; Zhou, H.H.; Dai, J.; Zhang, L. Advances on the anti-inflammatory and protective effect of AMPK activators. Sheng Li Xue Bao 2019, 71, 319–326. [Google Scholar]
- Manayi, A.; Saeidnia, S.; Vazirian, M. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn. Rev. 2015, 9, 63. [Google Scholar]
- Dogan, Z.; Ergul, B.; Sarikaya, M.; Filik, L.; Gonultaş, M.A.; Hucumenoglu, S.; Can, M. The protective effect of Echinacea spp. (Echinacea angustifolia and Echinacea purpurea) in a rat colitis model induced by acetic acid. Pak. J. Pharm. Sci. 2014, 27, 1827–1835. [Google Scholar]
- Sharma, M.; Schoop, R.; Hudson, J.B. Echinacea as an antiinflammatory agent: The influence of physiologically relevant parameters. Phyther. Res. 2009, 23, 863–867. [Google Scholar] [CrossRef]
- Sharma, S.M.; Anderson, M.; Schoop, S.R.; Hudson, J.B. Bactericidal and anti-inflammatory properties of a standardized Echinacea extract (Echinaforce®): Dual actions against respiratory bacteria. Phytomedicine 2010, 17, 563–568. [Google Scholar] [CrossRef]
- Gargari, B.P.; Dehghan, P.; Aliasgharzadeh, A.; Jafar-Abadi, M.A. Effects of high performance inulin supplementation on glycemic control and antioxidant status in women with type 2 diabetes. Diabetes Metab. J. 2013, 37, 140–148. [Google Scholar] [CrossRef]
- Mao, C.F.; Zhang, X.R.; Johnson, A.; He, J.L. Modulation of diabetes mellitus-induced male rat reproductive dysfunction with micro-nanoencapsulated Echinacea purpurea ethanol extract. Biomed. Res. Int. 2018, 2018, 4237354. [Google Scholar] [CrossRef]
- Chambers, E.S.; Byrne, C.S.; Morrison, D.J.; Murphy, K.G.; Preston, T.; Tedford, C.; Garcia-Perez, I.; Fountana, S.; Serrano-Contreras, J.I.; Holmes, E.; et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-over trial. Gut 2019, 68, 1430–1438. [Google Scholar]
- Schlernitzauer, A.; Oiry, C.; Hamad, R.; Galas, S.; Cortade, F.; Chabi, B.; Casas, F.; Pessemesse, L.; Fouret, G.; Feillet-Coudray, C.; et al. Chicoric acid is an anti-oxidant molecule stimulating AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans. PLoS ONE 2013, 8, e78788. [Google Scholar]
- Zhu, D.; Zhang, N.; Zhou, X.; Zhang, M.; Liu, Z.; Liu, X. Cichoric acid regulates the hepatic glucose homeostasis via AMPK pathway and activates the antioxidant response in high glucose-induced hepatocyte injury. RSC Adv. 2017, 7, 1363–1375. [Google Scholar] [CrossRef] [Green Version]
- Phuwamongkolwiwat, P.; Suzuki, T.; Hira, T.; Hara, H. Fructooligosaccharide augments benefits of quercetin-3-O-b-glucoside on insulin sensitivity and plasma total cholesterol with promotion of flavonoid absorption in sucrose-fed rats. Eur. J. Nutr. 2013, 53, 457–468. [Google Scholar] [CrossRef]
- Dimitrova, M.P.; Petkova, N.T.; Denev, P.P.; Aleksieva, I.N. Carbohydrate composition and antioxidant activity of certain morus species. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 621–627. [Google Scholar]
- Petkova, N.; Vrancheva, R.; Mihaylova, D.; Ivanov, I.; Pavlov, A.; Denev, P. Antioxidant activity and fructan content in root extracts from elecampane (Inula helenium L.). J. Biosci. Biotechnol. 2015, 4, 101–107. [Google Scholar]
- Tomas, M.; Beekwilder, J.; Hall, R.D.; Diez Simon, C.; Sagdic, O.; Capanoglu, E. Effect of dietary fiber (inulin) addition on phenolics and in vitro bioaccessibility of tomato sauce. Food Res. Int. 2018, 106, 129–135. [Google Scholar] [CrossRef]
- Spelman, K.; Cech, N.B.; Iiams-Hauser, K.; Wenner, C.A.; Taylor, E.W.; Smirnoff, N. Role for PPARγ in IL-2 inhibition in T cells by Echinacea-derived undeca-2E-ene-8,10-diynoic acid isobutylamide. Int. Immunopharmacol. 2009, 9, 1260–1264. [Google Scholar] [CrossRef]
- Modaresi, M. Effect of Echinacea purpurea hydro alcoholic extract on the blood parameters in mice. Asian J. Chem. 2013, 25, 1373–1375. [Google Scholar]
- Miller, S.C. Can herbs be useful in cancer therapy? A review of studies on the influence of Echinacea on cells of the immune system and on tumor amelioration. Biomed. Res. India 2012, 23, 9–16. [Google Scholar]
- Gan, X.H.; Zhang, L.; Heber, D.; Bonavida, B. Mechanism of activation of human peripheral blood NK cells at the single cell level by Echinacea water soluble extracts: Recruitment of lymphocyte-target conjugates and killer cells and activation of programming for lysis. Int. Immunopharmacol. 2003, 3, 811–824. [Google Scholar] [CrossRef]
- Ritchie, M.R.; Gertsch, J.; Klein, P.; Schoop, R. Effects of Echinaforce (R) treatment on ex vivo-stimulated blood cells. Phytomedicine 2011, 18, 826–831. [Google Scholar] [CrossRef]
- Uluisik, D.; Keskin, E. Effects of Ginseng and Echinacea on cytokine mRNA expression in rats. Sci. World J. 2012, 2012, 6. [Google Scholar] [CrossRef]
- Fonseca, F.N.; Papanicolaou, G.; Lin, H.; Kennelly, E.; Cassileth, B.R.; Cunningham-Rundles, S. Echinacea Purpurea, L. modulates human t-cell cytokine response. Planta Medica 2012, 78, 1090. [Google Scholar] [CrossRef]
- Yu, D.Q.; Yuan, Y.; Jiang, L.; Tai, Y.L.; Yang, X.M.; Hu, F.; Xie, Z.W. Anti-inflammatory effects of essential oil in Echinacea purpurea L. Pak. J. Pharm. Sci. 2013, 26, 403–408. [Google Scholar]
- Benson, J.M.; Pokorny, A.J.; Rhule, A.; Wenner, C.A.; Kandhi, V.; Cech, N.B.; Shepherd, D.M. Echinacea purpurea extracts modulate murine dendritic cell fate and function. Food Chem. Toxicol. 2010, 48, 1170–1177. [Google Scholar] [CrossRef]
- Jiang, Q.D.; Nie, F.R.; Zhou, X.G.; Liu, T.Y.; Zhang, L.H.; Xiao, Z. The effect of EPS to LPS injure RAW264.7 cell NF-κB and MAPK signaling pathway. Genet. Mol. Res. 2017, 16. [Google Scholar] [CrossRef]
- Vimalanathan, S.; Schoop, R.; Suter, A.; Hudson, J. Prevention of influenza virus induced bacterial superinfection by standardized Echinacea purpurea, via regulation of surface receptor expression in human bronchial epithelial cells. Virus Res. 2017, 233, 51–59. [Google Scholar] [CrossRef]
- Stimpel, M.; Proksch, A.; Wagner, H.; Lohmann Matthes, M.L. Macrophage activation and induction of macrophage cytotoxicity by purified polysaccharide fractions from the plant Echinacea purpurea. Infect. Immun. 1984, 46, 845–849. [Google Scholar]
- Wagner, H.; Stuppner, H.; Schafer, W.; Zenk, M. Immunologically active polysaccharides of Echinacea purpurea cell cultures. Phytochemistry 1988, 27, 119–126. [Google Scholar] [CrossRef]
- Roesler, J.; Steinmuller, C.; Kindrelen, A.; Emmendorfer, A.; Wagner, H.; Lohmann Matthes, M.L. Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to mice mediates protection against systemic infections with Listeria monocytogenes and Candida albicans. Int. J. Immunopharmacol. 1991, 13, 27–37. [Google Scholar] [CrossRef]
- Melchart, D.; Clemm, C.; Weber, B.; Draczynski, T.; Worku, F.; Linde, K.; Weidenhammer, W.; Wagner, H.; Saller, R. Polysaccharides isolated from Echinacea purpurea herba cell cultures to counteract undesired effects of chemotherapy-a pilot study. Phytother. Res. 2002, 16, 138–142. [Google Scholar] [CrossRef]
- Luettig, B.; Steinmuller, C.; Wagner, H.; Steinmüller, C.; Gifford, G.E.; Lohmann Matthes, M.L. Macrophage activation by the polysaccharide arabinogalactan isolated from plant cell cultures of Echinacea purpurea. J. Nat. Canc. Inst. 1989, 81, 669–675. [Google Scholar] [CrossRef]
- Wack, M.; Blaschek, W. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots. Carbohydr. Res. 2006, 341, 1147–1153. [Google Scholar] [CrossRef]
- Dobrange, E.; Xonti, A.; Peshev, D.; Van den Ende, W.; Loedolff, B. Fructans and their potential role as paradoxical antioxidants in Echinacea products. F1000Research 2019, 8, 1650, (poster). [Google Scholar]
- Giger, E.; Keller, F.; Baumann, T.W. Fructans in Echinacea and in its phytotherapeutic preparations. Planta Med. 1989, 55, 638–639. [Google Scholar] [CrossRef]
- Babaeva, E.Y.; Zvereva, V.I.; Semkina, O.A. Inulin-like fructosan content in the below-ground organs of Echinacea purpurea and its processing products. Pharm. Chem. J. 2018, 52, 623–626. [Google Scholar] [CrossRef]
- Hershberg, R.M.; Mayer, L.F. Antigen processing and presentation by intestinal epithelial cells-polarity and complexity. Immunol. Today 2000, 21, 123–128. [Google Scholar] [CrossRef]
- Cario, E.; Brown, D.; McKee, M.; Lynch-Devaney, K.; Gerken, G.; Podolsky, D.K. Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am. J. Pathol. 2002, 160, 165–173. [Google Scholar] [CrossRef]
- Forchielli, M.L.; Walker, W.A. The role of gut-associated lymphoid tissues and mucosal defence. Br. J. Nutr. 2006, 93, S41–S48. [Google Scholar] [CrossRef]
- Cummings, J.H.; Christie, S.; Cole, T.J. A study of fructo- oligosaccharides in the prevention of travellers’ diarrhoea. Aliment. Pharmacol. Ther. 2001, 15, 1139–1145. [Google Scholar] [CrossRef]
- Lewis, S.; Burmeister, S.; Brazier, J. Effect of the prebiotic oligofructose on relapse of Clostridium difficile-associated diarrhea: A randomized, controlled study. Clin. Gastroenterol. Hepatol. 2005, 3, 442–448. [Google Scholar] [CrossRef]
- Welters, C.F.M.; Heineman, E.; Thunnissen, F.; van den Bogaard, A.; Soeters, P.B.; Baeten, C. Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an heal pouch-anal anastomosis. Dis. Colon Rectum 2002, 45, 621–627. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrange, E.; Peshev, D.; Loedolff, B.; Van den Ende, W. Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea. Biomolecules 2019, 9, 615. https://doi.org/10.3390/biom9100615
Dobrange E, Peshev D, Loedolff B, Van den Ende W. Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea. Biomolecules. 2019; 9(10):615. https://doi.org/10.3390/biom9100615
Chicago/Turabian StyleDobrange, Erin, Darin Peshev, Bianke Loedolff, and Wim Van den Ende. 2019. "Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea" Biomolecules 9, no. 10: 615. https://doi.org/10.3390/biom9100615
APA StyleDobrange, E., Peshev, D., Loedolff, B., & Van den Ende, W. (2019). Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea. Biomolecules, 9(10), 615. https://doi.org/10.3390/biom9100615