Global Transcriptomic Profile Analysis of Genes Involved in Lignin Biosynthesis and Accumulation Induced by Boron Deficiency in Poplar Roots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment
2.2. Determination of Lignin Content
2.3. Total RNA Extraction and Digital Gene Expression Profiles
2.4. Identification of Differentially Expressed Genes (DEGs)
2.5. Quantitative Real-Time PCR Analysis
2.6. Statistical Analysis
3. Results
3.1. Effect of BD on the Lignin Content in Poplar Roots
3.2. Read Mapping and Analysis of DEGs
3.3. Candidate Genes Associated with Lignin, Cellulose, and Flavonol Synthesis Under BD
3.4. Validation of RNA-Seq Results Using qRT-PCR
4. Discussion
4.1. BD Caused the Differential Expression of Lignin Biosynthetic Enzyme Genes
4.2. Transcription Factors Involved in the Cell Wall Metabolic Process Under BD
4.3. Hormones Participate in the Signal Transduction of Cell Wall Formation Under BD
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Camacho-Cristobal, J.J.; Rexach, J.; Gonzalez-Fontes, A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol. 2008, 50, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Mheld, V.R. Boron in Plant Biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- Camacho-Cristobal, J.J.; Rexach, J.; Herrera-Rodriguez, M.B.; Navarro-Gochicoa, M.T.; Gonzalez-Fontes, A. Boron deficiency and transcript level changes. Plant Sci. 2011, 181, 85–89. [Google Scholar] [CrossRef]
- Goldbach, H.E.; Wimmer, M.A. Boron in plants and animals: Is there a role beyond cell-wall structure? J. Plant Nutr. Soil Sci. 2007, 170, 39–48. [Google Scholar] [CrossRef]
- Huang, J. Degradation of Cell Walls by Plant Pathogens. In Plant Pathogenesis and Resistance; Springer: Dordrecht, The Netherlands, 2001; pp. 51–130. [Google Scholar]
- Matoh, T.; Kawaguchi, S.; Kobayashi, M. Ubiquity of a Borate-Rhamnogalacturonan II Complex in the Cell Walls of Higher Plants. Plant Cell Physiol. 1996, 37, 636–640. [Google Scholar] [CrossRef] [Green Version]
- Shorrocks, V.M. The occurrence and correction of boron deficiency. Plant Soil 1997, 193, 121–148. [Google Scholar] [CrossRef]
- Sillanpaa, M. Micronutrient assessment at the country level: An international study. In Fao Soils Bulletin; Celko, J., Ed.; FAO: Rome, Italy, 1990; pp. 119–128. [Google Scholar]
- Jamjod, S.; Niruntrayagul, S.; Rerkasem, B. Genetic control of boron efficiency in wheat (Triticum aestivum L.). Euphytica 2004, 135, 21–27. [Google Scholar] [CrossRef]
- Lordkaew, S.; Dell, B.; Jamjod, S.; Rerkasem, B. Boron deficiency in maize. Plant Soil 2011, 342, 207–220. [Google Scholar] [CrossRef]
- Han, S.; Tang, N.; Jiang, H.; Yang, L.; Li, Y.; Chen, L. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci. 2009, 176, 143–153. [Google Scholar] [CrossRef]
- Mei, L.; Sheng, O.; Peng, S.; Zhou, G.; Wei, Q.; Li, Q. Growth, root morphology and boron uptake by citrus rootstock seedlings differing in boron-deficiency responses. Sci. Hortic. 2011, 129, 426–432. [Google Scholar] [CrossRef]
- Luo, J.; Li, H.; Liu, T.; Polle, A.; Peng, C.; Luo, Z.B. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. J. Exp. Bot. 2013, 64, 4207–4224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Qin, J.; He, F.; Li, H.; Liu, T.; Polle, A.; Peng, C.; Luo, Z. Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. Planta 2013, 237, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Polle, A. Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO2 atmosphere. Glob. Chang. Biol. 2009, 15, 38–47. [Google Scholar] [CrossRef]
- Boerjan, W.; Meyermans, H.; Chen, C.; Baucher, M.; Van Doorsselaere, J.; Morreel, K.; Messens, E.; Lapierre, C.; Pollet, B.; Jouanin, L.; et al. Lignin Biosynthesis in Poplar: Genetic Engineering and Effects on Kraft Pulping. In Progress in Biotechnology; Morohoshi, N., Komamine, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 18, pp. 187–194. [Google Scholar]
- Chabannes, M.; Barakate, A.; Lapierre, C.; Marita, J.M.; Ralph, J.; Pean, M.; Danoun, S.; Halpin, C.; Grima-Pettenati, J.; Boudet, A.M. Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J. 2001, 28, 257–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, L.; Li, Q.; Wang, H.; Sheng, O.; Peng, S. Boron deficiency affects root vessel anatomy and mineral nutrient allocation of Poncirus trifoliata (L.) Raf. Acta Physiol. Plant. 2016, 38, 86. [Google Scholar] [CrossRef]
- Horst, D.J.; Ramírez Behainne, J.J.; de Andrade Júnior, P.P.; Kovaleski, J.L. An experimental comparison of lignin yield from the Klason and Willstatter extraction methods. Energy Sustain. Dev. 2014, 23, 78–84. [Google Scholar] [CrossRef]
- Wagner, G.P.; Kin, K.; Lynch, V.J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012, 131, 281–285. [Google Scholar] [CrossRef]
- Ye, J.L.F.E. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res. 2006, 34, W293–W297. [Google Scholar] [CrossRef]
- Kanehisa, M.M.A.E. KEGG for linking genomes to life and the environmen. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef]
- Du, Z.; Zhou, X.; Ling, Y.; Zhang, Z.; Su, Z. AgriGO: A GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010, 38, W64–W70. [Google Scholar] [CrossRef]
- Jie Luoa, B.W.S.H. The conserved salt-responsive genes in the roots of Populus _x0001_ canescens and Arabidopsis thaliana. Env. Exp. Bot. 2016, 116, 48–56. [Google Scholar] [CrossRef]
- Regier, N.; Streb, S.; Cocozza, C.; Schaub, M.; Cherubini, P.; Zeeman, S.C.; Frey, B. Drought tolerance of two black poplar (Populus nigra L.) clones: Contribution of carbohydrates and oxidative stress defence. Plant Cell Environ. 2009, 32, 1724–1736. [Google Scholar] [CrossRef] [PubMed]
- De Jong, F.; Hanley, S.J.; Beale, M.H.; Karp, A. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar. Phytochemistry 2015, 117, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.P.; Naik, P.P.; Chen, H.C.; Shi, R.; Lin, C.Y.; Liu, J.; Shuford, C.M.; Li, Q.; Sun, Y.H.; Tunlaya-Anukit, S.; et al. Complete Proteomic-Based Enzyme Reaction and Inhibition Kinetics Reveal How Monolignol Biosynthetic Enzyme Families Affect Metabolic Flux and Lignin in Populus trichocarpa. Plant Cell 2014, 26, 894–914. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, R.; Dejardin, A.; Desmet, S.; Hoengenaert, L.; Vanholme, R.; Morreel, K.; Laurans, F.; Kim, H.; Santoro, N.; Foster, C.; et al. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. Plant Physiol. 2017, 175, 1018–1039. [Google Scholar] [CrossRef]
- Bagniewska-Zadworna, A.; Barakat, A.; Łakomy, A.; Barakat, P.; Smoliński, D.J.; Zadworny, M. Lignin and lignans in plant defence: Insight from expression profiling of cinnamyl alcohol dehydrogenase genes during development and following fungal infection in Populus. Plant Sci. 2014, 229, 111–121. [Google Scholar] [CrossRef]
- Shi, R.; Sun, Y.H.; Li, Q.; Heber, S.; Sederoff, R.; Chiang, V.L. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol. 2010, 51, 144–163. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, J.M.; Chapple, C. Rewriting the lignin roadmap. Curr. Opin. Plant Biol. 2002, 5, 224–229. [Google Scholar] [CrossRef]
- Guo, D.; Chen, F.; Inoue, K.; Blount, J.W.; Dixon, R.A. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 2001, 13, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Shadle, G.; Chen, F.; Srinivasa Reddy, M.S.; Jackson, L.; Nakashima, J.; Dixon, R.A. Down-regulation of hydroxycinnamoyl CoA: Shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry 2007, 68, 1521–1529. [Google Scholar] [CrossRef] [PubMed]
- Berthet, S.; Demont-Caulet, N.; Pollet, B.; Bidzinski, P.; Cezard, L.; Le Bris, P.; Borrega, N.; Herve, J.; Blondet, E.; Balzergue, S.; et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 2011, 23, 1124–1137. [Google Scholar] [CrossRef] [PubMed]
- Cosio, C.; Ranocha, P.; Francoz, E.; Burlat, V.; Zheng, Y.; Perry, S.E.; Ripoll, J.J.; Yanofsky, M.; Dunand, C. The class III peroxidase PRX17 is a direct target of the MADS-box transcription factor AGAMOUS-LIKE15 (AGL15) and participates in lignified tissue formation. New Phytol. 2017, 213, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Fagerstedt, K.V.; Kukkola, E.M.; Koistinen, V.V.; Takahashi, J.; Marjamaa, K. Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. J. Integr. Plant Biol. 2010, 52, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, B.; Yang, X.; Tian, J.; Du, Q.; Zhang, D. Association genetics in Populus reveals the interactions between Pt-miR397a and its target genes. Sci. Rep. 2015, 5, 11672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, S.; Baba, K.I.; Nishida, T.; Tsutsumi, Y.; Kondo, R. The cationic cell-wall-peroxidase having oxidation ability for polymeric substrate participates in the late stage of lignification of Populus alba L. Plant Mol. Biol. 2006, 62, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; You, S.; Taylor-Teeples, M.; Li, W.L.; Schuetz, M.; Brady, S.M.; Douglas, C.J. BEL1-LIKE homeodomain6 and knotted Arabidopsis thaliana7 interact and regulate secondary cell wall formation via repression of REVOLUTA. Plant Cell 2014, 26, 4843–4861. [Google Scholar] [CrossRef]
- Romano, J.M.; Dubos, C.; Prouse, M.B.; Wilkins, O.; Hong, H.; Poole, M.; Kang, K.Y.; Li, E.; Douglas, C.J.; Western, T.L.; et al. AtMYB61, an R2R3-MYB transcription factor, functions as a pleiotropic regulator via a small gene network. New Phytol. 2012, 195, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Lee, C.; Zhou, J.; McCarthy, R.L.; Ye, Z.H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 2008, 20, 2763–2782. [Google Scholar] [CrossRef]
- Ko, J.H.; Kim, W.C.; Han, K.H. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J. 2009, 60, 649–665. [Google Scholar] [CrossRef] [Green Version]
- Abreu, I.; Poza, L.; Bonilla, I.; Bola Os, L. Boron deficiency results in early repression of a cytokinin receptor gene and abnormal cell differentiation in the apical root meristem of Arabidopsis thaliana. Plant Physiol. Biochem. 2014, 77, 117–121. [Google Scholar] [CrossRef]
- González-Fontes, A.; Herrera-Rodríguez, M.B.; Martín-Rejano, E.M.; Navarro-Gochicoa, M.T.; Rexach, J.; Camacho-Cristóbal, J.J. Root Responses to Boron Deficiency Mediated by Ethylene. Front. Plant Sci. 2016, 6, 1103. [Google Scholar] [CrossRef] [PubMed]
- Nafisi, M.; Fimognari, L.; Sakuragi, Y. Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens. Phytochemistry 2015, 112, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Zhou, J.; Li, H.; Shi, W.; Polle, A.; Lu, M.; Sun, X.; Luo, Z. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiol. 2015, 35, 1283–1302. [Google Scholar] [CrossRef] [Green Version]
- Biemelt, S.; Tschiersch, H.; Sonnewald, U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol. 2004, 135, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Wuddineh, W.A.; Mazarei, M.; Zhang, J.; Poovaiah, C.R.; Mann, D.G.J.; Ziebell, A.; Sykes, R.W.; Davis, M.F.; Udvardi, M.K.; Stewart, C.N. Identification and overexpression ofgibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance. Plant Biotechnol. J. 2015, 13, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, C.; Han, X.; Tang, S.; Liu, S.; Xia, X.; Yin, W. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem. Biophys. Res. Commun. 2014, 450, 453–458. [Google Scholar] [CrossRef]
- Mele, G.; Ori, N.; Sato, Y.; Hake, S. The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes Dev. 2003, 17, 2088–2093. [Google Scholar] [CrossRef] [Green Version]
- Steinwand, B.J.; Xu, S.; Polko, J.K.; Doctor, S.M.; Westafer, M.; Kieber, J.J. Alterations in auxin homeostasis suppress defects in cell wall function. PLoS ONE 2014, 9, e98193. [Google Scholar] [CrossRef] [PubMed]
- Bairu, M.W.; Stirk, W.A.; Van Staden, J. Factors contributing to in vitro shoot-tip necrosis and their physiological interactions. Plant Cell Tissue Organ Cult. (PCTOC) 2009, 98, 239–248. [Google Scholar] [CrossRef]
- Ban, T.; Ishimaru, M.; Kobayashi, S.; Goto-Yamamoto, N.; Horiuchi, S. Abscisic acid and 2,4-dichlorohenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in‘Kyoho’grape berries. J. Hortic. Sci. Biotech. 2014, 78, 586–589. [Google Scholar] [CrossRef]
- Camacho-Cristobal, J.J.; Martin-Rejano, E.M.; Herrera-Rodriguez, M.B.; Navarro-Gochicoa, M.T.; Rexach, J.; Gonzalez-Fontes, A. Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. J. Exp. Bot. 2015, 66, 3831–3840. [Google Scholar] [CrossRef] [PubMed]
- Çoban, Ö.; Baydar, N.G. Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Ind. Crop. Prod. 2016, 86, 251–258. [Google Scholar]
- Schrick, K.; Fujioka, S.; Takatsuto, S.; Stierhof, Y.; Stransky, H.; Yoshida, S.; Jürgens, G. A link between sterol biosynthesis, the cell wall, and cellulose inArabidopsis. Plant J. 2004, 38, 227–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denness, L.; McKenna, J.F.; Segonzac, C.; Wormit, A.; Madhou, P.; Bennett, M.; Mansfield, J.; Zipfel, C.; Hamann, T. Cell Wall Damage-Induced Lignin Biosynthesis Is Regulated by a Reactive Oxygen Species and Jasmonic Acid-Dependent Process in Arabidopsis. Plant Physiol. 2011, 156, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Kays, S.J.; Schroeder, B.P.; Ye, Z.H. Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 2002, 14, 165–179. [Google Scholar] [CrossRef] [PubMed]
Pathway ID | Pathway | DEGs with Pathway Annotation | All Genes with Pathway Annotation | q-Value |
---|---|---|---|---|
ko01100 | Metabolic Pathways | 983/3688 (26.65%) | 5504/23453 (23.47%) | 6.13 × 105 |
ko00196 | Photosynthesis—Antenna Proteins | 15/3688 (0.41%) | 28/23453 (0.12%) | 2.60 × 10−4 |
ko04075 | Plant Hormone Signal Transduction | 329/3688 (8.92%) | 1742/23453 (7.43%) | 5.38 × 10−3 |
ko04712 | Circadian Rhythm—Plant | 57/3688 (1.55%) | 232/23453 (0.99%) | 9.41 × 10−3 |
ko00053 | Ascorbate and Aldarate Metabolism | 43/3688 (1.17%) | 165/23453 (0.7%) | 1.05 × 10−2 |
ko00260 | Glycine, Serine, and Threonine Metabolism | 33/3688 (0.89%) | 118/23453 (0.5%) | 1.05 × 10−2 |
ko00910 | Nitrogen Metabolism | 25/3688 (0.68%) | 84/23453 (0.36%) | 1.55 × 10−2 |
ko00500 | Starch and Sucrose Metabolism | 128/3688 (3.47%) | 632/23453 (2.69%) | 1.96 × 10−2 |
ko00051 | Fructose and Mannose Metabolism | 32/3688 (0.87%) | 120/23453 (0.51%) | 2.02 × 10−2 |
ko00072 | Synthesis and Degradation of Ketone Bodies | 7/3688 (0.19%) | 14/23453 (0.06%) | 3.64 × 10−2 |
ko00052 | Galactose Metabolism | 32/3688 (0.87%) | 126/23453 (0.54%) | 3.82 × 10−2 |
Gene ID | Symbol | Annotation | Log2 Ratio | Homology |
---|---|---|---|---|
PAL | ||||
Potri.010G224100 | PtrPAL4 | phenylalanine ammonia-lyase | 1.22 | AT2G37040 |
Potri.010G224200 | PtrPAL5 | phenylalanine ammonia-lyase | 1.58 | AT2G37040 |
CCR | ||||
Potri.009G076300 | PtrCCR9 | cinnamoyl-CoA reductase | 1.04 | AT5G58490 |
potri.017g110500 | −1.45 | AT5G14700 | ||
potri.013g079500 | −2.89 | AT2G23910 | ||
Potri.002G004500 | PtrCCR11 | cinnamoyl-CoA reductase | 1.40 | AT2G33590 |
CAD | ||||
Potri.001G256400 | PtrCAD | cinnamoyl-CoA reductase | 1.24 | AT5G19440 |
Potri.006G024300 | PtrCAD16 | cinnamyl-alcohol dehydrogenase | 3.33 | AT1G72680 |
Potri.009G095800 | PtrCAD1 | cinnamyl-alcohol dehydrogenase | 1.25 | AT4G34230 |
Potri.009G063100 | PtrCAD3 | cinnamyl-alcohol dehydrogenase | 1.95 | AT4G37990 |
Potri.009G062800 | PtrCAD5 | cinnamyl-alcohol dehydrogenase | 2.70 | AT4G37990 |
Potri.001G268600 | PtrCAD7 | −1.38 | AT4G37990 | |
Potri.001G300000 | cinnamyl-alcohol dehydrogenase | 2.71 | AT4G34230 | |
F5H | ||||
Potri.005G117500 | PtrCAld5H1 | ferulate-5-hydroxylase | 2.18 | AT4G36220 |
COMT | ||||
Potri.015G003100 | PtrCOMT1 | caffeic acid 3-O-methyltransferase | 1.34 | AT5G54160 |
Potri.012G006400 | PtrCOMT2 | caffeic acid 3-O-methyltransferase | 1.15 | AT5G54160 |
Potri.014G106600 | PtrCOMT3 | caffeic acid 3-O-methyltransferase | −4.20 | AT5G54160 |
Potri.011G059500 | PtrCOMT8 | caffeic acid 3-O-methyltransferase | 2.10 | AT4G35160 |
Potri.004G050400 | PtrCOMT9 | caffeic acid 3-O-methyltransferase | 4.10 | AT4G35160 |
Potri.001G451100 | PtrCOMT25 | caffeic acid 3-O-methyltransferase | 2.43 | AT5G54160 |
PER | ||||
Potri.006G107000 | Peroxidase | 3.44 | AT5G05340 | |
Potri.017G064100 | Peroxidase | 2.87 | AT5G67400 | |
Potri.018G136900 | Peroxidase | 2.29 | AT4G33420 | |
Potri.009G106400 | Peroxidase | 2.19 | AT1G49570 | |
Potri.016G132800 | Peroxidase | 2.02 | AT1G14550 | |
Potri.T045500 | Peroxidase | 1.88 | AT4G33420 | |
potri.016g125000 | CPWPOC | Peroxidase | 1.12 | AT2G41480 |
4CL | ||||
potri.010g057000 | 4-coumarate-CoA ligase | −1.69 | AT5G63380 | |
potri.003g099700 | 4-coumarate-CoA ligase | −2.76 | AT4G19010 | |
potri.019g049500 | 4-coumarate-CoA ligase | −1.21 | AT1G65060 | |
potri.t071600 | 4-coumarate-CoA ligase | −1.04 | AT1G65060 | |
potri.002g012800 | 4-coumarate-CoA ligase | −1.99 | AT1G20510 | |
C3H | ||||
potri.016g031100 | −2.92 | AT2G40890 | ||
Potri.016G031000 | coumaroylquinate (coumaroylshikimate) 3’-monooxygenase | −2.99 | AT2G40890 | |
potri.019g130700 | C4H 2 | −1.34 | AT2G30490 | |
potri.018g146100 | C4H3 | −2.55 | AT2G30490 | |
HCT | ||||
Potri.018G105500 | PtrHCT2 | shikimate O-hydroxycinnamoyl transferase | −1.19 | AT5G48930 |
LAC | ||||
potri.011g120300 | 1.45 | AT5G60020 | ||
potri.009g042500 | 1.24 | AT2G38080 | ||
Potri.010G183500 | 1.53 | AT2G40370 | ||
potri.009g034500 | Pt-LAC20 | 1.40 | AT2G29130 | |
Cellulose Synthesis | ||||
Potri.016G054900 | Pt-CESA4.2 | similar to cellulose synthase | −1.21 | AT5G05170 |
Potri.006G052600 | Pt-CESA4.1 | |||
potri.018g088300 | Hexokinase | −1.38 | AT2G26310 | |
potri.001g190400 | Hexokinase | −1.50 | AT4G29130 | |
potri.009g050000 | Hexokinase | −1.16 | AT1G50460 | |
Flavonols Synthase | ||||
Potri.003G176900 | chalcone synthase | −1.05 | AT5G13930 | |
Potri.003G176800 | chalcone synthase | −1.03 | AT5G13930 | |
Potri.003G176700 | chalcone synthase | −1.03 | AT5G13930 | |
potri.006g219600 | chalcone isomerase | −1.09 | AT2G26310 | |
potri.009g069100 | flavonoid 3′,5′-hydroxylase | −1.97 | AT5G07990 |
Gene ID | Symbol | Annotation | Log2 Ratio | FDR |
---|---|---|---|---|
WRKY | ||||
Potri.002G193000 | Pt-WRKY48.2 | WRKY transcription factor 33 | 2.00 | 8.54 × 10−73 |
Potri.008G103300 | WRKY transcription factor 33 | 1.17 | 2.87 × 10−9 | |
TALE | ||||
Potri.004G159300 | 1.58 | 4.66 × 10−61 | ||
Potri.009G120800 | 2.22 | 2.06 × 10−106 | ||
MYB | ||||
Potri.007G067600 | MYB192 | myb proto-oncogene protein | 7.80 | 2.81 × 10−5 |
Potri.012G127700 | MYB199 | 1.80 | 1.61 × 10−55 | |
Signal Transduction Pathway | ||||
Gibberellic Acid | ||||
Potri.008G180500 | gibberellin receptor GID1 | 2.21 | 1.05 × 10−44 | |
Potri.013G028700 | gibberellin receptor GID1 | 1.25 | 1.71 × 10−21 | |
Potri.014G135900 | gibberellin receptor GID1 | 1.17 | 3.93 × 10−30 | |
Potri.016G065000 | gibberellin receptor GID1 | 1.02 | 1.94 × 10−21 | |
Potri.005G208200 | F-box protein GID2 | 2.15 | 1.74 × 10−12 | |
Potri.014G022100 | F-box protein GID2 | 1.40 | 5.46 × 10−61 | |
Potri.002G122300 | F-box protein GID2 | 1.36 | 2.29 × 10−30 | |
Potri.010G060800 | F-box protein GID2 | 1.03 | 2.59 × 10−5 | |
Potri.007G103800 | GA20ox5 | gibberellin 20-oxidase | 3.91 | 3.92 × 10−10 |
Potri.015G134600 | GA20ox8 | gibberellin 20-oxidase | 1.88 | 2.87 × 10−9 |
Potri.001G176500 | 2OGox4 | gibberellin 20-oxidase | 1.66 | 1.23 × 10−51 |
Potri.009G107600 | 2OGox7 | naringenin 3-dioxygenase | 1.07 | 3.84 × 10−19 |
Bressionsteroid | ||||
Potri.001G263700 | sterol 24-C-methyltransferase | −2.06 | 3.60 × 10−26 | |
Potri.005G245800 | sterol 25-C-methyltransferase | −1.81 | 1.08 × 10−223 | |
Ethylene | ||||
Potri.009G142300 | Chitinase | −3.22 | 1.26 × 10−25 | |
Potri.002G186500 | Chitinase | −2.14 | 2.99 × 10−15 | |
Potri.009G141800 | Chitinase | −3.39 | 1.30 × 10−4 | |
Potri.015G024200 | Chitinase | 1.01 | 3.72 × 10−73 | |
Potri.004G182000 | Chitinase | 1.77 | 2.91 × 10−43 | |
Potri.T175200 | Chitinase | 3.94 | 2.12 × 10−10 | |
Auxin | ||||
Potri.005G218200 | Pt-AUX22.4 | auxin-responsive protein IAA | −4.32 | 4.21 × 10−5 |
Potri.003G056900 | Pt-AUX22.3 | auxin-responsive protein IAA | −3.28 | 9.00 × 10−8 |
Potri.010G078300 | Pt-IAA14.2 | auxin-responsive protein IAA | −2.55 | 1.91 × 10−71 |
Potri.008G161200 | Pt-IAA14.1 | auxin-responsive protein IAA | −2.50 | 1.40 × 10−293 |
Potri.001G177500 | UDP-N-acetylglucosamine | −2.22 | 2.33 × 10−11 | |
Potri.006G166900 | auxin-responsive protein IAA | −2.22 | 3.94 × 10−4 | |
Potri.002G045000 | Pt-AUX22.5 | auxin-responsive protein IAA | −1.56 | 3.46 × 10−5 |
Potri.006G161400 | auxin-responsive protein IAA | −1.02 | 1.92 × 10−5 | |
Potri.005G174000 | PtrAUX7 | auxin-responsive protein IAA | −2.04 | 3.29 × 10−57 |
Potri.002G087000 | PtrAUX8 | auxin-responsive protein IAA | −1.20 | 3.49 × 10−13 |
Potri.016G113600 | PtrAUX2 Pt-AUX1.1 | auxin-responsive protein IAA | −1.05 | 2.86 × 10−61 |
Potri.004G172800 | PtrAUX5 | auxin-responsive protein IAA | −1.02 | 7.08 × 10−6 |
Potri.018G139400 | PIN9 Pt-PIN2.4 | auxin efflux carrier family | −3.09 | 6.01 × 10−64 |
Potri.005G187500 | PIN4 Pt-PIN6.2 | auxin efflux carrier family | −2.63 | 7.05 × 10−9 |
Potri.016G035300 | PIN2 Pt-PIN2.3 | auxin efflux carrier family | −1.25 | 1.45 × 10−9 |
Potri.012G047200 | PIN7 Pt-PIN1.2 | auxin efflux carrier family | −1.10 | 8.28 × 10−9 |
Potri.009G132100 | PtrAUX6 Pt-LAX5.1 | auxin influx carrier (AUX1 LAX family) | −2.79 | 2.80 × 10−38 |
Potri.011G042400 | TIR | transport inhibitor response 1 | −1.07 | 1.16 × 10−5 |
CTKS | ||||
Potri.007G056400 | Pt-ATHK1.2 | similar to histidine kinase 1 | 1.87 | 9.39 × 10−7 |
Potri.003G171000 | Pt-AHK3.2 PHK4 | similar to histidine kinase receptor | 1.71 | 4.79 × 10−21 |
Potri.005G111700 | Pt-ATHK1.3 | similar to histidine kinase 1 | 1.36 | 1.00 × 10−35 |
JA | ||||
Potri.010G192900 | coronatine-insensitive protein 1 | 1.19 | 6.47 × 10−55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, W.-L.; Liu, N.; Mei, L.; Luo, J.; Zhu, Y.-J.; Liang, Z. Global Transcriptomic Profile Analysis of Genes Involved in Lignin Biosynthesis and Accumulation Induced by Boron Deficiency in Poplar Roots. Biomolecules 2019, 9, 156. https://doi.org/10.3390/biom9040156
Su W-L, Liu N, Mei L, Luo J, Zhu Y-J, Liang Z. Global Transcriptomic Profile Analysis of Genes Involved in Lignin Biosynthesis and Accumulation Induced by Boron Deficiency in Poplar Roots. Biomolecules. 2019; 9(4):156. https://doi.org/10.3390/biom9040156
Chicago/Turabian StyleSu, Wan-Long, Na Liu, Li Mei, Jie Luo, Yi-Jie Zhu, and Zhu Liang. 2019. "Global Transcriptomic Profile Analysis of Genes Involved in Lignin Biosynthesis and Accumulation Induced by Boron Deficiency in Poplar Roots" Biomolecules 9, no. 4: 156. https://doi.org/10.3390/biom9040156
APA StyleSu, W. -L., Liu, N., Mei, L., Luo, J., Zhu, Y. -J., & Liang, Z. (2019). Global Transcriptomic Profile Analysis of Genes Involved in Lignin Biosynthesis and Accumulation Induced by Boron Deficiency in Poplar Roots. Biomolecules, 9(4), 156. https://doi.org/10.3390/biom9040156