Use of Cardiac Biomarkers for Monitoring Improvement of Left Ventricular Function by Immunoadsorption Treatment in Dilated Cardiomyopathy
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Diagnostic Approaches at Baseline and During Long-Term Follow-Up
2.3. Heart Failure Biomarkers Analysis
2.4. Statistical Analysis
2.5. Ethics
3. Results
3.1. Baseline Characteristics
3.2. Improvement of LVEF, NYHA and Reverse Remodeling of the LV during Long-Term Follow-Up After Immunoadsorption
3.3. Course of Biomarkers Before and After Immunoadsorption and During Long-Term Follow-Up
3.4. Hs Troponin T, hs Troponin I and sST2 Before Immunoadsorption Correlate with LVEF at the Long-Term Follow-Up
3.5. Levels of hs Troponin T and hs Troponin I Values Before Immunoadsorption Correlate with Improvement of LVEF During Long-Term Follow-Up
3.6. Decrease of hs Troponin T and I During Immunoadsorption Procedure Correlated with Improvement of LVEF (Δ LVEF) During Long-Term Follow-Up
4. Discussion
4.1. Improvement of LVEF, NYHA Class and LV Diameters After Immunoadsorption Treatment
4.2. Hs Troponin I and NT-proBNP Decreased During Long-Term in Parallel with LVEF Improvement. In contrast, sST2 Levels Increased
4.3. Hs Troponin I, hs Troponin T and sST2 Levels Before Immunoadsorption Correlate with LVEF at the Long-Term Follow-Up
4.4. Troponin Levels Before Immunoadsorption Correlate with Individual Improvement of LV Function (Δ LVEF)
4.5. Decrease of Troponins by Immunoadsorption Treatment is Paralleled with Individual LV Function Improvement (Δ LVEF)
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Felix, S.B.; Staudt, A.; Dörffel, W.V.; Stangl, V.; Merkel, K.; Pohl, M.; Wallukat, G. Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy: Three-month results from a randomized study. J. Am. Coll. Cardiol. 2000, 35, 1590–1598. [Google Scholar] [CrossRef] [Green Version]
- Staudt, A.; Hummel, A.; Ruppert, J.; Dörr, M.; Trimpert, C.; Birkenmeier, K.; Felix, S.B. Immunoadsorption in dilated cardiomyopathy: 6-month results from a randomized study. Am. Heart J. 2006, 152, 712-e1. [Google Scholar] [CrossRef] [PubMed]
- Trimpert, C.; Herda, L.R.; Eckerle, L.G.; Pohle, S.; Müller, C.; Landsberger, M.; Staudt, A. Immunoadsorption in dilated cardiomyopathy: Long-term reduction of cardiodepressant antibodies. Eur. J. Clin. Investig. 2010, 40, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Dörffel, W.V.; Wallukat, G.; Dörffel, Y.; Felix, S.B.; Baumann, G. Immunoadsorption in idiopathic dilated cardiomyopathy, a 3-year follow-up. Int. J. Cardiol. 2004, 97, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Baba, A.; Akaishi, M.; Wakabayashi, Y.; Monkawa, T.; Kitakaze, M.; Tomoike, H. Immunoadsorption therapy for dilated cardiomyopathy using tryptophan column—A prospective, multicenter, randomized, within-patient and parallel-group comparative study to evaluate efficacy and safety. J. Clin. Apheresis. 2016, 31, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Wallukat, G.; Dandel, M.; Bieda, H.; Brandes, K.; Spiegelsberger, S.; Hetzer, R. Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Circulation 2000, 101, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Wallukat, G.; Reinke, P.; Dörffel, W.V.; Luther, H.P.; Bestvater, K.; Felix, S.B.; Baumann, G. Removal of autoantibodies in dilated cardiomyopathy by immunoadsorption. Int. J. Cardiol. 1996, 54, 191–195. [Google Scholar] [CrossRef]
- Ohlow, M.-A.; Brunelli, M.; Schreiber, M.; Lauer, B. Therapeutic effect of immunoadsorption and subsequent immunoglobulin substitution in patients with dilated cardiomyopathy: Results from the observational prospective Bad Berka Registry. J. Cardiol. 2017, 69, 409–416. [Google Scholar] [CrossRef]
- Weinmann, K.; Werner, J.; Koenig, W.; Rottbauer, W.; Walcher, D.; Keßler, M. Add-on Immunoadsorption Shortly-after Optimal Medical Treatment Further Significantly and Persistently Improves Cardiac Function and Symptoms in Recent-Onset Heart Failure—A Single Center Experience. Biomolecules 2018, 8, 133. [Google Scholar] [CrossRef]
- Kaya, Z.; Katus, H.A.; Rose, N.R. Cardiac troponins and autoimmunity: Their role in the pathogenesis of myocarditis and of heart failure. Clin. Immunol. 2010, 134, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, M.W. T cell mimicry in inflammatory heart disease. Mol. Immunol. 2004, 40, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Fujinami, R.S.; Von Herrath, M.G.; Christen, U.; Whitton, J.L. Molecular mimicry, bystander activation, or viral persistence: Infections and autoimmune disease. Clin. Microbiol. Rev. 2006, 19, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.; Mahon, N.J.; McKenna, W.J. Cardiac autoantibodies to myosin and other heart-specific autoantigens in myocarditis and dilated cardiomyopathy. Autoimmunity 2001, 34, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Dörffel, W.V.; Felix, S.B.; Wallukat, G.; Brehme, S.; Bestvater, K.; Hofmann, T.; Reinke, P. Short-term hemodynamic effects of immunoadsorption in dilated cardiomyopathy. Circulation 1997, 95, 1994–1997. [Google Scholar] [CrossRef]
- Dörffel, W.V.; Wallukat, G.; Baumann, G.; Felix, S.B. Immunoadsorption in dilated cardiomyopathy. Ther Apher. 2000, 4, 235–238. [Google Scholar] [CrossRef]
- Felix, S.B.; Staudt, A.; Landsberger, M.; Grosse, Y.; Stangl, V.; Spielhagen, T.; Stangl, K. Removal of cardiodepressant antibodies in dilated cardiomyopathy by immunoadsorption. J. Am. Coll. Cardiol. 2002, 39, 646–652. [Google Scholar] [CrossRef]
- Schwartz, J.; Padmanabhan, A.; Aqui, N.; Balogun, R.A.; Connelly-Smith, L.; Delaney, M.; Shaz, B.H. Guidelines on the use of therapeutic apheresis in clinical practice—Evidence-based approach from the Writing Committee of the American Society for Apheresis: The sixth special issue. J. Clin. Apheresis. 2013, 28, 145–284. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Colvin, M.M.; Hollenberg, S.M. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017, 136, e137–e161. [Google Scholar]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Braunwald, E. Biomarkers in heart failure. N. Engl. J. Med. 2008, 358, 2148–2159. [Google Scholar] [CrossRef]
- Van Kimmenade, R.R.; Januzzi, J.L. Emerging biomarkers in heart failure. Clin. Chem. 2012, 58, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Chow, S.L.; Maisel, A.S.; Anand, I.; Bozkurt, B.; De Boer, R.A.; Felker, G.M.; Liu, P.P. Role of biomarkers for the prevention, assessment, and management of heart failure: A scientific statement from the American Heart Association. Circulation 2017, 135, e1054–e1091. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Drazner, M.H.; Johnson, M.R. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 62, e147–e239. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Anstrom, K.J.; Adams, K.F.; Ezekowitz, J.A.; Fiuzat, M.; Houston-Miller, N.; Whellan, D.J. Effect of natriuretic peptide–guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: A randomized clinical trial. JAMA 2017, 318, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Stienen, S.; Salah, K.; Moons, A.H.; Bakx, A.L.; van Pol, P.; Kortz, R.M.; Bayés-Genis, A. NT-proBNP (N-terminal pro-B-type natriuretic peptide)-guided therapy in acute decompensated heart failure: PRIMA II randomized controlled trial (Can NT-ProBNP-guided therapy during hospital admission for acute decompensated heart failure reduce mortality and readmissions?). Circulation 2018, 137, 1671–1683. [Google Scholar] [PubMed]
- Davarzani, N.; Sanders–van Wijk, S.; Karel, J.; Maeder, M.T.; Leibundgut, G.; Gutmann, M.; Brunner–la Rocca, H.P. N-Terminal Pro–B-Type Natriuretic Peptide–Guided Therapy in Chronic Heart Failure Reduces Repeated Hospitalizations—Results From TIME-CHF. J. Card. Fail. 2017, 23, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L.; Rehman, S.U.; Mohammed, A.A.; Bhardwaj, A.; Barajas, L.; Barajas, J.; Marshall, J.E. Use of amino-terminal pro–B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 2011, 58, 1881–1889. [Google Scholar] [CrossRef] [PubMed]
- Sanada, S.; Hakuno, D.; Higgins, L.J.; Schreiter, E.R.; McKenzie, A.N.; Lee, R.T. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Investig. 2007, 117, 1538–1549. [Google Scholar] [CrossRef] [Green Version]
- Emdin, M.; Aimo, A.; Vergaro, G.; Bayes-Genis, A.; Lupón, J.; Latini, R.; Gullestad, L. sST2 Predicts Outcome in Chronic Heart Failure Beyond NT−proBNP and High-Sensitivity Troponin T. J. Am. Coll. Cardiol. 2018, 72, 2309–2320. [Google Scholar] [CrossRef]
- Breidthardt, T.; Balmelli, C.; Twerenbold, R.; Mosimann, T.; Espinola, J.; Haaf, P.; Reichlin, T. Heart failure therapy–induced early ST2 changes may offer long-term therapy guidance. J. Card. Fail. 2013, 19, 821–828. [Google Scholar] [CrossRef]
- Boisot, S.; Beede, J.; Isakson, S.; Chiu, A.; Clopton, P.; Januzzi, J.; Fitzgerald, R.L. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J. Card. Fail. 2008, 14, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Fernandez, S.; Januzzi, J.L.; Pastor-Perez, F.J.; Bonaque-González, J.C.; Boronat-Garcia, M.; Pascual-Figal, D.A.; Valdés, M. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology 2012, 122, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Van Vark, L.C.; Lesman-Leegte, I.; Baart, S.J.; Postmus, D.; Pinto, Y.M.; Orsel, J.G.; Hillege, H.L. Prognostic value of serial ST2 measurements in patients with acute heart failure. J. Am. Coll. Cardiol. 2017, 70, 2378–2388. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.B.; Clopton, P.; Iqbal, N.; Tran, K.; Maisel, A.S. Association of ST2 levels with cardiac structure and function and mortality in outpatients. Am. Heart J. 2010, 160, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Vergaro, G.; Passino, C.; Ripoli, A.; Ky, B.; Miller, W.L.; Emdin, M. Prognostic value of soluble suppression of tumorigenicity-2 in chronic heart failure: A meta-analysis. JACC Heart Fail. 2017, 5, 280–286. [Google Scholar] [CrossRef]
- Felker, G.M.; Fiuzat, M.; Thompson, V.; Shaw, L.K.; Neely, M.L.; Adams, K.F.; Piña, I.L. Soluble ST2 in ambulatory patients with heart failure: Association with functional capacity and long-term outcomes. Circ. Heart Fail. 2013, 6, 1172–1179. [Google Scholar] [CrossRef]
- Rottbauer, W.; Greten, T.; Müller-Bardorff, M.; Remppis, A.; Zehelein, J.; Grünig, E.; Katus, H.A. Troponin T: A diagnostic marker for myocardial infarction and minor cardiac cell damage. Eur. Heart J. 1996, 17 (Suppl. F), 3–8. [Google Scholar] [CrossRef] [Green Version]
- Aimo, A.; Januzzi Jr, J.L.; Vergaro, G.; Ripoli, A.; Latini, R.; Masson, S.; Tognoni, G. Prognostic value of high-sensitivity troponin T in chronic heart failure: An individual patient data meta-analysis. Circulation 2018, 137, 286–297. [Google Scholar] [CrossRef]
- Motiwala, S.R.; Gaggin, H.K.; Gandhi, P.U.; Belcher, A.; Weiner, R.B.; Baggish, A.L.; Januzzi, J.L. Concentrations of highly sensitive cardiac troponin-I predict poor cardiovascular outcomes and adverse remodeling in chronic heart failure. J. Cardiovasc. Transl. Res. 2015, 8, 164–172. [Google Scholar] [CrossRef]
- Renders, L.; Wen, M.; Küchle, C. Plasmapherese und Immunadsorption. Nephrol 2014, 9, 284–292. [Google Scholar] [CrossRef]
- Seferović, P.M.; Polovina, M.; Bauersachs, J.; Arad, M.; Gal, T.B.; Lund, L.H.; Filippatos, G.S. Heart failure in cardiomyopathies: A position paper from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 553–576. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.; Özalp, F.; Murday, A.; Robb, S.; McDonagh, T. N-terminal pro-brain natriuretic peptide: A new gold standard in predicting mortality in patients with advanced heart failure. Eur. Heart J. 2003, 24, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Ky, B.; French, B.; McCloskey, K.; Rame, J.E.; McIntosh, E.; Shahi, P.; Boxer, R. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ. Heart Fail. 2011, 4, 180–187. [Google Scholar] [CrossRef] [PubMed]
Total | |
---|---|
Patients, n | 31 |
Age, years | 50.5 (43.4–55.8) |
Duration of HF, m | 5.2 (3.2–11.6) |
BMI, kg/m² | 27.7 (24.0–30.9) |
Sex, n | |
Male | 22 |
Female | 9 |
Etiology of HF | |
Dilated cardiomyopathy | 31 |
NYHA | 2.0 (1.5–2.5) |
LVEF | 28.0 (25.0–33.0) |
LVDd | 71.0 (67.0–80.0) |
LVDs | 63.5 (57.3–69.8) |
Comorbidities, n (%) | |
Hypertension | 11 (35) |
Diabetes | 2 (3) |
(Former-) smoker | 7 (23) |
Previous MI II° | 6 (19) |
Atrial fibrillation | 5 (16) |
HF biomarkers | |
Hs troponin T, ng/L | 10.2 (6.4–18.6) |
Hs troponin I, ng/L | 9.2 (5.9–24.0) |
NT-proBNP, pg/mL | 789.6 (177.6–1480.5) |
sST2, ng/mL | 25.9 (23.1–29.6) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weinmann, K.; Werner, J.; Koenig, W.; Rottbauer, W.; Walcher, D.; Keßler, M. Use of Cardiac Biomarkers for Monitoring Improvement of Left Ventricular Function by Immunoadsorption Treatment in Dilated Cardiomyopathy. Biomolecules 2019, 9, 654. https://doi.org/10.3390/biom9110654
Weinmann K, Werner J, Koenig W, Rottbauer W, Walcher D, Keßler M. Use of Cardiac Biomarkers for Monitoring Improvement of Left Ventricular Function by Immunoadsorption Treatment in Dilated Cardiomyopathy. Biomolecules. 2019; 9(11):654. https://doi.org/10.3390/biom9110654
Chicago/Turabian StyleWeinmann, Karolina, Jakob Werner, Wolfgang Koenig, Wolfgang Rottbauer, Daniel Walcher, and Mirjam Keßler. 2019. "Use of Cardiac Biomarkers for Monitoring Improvement of Left Ventricular Function by Immunoadsorption Treatment in Dilated Cardiomyopathy" Biomolecules 9, no. 11: 654. https://doi.org/10.3390/biom9110654
APA StyleWeinmann, K., Werner, J., Koenig, W., Rottbauer, W., Walcher, D., & Keßler, M. (2019). Use of Cardiac Biomarkers for Monitoring Improvement of Left Ventricular Function by Immunoadsorption Treatment in Dilated Cardiomyopathy. Biomolecules, 9(11), 654. https://doi.org/10.3390/biom9110654