Advance on Resveratrol Application in Bone Regeneration: Progress and Perspectives for Use in Oral and Maxillofacial Surgery
Abstract
:1. Introduction
2. Mechanisms of Bone Formation
3. In Vitro Studies
4. In Vivo Studies
4.1. Resveratrol by Parenteral Administration
4.2. Resveratrol by Oral Administration
4.3. Resveratrol by Local Administration
5. Innovative Scaffolds Loaded with Resveratrol
6. Resveratrol with Platelet-Rich Plasma and Other Hemocomponents
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jang, M.; Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; et al. Natural Product Derived from Grapes Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science 2009, 218, 10–13. [Google Scholar] [CrossRef]
- Athar, M.; Back, J.H.; Tang, X.; Kim, K.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Resveratrol: A review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol. 2007, 224, 274–283. [Google Scholar] [CrossRef] [PubMed]
- De La Lastra, C.A.; Villegas, I. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Mol. Nutr. Food Res. 2005, 49, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Pangeni, R.; Sahni, J.K.; Ali, J.; Sharma, S.; Baboota, S. Resveratrol: Review on therapeutic potential and recent advances in drug delivery. Expert Opin. Drug Deliv. 2014, 11, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Li, Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: Protection against oxidative and electrophilic injury. Eur. J. Pharmacol. 2004, 489, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Catalgol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French paradox revisited. Front. Pharmacol. 2012, 3, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ruivo, J.; Francisco, C.; Oliveira, R.; Figueiras, A. The main potentialities of resveratrol for drug delivery systems. Braz. J. Pharm. Sci. 2015, 51, 499–514. [Google Scholar] [CrossRef]
- Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017, 174, 1633–1646. [Google Scholar] [CrossRef]
- Camins, A.; Junyent, F.; Verdaguer, E.; Beas-zarate, C.; Rojas-mayorquín, A.E.; Ortuño-sahagún, D.; Pallàs, M. Resveratrol: An Antiaging Drug with Potential Therapeutic Applications in Treating Diseases. Pharmaceuticals 2009, 2, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, N.; Cristina Orihuela-Campos, R.; Inagaki, Y.; Fukui, M.; Nagata, T.; Ito, H.O. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model. Free Radic. Biol. Med. 2014, 75, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Udenigwe, C.C.; Ramprasath, V.R.; Aluko, R.E.; Jones, P.J.H. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr. Rev. 2008, 66, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer Molecular Mechanisms of Resveratrol. Front. Nutr. 2016, 3. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Li, Y.; Quarles, L.D.; Song, T.; Pan, W.; Zhou, H.; Xiao, Z. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 2007, 14, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Jaws, E.; Pietrokovski, J.; Starinsky, R.; Arensburg, B. Morphologic Characteristics of Bony. J. Oral Rehabil. 2007, 16, 141–147. [Google Scholar] [CrossRef]
- Aravamudhan, A.; Ramos, D.M.; Nip, J.; Subramanian, A.; James, R.; Harmon, M.D.; Yu, X.; Kumbar, S.G. Osteoinductive Small Molecules: Growth Factor Alternatives for Bone Tissue Engineering. Curr. Pharm. Des. 2013, 19, 3420–3428. [Google Scholar] [CrossRef] [PubMed]
- Stagi, S.; Cavalli, L.; Iurato, C.; Seminara, S.; Brandi, M.L.; De Martino, M. Clinical Cases in Mineral Bone metabolism in children and adolescents: Main characteristics of the determinants of peak bone mass. Bone Metab. 2013, 10, 172–179. [Google Scholar]
- Ralston, S.H. Bone structure and metabolism. Medicine (Baltimore) 2013, 41, 581–585. [Google Scholar] [CrossRef]
- Tou, J.C. Resveratrol supplementation affects bone acquisition and osteoporosis: Pre-clinical evidence toward translational diet therapy. Biochim. Biophys. Acta Mol. Basis Dis. 2014, 1852, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, R.; Jones, E.; Mcgonagle, D.; Giannoudis, P.V. Bone regeneration: Current concepts and future directions. BMC Med. 2011, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Diab, D.L.; Watts, N.B. Postmenopausal osteoporosis. Curr. Opin. Endocrinol. Diabetes 2013. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Rawadi, G.; Roman-Roman, S. Wnt Signaling: A Key Regulator of Bone Mass. Curr. Top. Dev. Biol. 2006, 76, 103–127. [Google Scholar] [CrossRef] [PubMed]
- Titorencu, I.; Pruna, V.; Jinga, V.V.; Simionescu, M. Osteoblast ontogeny and implications for bone pathology: An overview. Cell Tissue Res. 2014, 355, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Bartell, S.M.; Kim, H.N.; Ambrogini, E.; Han, L.; Iyer, S.; Ucer, S.S.; Rabinovitch, P.; Jilka, R.L.; Weinstein, R.S.; Zhao, H.; et al. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Rawadi, G. Minireview: Targeting the Wnt/β-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 2007, 148, 2635–2643. [Google Scholar] [CrossRef] [PubMed]
- Bäckesjö, C.-M.; Li, Y.; Lindgren, U.; Haldosén, L.A. Activation of Sirt1 Decreases Adipocyte Formation During Osteoblast Differentiation of Mesenchymal Stem Cells. J. Bone Miner. Res. 2006, 21. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.C.; Hou, S.M.; Chen, R.J.; Peng, H.W.; Hsieh, C.F.; Kuo, M.L.; Yen, M.L. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J. Bone Miner. Res. 2011, 26, 2552–2563. [Google Scholar] [CrossRef]
- Nogueira, A.V.B.; de Molon, R.S.; Nokhbehsaim, M.; Deschner, J.; Cirelli, J.A. Contribution of biomechanical forces to inflammation-induced bone resorption. J. Clin. Periodontol. 2017, 44, 31–41. [Google Scholar] [CrossRef]
- Romanos, G.E.; Soldatos, N.; Balli, G.; Powell, C.A.; Angelov, N.; Ioannou, A. Ridge Preservation Procedures after Tooth Extractions: A Systematic Review. Int. J. Dent. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Kawashima, N. Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Arch. Oral Biol. 2012, 57, 1439–1458. [Google Scholar] [CrossRef]
- d’Aquino, R.; Papaccio, G.; Laino, G.; Graziano, A. Dental Pulp Stem Cells: A Promising Tool for Bone Regeneration. Stem Cell Rev. 2008, 4, 21–26. [Google Scholar] [CrossRef]
- Schimming, R.; Schmelzeisen, R. Tissue-engineered bone for maxillary sinus augmentation. J. Oral Maxillofac. Surg. 2004, 62, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Shang, L.; Li, X.; Zhang, X.; Gao, G.; Guo, C.; Chen, B.; Liu, Q.; Gong, Y.; Shao, C. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells. Exp. Cell Res. 2009, 315, 2953–2962. [Google Scholar] [CrossRef] [PubMed]
- Ornstrup, M.J.; Harsløf, T.; Sørensen, L.; Stenkjær, L.; Langdahl, B.L.; Pedersen, S.B. Resveratrol Increases Osteoblast Differentiation In Vitro Independently of Inflammation. Calcif. Tissue Int. 2016, 99, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Dosier, C.R.; Erdman, C.P.; Park, J.H.; Schwartz, Z.; Boyan, B.D.; Guldberg, R.E. Resveratrol effect on osteogenic differentiation of rat and human adipose derived stem cells in a 3-D culture environment. J. Mech. Behav. Biomed. Mater. 2012, 11, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Ozcan-Kucuk, A.; Alan, H.; Gul, M.; Yolcu, U. Evaluating the Effect of Resveratrol on the Healing of Extraction Sockets in Cyclosporine A–Treated Rats. J. Oral Maxillofac. Surg. 2018, 76, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, G.; Poudel, S.B.; Kook, S.H.; Lee, J.C. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater. 2016, 29, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, E.; Ikeda, Y.; Wang, Y.; Fine, N.; Sheikh, Z.; Viniegra, A.; Barzilay, O.; Ganss, B.; Tenenbaum, H.C.; Glogauer, M. Resveratrol derivative-rich melinjo seed extract induces healing in a murine model of established periodontitis. J. Periodontol. 2018, 89, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.L.; Weng, X.S.; Wu, Z.H.; Guo, S.G. Effect of resveratrol on preventing steroid-induced osteonecrosis in a rabbit model. Chin. Med. J. (Engl.) 2016, 129, 824–830. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, Y.-M.; Xiao, B.-X.; Ren, G.-F. Effects of Resveratrol on Bone Mineral Density in Ovarectomized Rats. Int. J. Biomed. Sci. 2005, 22, 76–81. [Google Scholar]
- Casarin, R.C.; Casati, M.Z.; Pimentel, S.P.; Cirano, F.R.; Algayer, M.; Pires, P.R.; Ghiraldini, B.; Duarte, P.M.; Ribeiro, F.V. Resveratrol improves bone repair by modulation of bone morphogenetic proteins and osteopontin gene expression in rats. Int. J. Oral Maxillofac. Surg. 2014, 43, 900–906. [Google Scholar] [CrossRef]
- Pino, D.S.; Casarin, R.C.; Pimentel, S.P.; Cirano, F.R.; Corrêa, M.G.; Ribeiro, F.V. Effect of Resveratrol on Critical-Sized Calvarial Defects of Diabetic Rats: Histometric and Gene Expression Analysis. J. Oral Maxillofac. Surg. 2017, 75, 2561.e1–2561.e10. [Google Scholar] [CrossRef] [PubMed]
- Tresguerres, I.F.; Tamimi, F.; Eimar, H.; Barralet, J.; Torres, J.; Blanco, L.; Tresguerres, J.A.F. Resveratrol As Anti-Aging Therapy for Age-Related Bone Loss. Rejuvenation Res. 2014, 17, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Durbin, S.M.; Jackson, J.R.; Ryan, M.J.; Gigliotti, J.C.; Alway, S.E.; Tou, J.C. Resveratrol supplementation preserves long bone mass, microstructure, and strength in hindlimb-suspended old male rats. J. Bone Miner. Metab. 2014, 32, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.M.C.; Shandala, T.; Nguyen, L.; Muhlhausler, B.S.; Chen, K.M.; Howe, P.R.; Xian, C.J. Effects of resveratrol supplementation on bone growth in young rats and microarchitecture and remodeling in ageing rats. Nutrients 2014, 6, 5871–5887. [Google Scholar] [CrossRef] [PubMed]
- Franck, F.C.; Benatti, B.B.; Andia, D.C.; Cirano, F.R.; Casarin, R.C.; Corrêa, M.G.; Ribeiro, F.V. Impact of resveratrol on bone repair in rats exposed to cigarette smoke inhalation: Histomorphometric and bone-related gene expression analysis. Int. J. Oral Maxillofac. Surg. 2018, 47, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Ornstrup, M.J.; Harsløf, T.; Kjær, T.N.; Langdahl, B.L.; Pedersen, S.B. Resveratrol Increases Bone Mineral Density and Bone Alkaline Phosphatase in Obese Men: A Randomized Placebo-Controlled Trial. J. Clin. Endocrinol. Metab. 2014, 99, 4720–4729. [Google Scholar] [CrossRef]
- Uysal, T.; Gorgulu, S.; Yagci, A.; Karslioglu, Y.; Gunhan, O.; Sagdic, D. Effect of resveratrol on bone formation in the expanded inter-premaxillary suture: Early bone changes. Orthod. Craniofac. Res. 2011, 14, 80–87. [Google Scholar] [CrossRef]
- Wang, W.; Sun, L.; Zhang, P.; Song, J.; Liu, W. An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomater. 2014, 10, 4983–4995. [Google Scholar] [CrossRef]
- Li, Y.; Dånmark, S.; Edlund, U.; Finne-Wistrand, A.; He, X.; Norgård, M.; Blomén, E.; Hultenby, K.; Andersson, G.; Lindgren, U. Resveratrol-conjugated poly-ε-caprolactone facilitates in vitro mineralization and in vivo bone regeneration. Acta Biomater. 2011, 7, 751–758. [Google Scholar] [CrossRef]
- Kamath, M.S.; Ahmed, S.S.S.J.; Dhanasekaran, M.; Winkins Santosh, S. Polycaprolactone scaffold engineered for sustained release of resveratrol: Therapeutic enhancement in bone tissue engineering. Int. J. Nanomed. 2013, 9, 183–195. [Google Scholar] [CrossRef]
- Poornima, B.; Korrapati, P.S. Fabrication of chitosan-polycaprolactone composite nanofibrous scaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydr. Polym. 2017, 157, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Peluso, G.; Conte, R.; Di Salle, A.; Vittoria, V.; Calarco, A.; Riccitiello, F.; D’Aniello, S.; De Luise, A. Effect of resveratrol release kinetic from electrospun nanofibers on osteoblast and osteoclast differentiation. Eur. Polym. J. 2017, 99, 289–297. [Google Scholar] [CrossRef]
- Wang, C.C.; Wang, C.H.; Chen, H.C.; Cherng, J.H.; Chang, S.J.; Wang, Y.W.; Chang, A.; Yeh, J.Z.; Huang, Y.H.; Liu, C.C. Combination of resveratrol-containing collagen with adipose stem cells for craniofacial tissue-engineering applications. Int. Wound J. 2018, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gasparro, R.; Qorri, E.; Valletta, A.; Masucci, M.; Sammartino, P.; Amato, A.; Marenzi, G. Non-Transfusional Hemocomponents: From Biology to the Clinic-A Literature Review. Bioengineering (Basel Switz.) 2018, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zou, J.; Huang, Y.; Cao, K.; Xu, Y.; Wu, J.M. Effect of resveratrol on platelet aggregation in vivo and in vitro. Chin. Med. J. 2002, 115, 378–380. [Google Scholar] [CrossRef]
- Di Fede, O.; Panzarella, V.; Mauceri, R.; Fusco, V.; Bedogni, A.; Lo Muzio, L.; Board, S.O.; Campisi, G. The dental management of patients at risk of medication-related osteonecrosis of the jaw: New paradigm of primary prevention. Biomed Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Del Fabbro, M.; Gallesio, G.; Mozzati, M. Autologous platelet concentrates for bisphosphonate-related osteonecrosis of the jaw treatment and prevention. A systematic review of the literature. Eur. J. Cancer 2015, 51, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Mauceri, R.; Panzarella, V.; Maniscalco, L.; Bedogni, A.; Licata, M.E.; Albanese, A.; Toia, F.; Cumbo, E.M.G.; Mazzola, G.; Di Fede, O.; et al. Conservative Surgical Treatment of Bisphosphonate-Related Osteonecrosis of the Jaw with Er,Cr:YSGG Laser and Platelet-Rich Plasma: A Longitudinal Study. Biomed. Res. Int. 2018, 2018, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Borsani, E.; Bonazza, V.; Buffoli, B.; Nocini, P.F.; Albanese, M.; Zotti, F.; Inchingolo, F.; Rezzani, R.; Rodella, L.F. Beneficial Effects of Concentrated Growth Factors and Resveratrol on Human Osteoblasts in Vitro Treated with Bisphosphonates. Biomed. Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.R.; Martins, S.; Segundo, M.A.; Reis, S. Nanoscale Delivery of Resveratrol towards Enhancement of Supplements and Nutraceuticals. Nutrients 2016, 8, 131. [Google Scholar] [CrossRef]
Authors | Cell Type | RSV Doses | Results |
---|---|---|---|
Tseng et al. 2011 [26] | EMPs | 5, 10 µM | Promoted osteogenesis (5 mM) |
adipogenesis Prevented (10 mM) | |||
↑ RUNX2 | |||
↑ OCN | |||
↑ ALP | |||
↓ PPARg2 | |||
↓ Leptin | |||
Dai et al. 2007 [13] | HBMSCs | 0.01, 0.1, 1.0, 10 µM | Promoted osteogenesis |
↑ RUNX2 | |||
↑ OCN | |||
↑ ALP | |||
↑ Calcium deposition | |||
↑ ERK1/2 | |||
Zhou et al. 2009 [32] | ST2 cells | 1, 5, 10, 50, 100 μM | ↑ ERK1/2 |
↑ β-catenin | |||
Ornstrup et al. 2016 [33] | HBMSCs | 25 μM | ↑ osteoblastogenic |
↑ ALP | |||
Dosier et al. 2012 [34] | rat ADSCs human ADSCs | 6.25, 12.5, 25 μM | ↑ Mineralized matrix production (6.25 μM) |
Authors | Animal Model | Induced Disease | Administration Route | Biochemistry Results | Morphometric Outcomes |
---|---|---|---|---|---|
Ozcan-Kucuk et al. 2018 [35] | Normal Rats CsA treated rat | Tooth extraction | Intraperitoneal injection 10 µmol/kg daily | ↑ OCN in normal and CsA-rats ↑ Osteopontin | ↑ New bone formation ↑ Epithelization ↓ Inflammation |
Bhattarai et al. 2016 [36] | Rats | ligature-induced Periodontitis | Subcutaneous injection 5 mg/kg daily | ↑ HO-1 induction via Nrf2-mediated signalling ↓ Inflammation-related proteins ↓ Formation of osteoclasts ↓ Production of circulating ROS | ↑ BMD ↑ BV/TV (%) |
Ikeda et al. 2018 [37] | Mice | ligature-induced Periodontitis | Intraperitoneal injection 0.001% w/w only once | ↓ Oxidative stress ↓ M-CSF/sRANKL mediated osteoclast formation ↓ Osteoclast activity | ↓ ABL |
Zhai et al. 2016 [38] | Rabbits | steroid-induced osteonecrosis of the femoral head | Intraperitoneal injection 4 mg/kg Every day for 2 weeks | ↓ NF-κB transcription ↓ TF production ↓ LPS ↓ Interleukin-1β- ↓ TNF-α-induced TF mRNA expression | ↓ ON incidence |
Lin et al. 2005 [39] | Rats | Ovariectomized | Parenteral 45 mg/kg per day | ↑ BMD ↓ Bone turnover Reverse previous bone loss | |
Tamaki et al. 2014 [10] | Rats | ligature-induced periodontitis | Orally 10 mg/kg/die | ↑ Sirt1/AMPK activation ↑ Nrf2/antioxidant defence pathways ↓ NF-κB/MAPK pathway ↓ Systemic 8-OHdG, dityrosine, ↓ NOx, nitrotyrosine ↓ IL-1β, IL-6, and TNF-α | ↓ ABL |
Casarin et al. 2014 [40] | Rats | Calvarial defects and titanium implant | By gavage 10 mg/kg/die for 30 days | ↑ BMP-2 ↑ BMP-7 ↑ OPN BSP, OPG, RANKL equal to control | ↓ Critical-size calvarial defects ↑ counter-torque force for implant removal |
Pino et al. 2017 [41] | Diabetic rats | Critical-sized calvarial defects | Orally solution 10 mg/kg for 30 days | ↑ BMP-2 ↑ BMP-2 ↑ Osterix | ↓ Critical-size calvarial defects |
Tresguerres et al. 2014 [42] | Rats | Age-related bone loss | Orally 10 mg/kg per day for 10 weeks | ↑ BMP ↑ Sirt1 CTX equal to controlOCN equal to control | ↑ BV/TV ↑ trabecular number ↑ Cortical thickness ↓ Space between trabeculae ↑ Mechanical properties |
Durbin et al. 2014 [43] | Rats | Age-related bone loss | Oral gavage 12.5 mg/kg bw/day for 21 days | ↑ ALP ↓ C-reactive protein ↑ Plasma OCN ↑ Osteoblast bone formation | ↓ BMD, BMC loss ↓ BV/TV loss ↑ Phosphorus content ↑ trabecular connectivity ↑ trabecular number |
Lee et al. 2014 [44] | 4-week-old Wistar rats 6-month-old Wistar rats | Orally 5 mg/kg/day for 5 weeks 20 mg/kg/day for 3 months | In young rats: In ageing rats: ↓ Osterix↓Sirt1 gene expression ↓ OCN ↑ Adipogenesis-Regulatory Genes ↑ CTX-1 Sirt1 equal to control ALP equal to control | In young rats: BV/TV equal to control In ageing rats: ↓ BV/TV | |
Franck et al. 2018 [45] | Rats | Calvarial defects together with smoke exposure | Orally 10 mg/kg daily for 30 days | ↓ RANKL/OPG ↓ Dkk1 ↑ RUNX2 | No differences to control group |
Ornstrup et al. 2014 [46] | Obese Men with MetS | 1000 mg (RSVhigh) or 150 mg (RSVlow) daily for 16 weeks | ↑ Bone Alkaline Phosphatase P1NP equal to control OCN in equal to control OPG equal to control CTX equal to control S-NTx equal to control | ↑ vBMD in RSVhigh ↑ aBMD in RSVhigh ↑ BMC in RSVhigh | |
Uysal et al. 2011 [47] | Rats | Bone formation in response to expansion of upper incisors | Local 10 µmol/kg single-dose | ↑ new bone area ↑ new bone perimeter ↑ Feret’s diameter ↑ Newly formed bone (%) ↑ Number of osteoblast |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murgia, D.; Mauceri, R.; Campisi, G.; De Caro, V. Advance on Resveratrol Application in Bone Regeneration: Progress and Perspectives for Use in Oral and Maxillofacial Surgery. Biomolecules 2019, 9, 94. https://doi.org/10.3390/biom9030094
Murgia D, Mauceri R, Campisi G, De Caro V. Advance on Resveratrol Application in Bone Regeneration: Progress and Perspectives for Use in Oral and Maxillofacial Surgery. Biomolecules. 2019; 9(3):94. https://doi.org/10.3390/biom9030094
Chicago/Turabian StyleMurgia, Denise, Rodolfo Mauceri, Giuseppina Campisi, and Viviana De Caro. 2019. "Advance on Resveratrol Application in Bone Regeneration: Progress and Perspectives for Use in Oral and Maxillofacial Surgery" Biomolecules 9, no. 3: 94. https://doi.org/10.3390/biom9030094
APA StyleMurgia, D., Mauceri, R., Campisi, G., & De Caro, V. (2019). Advance on Resveratrol Application in Bone Regeneration: Progress and Perspectives for Use in Oral and Maxillofacial Surgery. Biomolecules, 9(3), 94. https://doi.org/10.3390/biom9030094