Biochemical Characterization of a Novel α/β-Hydrolase/FSH from the White Shrimp Litopenaeus vannamei
Abstract
:1. Introduction
2. Materials and Methods
2.1. Amino Acid Sequence of α/β Hydrolase (LvFHS)
2.2. LvFHS Sequence Features
2.3. Protein Structure Modeling
2.4. Recombinant Expression and Purification of LvFSH
2.5. Secondary Structure Analysis by Circular Dichroism (CD)
2.6. Enzymatic Assays
2.7. Production and Purification of Anti-LvFSH Polyclonal Antibodies
2.8. Detection of LvFSH on Shrimp Tissues
2.9. Enzyme-Linked Immunosorbent Assay (ELISA)
3. Results
3.1. Sequence Analysis of LvFSH
3.2. Comparison of LvFSH Domains
3.3. Protein-Protein Interactions
3.4. Signal Peptide and Post-Translational Modifications
3.5. LvFSH Subcellular Localization
3.6. Theoretical Modeling of LvFSH
3.7. Secondary Structure Analysis of LvFSH
3.8. LvFSH Enzymatic Activity
3.9. Immunodetection Assay (Dot Blot) of White Shrimp Protein Lipase (LvFSH)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yakunin, A.F.; Yee, A.A.; Savchenko, A.; Edwards, A.M.; Arrowsmith, C.H. Structural proteomics: A tool for genome annotation. Curr. Opin. Chem. Boil. 2004, 8, 42–48. [Google Scholar] [CrossRef]
- Dawson, N.L.; Lewis, T.E.; Das, S.; Lees, J.G.; Lee, D.; Ashford, P.; Orengo, C.A.; Sillitoe, I. CATH: An expanded resource to predict protein function through structure and sequence. Nucleic Acids Res. 2016, 45, D289–D295. [Google Scholar] [CrossRef]
- Quevillon-Cheruel, S.; Leulliot, N.; Graille, M.; Hervouet, N.; Coste, F.; Bénédetti, H.; Zelwer, C.; Janin, J.; Van Tilbeurgh, H. Crystal structure of yeast YHR049W/FSH1, a member of the serine hydrolase family. Protein Soc. 2005, 14, 1350–1356. [Google Scholar] [CrossRef] [Green Version]
- Bornscheuer, U.T. Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 2002, 26, 73–81. [Google Scholar] [CrossRef]
- Tőke, E.R.; Nagy, V.; Recseg, K.; Szakacs, G.; Poppe, L. Production and Application of Novel Sterol Esterases from Aspergillus Strains by Solid State Fermentation. J. Am. Oil Chem. Soc. 2007, 84, 907–915. [Google Scholar] [CrossRef]
- Brady, L.; Brzozowski, A.M.; Derewenda, Z.S.; Dodson, E.; Dodson, G.; Tolley, S.; Turkenburg, J.P.; Christiansen, L.; Huge-Jensen, B.; Norskov, L.; et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 1990, 343, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Ollis, D.L.; Cheah, E.; Cygler, M.; Dijkstra, B.; Frolow, F.; Franken, S.M.; Harel, M.; Remington, S.J.; Silman, I.; Schrag, J.; et al. The α/β hydrolase fold. Protein Eng. Des. Sel. 1992, 5, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Pérez, C.; García-Carreño, F.L.; Saborowski, R. Purification and Biochemical Characterization of Digestive Lipase in Whiteleg Shrimp. Mar. Biotechnol. 2011, 13, 284–295. [Google Scholar]
- Kim, K.K.; Song, H.K.; Shin, D.H.; Hwang, K.Y.; Suh, S.W. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 1997, 5, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Verger, R. ‘Interfacial activation’ of lipases: Facts and artifacts. Trends Biotechnol. 1997, 15, 32–38. [Google Scholar] [CrossRef]
- Brzozowski, A.M.; Derewenda, U.; Derewenda, Z.S.; Dodson, G.G.; Lawson, D.M.; Turkenburg, J.P.; Bjorkling, F.; Huge-Jensen, B.; Patkar, S.A.; Thim, L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 1991, 351, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Schmid, R.D.; Verger, R. Lipases: Interfacial Enzymes with Attractive Applications. Angew. Chem. Int. Ed. 1998, 37, 1608–1633. [Google Scholar] [CrossRef]
- Hasan, F.; Shah, A.A.; Hameed, A. Industrial applications of microbial lipases. Enzym. Microb. Technol. 2006, 39, 235–251. [Google Scholar] [CrossRef]
- Jaeger, K.-E.; Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol. 2002, 13, 390–397. [Google Scholar] [CrossRef]
- Rios, N.S.; Pinheiro, B.B.; Pinheiro, M.P.; Bezerra, R.M.; Dos Santos, J.C.S.; Gonçalves, L.R.B. Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process. Biochem. 2018, 75, 99–120. [Google Scholar] [CrossRef]
- Rios, N.S.; Neto, D.M.A.; Dos Santos, J.C.S.; Fechine, P.B.A.; Fernández-Lafuente, R.; Gonçalves, L.R.B. Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support. Int. J. Boil. Macromol. 2019, 134, 936–945. [Google Scholar] [CrossRef]
- De Oliveira, U.M.F.; Lima de Matos, L.J.B.; de Souza, M.C.M.; Pinheiro, B.B.; dos Santos, J.C.S.; Gonçalves, L.R.B. Efficient biotechnological synthesis of flavor esters using a low-cost biocatalyst with immobilized Rhizomucor miehei lipase. Mol. Biol. Rep. 2019, 46, 597–608. [Google Scholar] [CrossRef]
- Manoel, E.A.; Dos Santos, J.C.; Freire, D.M.; Rueda, N.; Fernandez-Lafuente, R.; Freire, D.M.G.; Dos Santos, J.C.S. Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzym. Microb. Technol. 2015, 71, 53–57. [Google Scholar] [CrossRef]
- Plou, F.J.; Ferrer, M.; Nuero, O.M.; Calvo, M.V.; Alcalde, M.; Reyes, F.; Ballesteros, A. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnol. Tech. 1998, 12, 183–186. [Google Scholar] [CrossRef]
- Ghaffari, N.; Sanchez-Flores, A.; Doan, R.; Garcia-Orozco, K.D.; Chen, P.L.; Ochoa-Leyva, A.; Lopez-Zavala, A.A.; Carrasco, J.S.; Hong, C.; Brieba, L.G.; et al. Novel transcriptome assembly and improved annotation of the whiteleg shrimp (Litopenaeus vannamei), a dominant crustacean in global seafood mariculture. Sci. Rep. 2014, 4, 7081. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, J.; Sun, Y.; Li, S.; Gao, Y.; Yu, Y.; Liu, C.; Wang, Q.; Lv, X.; Zhang, X.; et al. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat. Commun. 2019, 10, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdigão, N.; Heinrich, J.; Stolte, C.; Sabir, K.S.; Buckley, M.J.; Tabor, B.; Signal, B.; Gloss, B.S.; Hammang, C.J.; Rost, B.; et al. Unexpected features of the dark proteome. Proc. Natl. Acad. Sci. USA 2015, 112, 15898–15903. [Google Scholar] [Green Version]
- Bhowmick, A.; Brookes, D.H.; Yost, S.R.; Dyson, H.J.; Forman-Kay, J.D.; Gunter, D.; Head-Gordon, M.; Hura, G.L.; Pande, V.S.; Wemmer, D.E.; et al. Finding Our Way in the Dark Proteome. J. Am. Chem. Soc. 2016, 138, 9730–9742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; A Salazar, G.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef] [PubMed]
- A Kelley, L.; Mezulis, S.; Yates, C.M.; Wass, M.N.; E Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- The PyMOL Molecular Graphics System; Schrödinger LLC: New York, NY, USA, 2010.
- Puschmann, H.; Dolomanov, O.; Bourhis, L.; Gildea, R.; Howard, J. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Ladner-Keay, C.L.; Turner, R.J.; Edwards, R.A. Fluorescent Protein Visualization Immediately After Gel Electrophoresis Using an In-Gel Trichloroethanol Photoreaction with Tryptophan; Springer Science and Business Media LLC, Humana Press: New York, NY, USA, 2018; pp. 179–190. [Google Scholar]
- Whitmore, L.; Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 2004, 32, W668–W673. [Google Scholar] [CrossRef] [Green Version]
- Kademi, A.; Aı̈t-Abdelkader, N.; Fakhreddine, L.; Baratti, J.C. Characterization of a new thermostable esterase from the moderate thermophilic bacterium Bacillus circulans. J. Mol. Catal. B Enzym. 2000, 10, 395–401. [Google Scholar] [CrossRef]
- Blakley, R.L. Eukaryotic dihydrofolate reductase. Adv. Enzymol. Relat. Areas Mol. Biol. 1995, 70, 23–102. [Google Scholar]
- Leenaars, M.; Hendriksen, C.F.M. Critical steps in the production of polyclonal and monoclonal antibodies: Evaluation and recommendations. ILAR J. 2005, 46, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, E. Antibodies: A laboratory manual Second; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2012. [Google Scholar]
- Rivera-Perez, C.; García-Carreño, F. Effect of fasting on digestive gland lipase transcripts expression in Penaeus vannamei. Mar. Genom. 2011, 4, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Lenfant, N.; Hotelier, T.; Velluet, E.; Bourne, Y.; Marchot, P.; Chatonnet, A. ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: Tools to explore diversity of functions. Nucleic Acids Res. 2012, 41, D423–D429. [Google Scholar] [CrossRef] [PubMed]
- Pathak, D.; Ollis, D. Refined structure of dienelactone hydrolase at 1.8A°. J. Mol. Boil. 1990, 214, 497–525. [Google Scholar] [CrossRef]
- Schlömann, M.; Ngai, K.L.; Ornston, L.N.; Knackmuss, H.J. Dienelactone hydrolase from Pseudomonas cepacia. J. Bacteriol. 1993, 175, 2994–3001. [Google Scholar] [CrossRef] [PubMed]
- D’Alençon, E.; Taghbalout, A.; Bristow, C.; Kern, R.; Aflalo, R.; Kohiyama, M. Isolation of a New Hemimethylated DNA Binding Protein Which Regulates dnaA Gene Expression. J. Bacteriol. 2003, 185, 2967–2971. [Google Scholar] [CrossRef] [PubMed]
- Bertani, L.; Campbell, J.L. The isolation and characterization of the gene (dfr1) encoding dihydrofolate reductase (DHFR) in Schizosaccharomyces pombe. Gene 1994, 147, 131–135. [Google Scholar] [CrossRef]
- Davey, N.E.; Van Roey, K.; Weatheritt, R.J.; Toedt, G.; Uyar, B.; Altenberg, B.; Budd, A.; Diella, F.; Dinkel, H.; Gibson, T.J. Attributes of short linear motifs. Mol. BioSyst. 2012, 8, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Van Roey, K.; Uyar, B.; Weatheritt, R.J.; Dinkel, H.; Seiler, M.; Budd, A.; Gibson, T.J.; Davey, N.E. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem. Rev. 2014, 114, 6733–6778. [Google Scholar] [CrossRef]
- Uyar, B.; Weatheritt, R.J.; Dinkel, H.; Davey, N.E.; Gibson, T.J. Proteome-wide analysis of human disease mutations in short linear motifs: Neglected players in cancer? Mol. BioSyst. 2014, 10, 2626–2642. [Google Scholar] [CrossRef]
- Azizi, A.A.; Gelpi, E.; Yang, J.-W.; Rupp, B.; Godwin, A.K.; Slater, C.; Slavc, I.; Lubec, G. Mass spectrometric identification of serine hydrolase OVCA2 in the medulloblastoma cell line DAOY. Cancer Lett. 2006, 241, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Thoms, S.; Debelyy, M.O.; Connerth, M.; Daum, G.; Erdmann, R. The Putative Saccharomyces cerevisiae Hydrolase Ldh1p Is Localized to Lipid Droplets. Eukaryot. Cell 2011, 10, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Brunak, S. Prediction of Glycosylation across the Human Proteome and the Correlation to Protein Function; Pacific Symposium on Biocomputing: Kauai, Hawaii, HI, USA, 2001; pp. 310–322. [Google Scholar]
- Quevillon-Cheruel, S.; Collinet, B.; Zhou, C.-Z.; Minard, P.; Blondeau, K.; Henkes, G.; Aufrère, R.; Coutant, J.; Guittet, E.; Lewit-Bentley, A.; et al. A structural genomics initiative on yeast proteins. J. Synchrotron Radiat. 2003, 10, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Quevillon-Cheruel, S.; Liger, D.; Leulliot, N.; Graille, M.; Poupon, A.; De La Sierra-Gallay, I.L.; Zhou, C.-Z.; Collinet, B.; Janin, J.; Van Tilbeurgh, H. The Paris-Sud yeast structural genomics pilot-project: From structure to function. Biochimie 2004, 86, 617–623. [Google Scholar] [CrossRef]
- Heikinheimo, P.; Goldman, A.; Jeffries, C.; Ollis, D.L. Of barn owls and bankers: A lush variety of α/β hydrolases. Structure 1999, 7, R141–R146. [Google Scholar] [CrossRef]
- Nardini, M.; Dijkstra, B.W. α/β Hydrolase fold enzymes: The family keeps growing. Curr. Opin. Struct. Boil. 1999, 9, 732–737. [Google Scholar] [CrossRef]
- Van Pouderoyen, G.; Eggert, T.; Jaeger, K.-E.; Dijkstra, B.W. The crystal structure of Bacillus subtili lipase: A minimal α/β hydrolase fold enzyme. J. Mol. Boil. 2001, 309, 215–226. [Google Scholar] [CrossRef]
- Martinez, C.; De Geus, P.; Lauwereys, M.; Matthyssens, G.; Cambillau, C. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 1992, 356, 615–618. [Google Scholar] [CrossRef]
- Wei, Y.; Schottel, J.L.; Derewenda, U.; Swenson, L.; Patkar, S.; Derewenda, Z.S. A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nat. Struct. Mol. Boil. 1995, 2, 218–223. [Google Scholar] [CrossRef]
- Holmes, R.S.; A Cox, L. Bioinformatics and Evolution of Vertebrate Pancreatic Lipase and Related Proteins and Genes. J. Data Min. Genom. Proteom. 2012, 3, 111. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.; Merelo, J.; Chacon, P.; Moran, F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng. Des. Sel. 1993, 6, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Bordeaux, J.; Welsh, A.W.; Agarwal, S.; Killiam, E.; Baquero, M.T.; Hanna, J.A.; Anagnostou, V.K.; Rimm, D.L. Antibody validation. Biotechniques 2010, 48, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattio, M.C.; Canale, M.V.P.; Lurá, M.C.; Rapela, M.G.L. Validación de una técnica de Dot blot para la detección de Cercospora kikuchii en plantas de soja. Rev. Argent. Microbiol. 2018, 50, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; A Santos, E. Lipid and carbohydrate metabolism of the intertidal crab Chasmagnathus granulata dana, 1851 (Crustacea: Decapoda) during emersion. Comp. Biochem. Physiol. Part A Physiol. 1993, 106, 329–336. [Google Scholar] [CrossRef]
- Jiang, H.; Li, F.; Xie, Y.; Huang, B.; Zhang, J.; Zhang, J.; Zhang, C.; Li, S.; Xiang, J. Comparative proteomic profiles of the hepatopancreas in Fenneropenaeus chinensis response to hypoxic stress. Proteomics 2009, 9, 3353–3367. [Google Scholar] [CrossRef] [PubMed]
- Palacios, E.; Bonilla, A.; Perez, A.; Racotta, I.S.; Civera, R. Influence of highly unsaturated fatty acids on the responses of white shrimp (Litopenaeus vannamei) postlarvae to low salinity. J. Exp. Mar. Boil. Ecol. 2004, 299, 201–215. [Google Scholar] [CrossRef]
Sample Availability: Compounds used are commercially available, not from the authors. |
ELM Name | Instances (Matched Sequences) | Positions | ELM Description |
---|---|---|---|
CLV_C14_Caspase3-7 | DDKDG | 58–62 | Caspase-3 and Caspase-7 cleavage site |
DOC_MAPK_DCC_7 DOC_MAPK_MEF2A_6 | KITLPTLHV | 156–164 | A kinase docking motif mediating interaction towards the ERK1/2 and p38 subfamilies of MAP kinases |
DOC_MAPK_gen_1 | RKLLKKQVEF KLLKKQVEF | 33–42 34–42 | MAPK interacting molecules (e.g., MAPKKs, substrates, phosphatases) carry a docking motif that helps to regulate specific interaction in the MAPK cascade. The classic motif approximates (R/K)xxxx#x# where # is a hydrophobic residue |
DOC_PP1_RVXF_1 | LKKQVEFE | 36–43 | Protein phosphatase 1 catalytic subunit (PP1c) interacting motif binds targeting proteins that dock to the substrate for dephosphorylation. The motif defined is [RK]{0,1}[VI][^P][FW] |
DOC_PP2B_LxvP_1 | LEVP | 49–52 | Docking motif in calcineurin substrates that binds at the interface of the catalytic CNA and regulatory CNB subunits |
DOC_WW_Pin1_4 | FMTSPL | 44–49 | The Class IV WW domain interaction motif is recognized primarily by the Pin1 phosphorylation-dependent prolyl isomerase |
LIG_CaM_IQ_9 | ICGLQQQGKLSYSFKFA | 120–136 | Helical peptide motif is responsible for Ca2+-independent binding of the CaM. The motif is mainly characterized by a hydrophobic residue at position 1, a highly conserved Gln at position 2, basic charges at positions 6 and 11, and a variable Gly at position 7 |
LIG_LIR_Gen_1 | TGAFRKL | 29–35 | Canonical LIR motif that binds to Atg8 protein family members to mediate processes involved in autophagy |
LIG_MYND_3 | VPPLE | 51–55 | A variant MYND binding motif found in the HSP90 co-chaperones p23 and FKBP38 interacting with PHD2 MYND domain |
LIG_PDZ_Class_3 | KMRELC | 214–219 | The C-terminal class 3 PDZ-binding motif is classically represented by a pattern such as (DE)X(VIL)* |
LIG_SH2_STAT5 | YFHD YVKF | 183–186 208–211 | STAT5 Src Homology 2 (SH2) domain-binding motif |
MOD_CK2_1 | NGSTFRE FMTSPLE | 21–27 44–50 | CK2 phosphorylation site |
MOD_NEK2_1 | FEESLG LSYSFK | 87–92 129–134 | NEK2 phosphorylation motif with preferred Phe, Leu, or Met in the −3 position to compensate for less favorable residues in the +1 and +2 position |
MOD_Plk_1 | FEESLGA | 87–93 | Ser/Thr residue phosphorylated by the Plk1 kinase |
MOD_ProDKin_1 | FMTSPLE | 44–50 | Proline-Directed Kinase (e.g., MAPK) phosphorylation site in higher eukaryotes |
TRG_ENDOCYTIC_2 | YVKF | 208–211 | Tyrosine-based sorting signal responsible for the interaction with mu subunit of AP (Adaptor Protein) complex |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Orozco, K.D.; Cinco-Moroyoqui, F.; Angulo-Sanchez, L.T.; Marquez-Rios, E.; Burgos-Hernandez, A.; Cardenas-Lopez, J.L.; Gomez-Aguilar, C.; Corona-Martinez, D.O.; Saab-Rincon, G.; Sotelo-Mundo, R.R. Biochemical Characterization of a Novel α/β-Hydrolase/FSH from the White Shrimp Litopenaeus vannamei. Biomolecules 2019, 9, 674. https://doi.org/10.3390/biom9110674
Garcia-Orozco KD, Cinco-Moroyoqui F, Angulo-Sanchez LT, Marquez-Rios E, Burgos-Hernandez A, Cardenas-Lopez JL, Gomez-Aguilar C, Corona-Martinez DO, Saab-Rincon G, Sotelo-Mundo RR. Biochemical Characterization of a Novel α/β-Hydrolase/FSH from the White Shrimp Litopenaeus vannamei. Biomolecules. 2019; 9(11):674. https://doi.org/10.3390/biom9110674
Chicago/Turabian StyleGarcia-Orozco, Karina D., Francisco Cinco-Moroyoqui, Lucía T. Angulo-Sanchez, Enrique Marquez-Rios, Armando Burgos-Hernandez, Jose L. Cardenas-Lopez, Carolina Gomez-Aguilar, David O. Corona-Martinez, Gloria Saab-Rincon, and Rogerio R. Sotelo-Mundo. 2019. "Biochemical Characterization of a Novel α/β-Hydrolase/FSH from the White Shrimp Litopenaeus vannamei" Biomolecules 9, no. 11: 674. https://doi.org/10.3390/biom9110674
APA StyleGarcia-Orozco, K. D., Cinco-Moroyoqui, F., Angulo-Sanchez, L. T., Marquez-Rios, E., Burgos-Hernandez, A., Cardenas-Lopez, J. L., Gomez-Aguilar, C., Corona-Martinez, D. O., Saab-Rincon, G., & Sotelo-Mundo, R. R. (2019). Biochemical Characterization of a Novel α/β-Hydrolase/FSH from the White Shrimp Litopenaeus vannamei. Biomolecules, 9(11), 674. https://doi.org/10.3390/biom9110674