Association of Asymmetric Dimethylarginine and Diastolic Dysfunction in Patients with Hypertrophic Cardiomyopathy
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Clinical Evaluation
2.3. Quantification of l-Arginine Derivatives
2.4. Echocardiography
2.5. Cardiac Magnetic Resonance Imaging
2.6. Statistical Analysis
3. Results
3.1. Arginine Derivatives and Diastolic Dysfunction
3.2. Arginine Derivatives and Atrial Fibrillation
3.3. Arginine Derivatives, Cardiac Hypertrophy, and Fibrosis
4. Discussion
4.1. Arginine Derivatives and Diastolic Dysfunction
4.2. Arginine Derivatives and Atrial Fibrillation
4.3. Arginine Derivatives and Cardiac Hypertrophy
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Authors/Task Force members; Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [PubMed]
- Bredt, D.S.; Snyder, S.H. Nitric oxide: A physiologic messenger molecule. Annu. Rev. Biochem. 1994, 63, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Fernlund, E.; Schlegel, T.T.; Platonov, P.G.; Carlson, J.; Carlsson, M.; Liuba, P. Peripheral microvascular function is altered in young individuals at risk for hypertrophic cardiomyopathy and correlates with myocardial diastolic function. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H1351–H1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balligand, J.L.; Cannon, P.J. Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arter. Thromb Vasc. Biol. 1997, 17, 1846–1858. [Google Scholar] [CrossRef]
- Shah, A.M.; MacCarthy, P.A. Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol. Ther. 2000, 86, 49–86. [Google Scholar] [CrossRef]
- Moali, C.; Boucher, J.L.; Sari, M.A.; Stuehr, D.J.; Mansuy, D. Substrate specificity of NO synthases: Detailed comparison of l-arginine, homo-l-arginine, their N-omega-hydroxy derivatives, and N-omega-hydroxynor-l-arginine. Biochem. USA 1998, 37, 10453–10460. [Google Scholar] [CrossRef]
- Palmer, R.M.; Ashton, D.S.; Moncada, S. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 1988, 333, 664–666. [Google Scholar] [CrossRef]
- Closs, E.I.; Basha, F.Z.; Habermeier, A.; Forstermann, U. Interference of l-arginine analogues with l-arginine transport mediated by the y+ carrier hCAT-2B. Nitric Oxide 1997, 1, 65–73. [Google Scholar] [CrossRef]
- Vallance, P.; Leone, A.; Calver, A.; Collier, J.; Moncada, S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992, 339, 572–575. [Google Scholar]
- Atzler, D.; Schwedhelm, E.; Choe, C.U. l-Homoarginine and cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 83–88. [Google Scholar] [CrossRef]
- Pilz, S.; Edelmann, F.; Meinitzer, A.; Gelbrich, G.; Doner, U.; Dungen, H.D. Associations of methylarginines and homoarginine with diastolic dysfunction and cardiovascular risk factors in patients with preserved left ventricular ejection fraction. J. Card. Fail. 2014, 20, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Tommasi, S.; Elliot, D.J.; Da Boit, M.; Gray, S.R.; Lewis, B.C.; Mangoni, A.A. Homoarginine and inhibition of human arginase activity: Kinetic characterization and biological relevance. Sci. Rep. 2018, 8, 3697. [Google Scholar] [CrossRef]
- Atzler, D.; Mieth, M.; Maas, R.; Boger, R.H.; Schwedhelm, E. Stable isotope dilution assay for liquid chromatography-tandem mass spectrometric determination of l-homoarginine in human plasma. J. Chromatogr. B 2011, 879, 2294–2298. [Google Scholar] [CrossRef] [PubMed]
- Schwedhelm, E.; Maas, R.; Tan-Andresen, J.; Schulze, F.; Riederer, U.; Boger, R.H. High-throughput liquid chromatographic-tandem mass spectrometric determination of arginine and dimethylated arginine derivatives in human and mouse plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 851, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 2005, 18, 1440–1463. [Google Scholar]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 2009, 10, 165–193. [Google Scholar] [CrossRef] [PubMed]
- Arenja, N.; Fritz, T.; Andre, F.; Riffel, J.H.; Aus dem Siepen, F.; Ochs, M. Myocardial contraction fraction derived from cardiovascular magnetic resonance cine images-reference values and performance in patients with heart failure and left ventricular hypertrophy. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1414–1422. [Google Scholar] [CrossRef]
- Grocottmason, R.; Anning, P.; Evans, H.; Lewis, M.J.; Shah, A.M. Modulation of Left-Ventricular Relaxation in Isolated Ejecting Heart by Endogenous Nitric-Oxide. Am. J. Physiol. Heart C 1994, 267, H1804–H1813. [Google Scholar] [CrossRef]
- Grocottmason, R.; Fort, S.; Lewis, M.J.; Shah, A.M. Myocardial Relaxant Effect of Exogenous Nitric-Oxide in Isolated Ejecting Hearts. Am. J. Physiol. 1994, 266, H1699–H1705. [Google Scholar]
- Pudil, R.; Vasatova, M.; Fucikova, A.; Rehulkova, H.; Rehulka, P.; Palicka, V. Vascular Endothelial Growth Factor Is Associated with the Morphologic and Functional Parameters in Patients with Hypertrophic Cardiomyopathy. Biomed. Res. Int. 2015, 2015, 762950. [Google Scholar] [CrossRef]
- Paulus, W.J.; Vantrimpont, P.J.; Shah, A.M. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation 1994, 89, 2070–2078. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Tong, W.; Shrestha, K.; Wang, Z.; Levison, B.S.; Delfraino, B. Differential effects of arginine methylation on diastolic dysfunction and disease progression in patients with chronic systolic heart failure. Eur. Heart J. 2008, 29, 2506–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnabel, R.B.; Maas, R.; Wang, N.; Yin, X.; Larson, M.G.; Levy, D. Asymmetric dimethylarginine, related arginine derivatives, and incident atrial fibrillation. Am. Heart J. 2016, 176, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niekamp, C.; Atzler, D.; Ojeda, F.M.; Sinning, C.R.; Lackner, K.J.; Boger, R.H. Cross-Sectional Associations between Homoarginine, Intermediate Phenotypes, and Atrial Fibrillation in the Community-The Gutenberg Health Study. Biomolecules 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Ramuschkat, M.; Appelbaum, S.; Atzler, D.; Zeller, T.; Bauer, C.; Ojeda, F.M. ADMA, subclinical changes and atrial fibrillation in the general population. Int. J. Cardiol. 2016, 203, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Atzler, D.; Baum, C.; Ojeda, F.; Keller, T.; Cordts, K.; Schnabel, R.B. Low Homoarginine Levels in the Prognosis of Patients with Acute Chest Pain. J. Am. Heart Assoc. 2016, 5, e002565. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.D.; De Caterina, R.; Heresztyn, T.; Alexander, J.H.; Andersson, U.; Lopes, R.D. Asymmetric and Symmetric Dimethylarginine Predict Outcomes in Patients with Atrial Fibrillation: An ARISTOTLE Substudy. J. Am. Coll. Cardiol. 2018, 72, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 2016, 18, 1609–1678. [Google Scholar] [CrossRef]
- Drechsler, C.; Meinitzer, A.; Pilz, S.; Krane, V.; Tomaschitz, A.; Ritz, E. Homoarginine, heart failure, and sudden cardiac death in haemodialysis patients. Eur. J. Heart Fail. 2011, 13, 852–859. [Google Scholar] [CrossRef]
- Choe, C.U.; Atzler, D.; Wild, P.S.; Carter, A.M.; Boger, R.H.; Ojeda, F. Homoarginine levels are regulated by L-arginine:glycine amidinotransferase and affect stroke outcome: Results from human and murine studies. Circulation 2013, 128, 1451–1461. [Google Scholar] [CrossRef]
- Cullen, M.E.; Yuen, A.H.; Felkin, L.E.; Smolenski, R.T.; Hall, J.L.; Grindle, S. Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: Potential implications for local creatine synthesis. Circulation 2006, 114 (Suppl. 1), I16–I20. [Google Scholar] [CrossRef]
- Nemeth, Z.; Cziraki, A.; Szabados, S.; Biri, B.; Keki, S.; Koller, A. Elevated Levels of Asymmetric Dimethylarginine (ADMA) in the Pericardial Fluid of Cardiac Patients Correlate with Cardiac Hypertrophy. PLoS ONE 2015, 10, e0135498. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Mallamaci, F.; Maas, R.; Benedetto, F.A.; Tripepi, G.; Malatino, L.S. Left ventricular hypertrophy, cardiac remodeling and asymmetric dimethylarginine (ADMA) in hemodialysis patients. Kidney Int. 2002, 62, 339–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inci, U.; Yildiz, A.; Batmaz, I.; Tekbas, E. Assessment of serum asymmetric dimethylarginine levels and left ventricular diastolic function in patients with ankylosing spondylitis. Int. J. Rheum. Dis. 2017, 20, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hou, L.; Xu, D.; Chen, A.; Yang, L.; Zhuang, Y. Effect of asymmetric dimethylarginine (ADMA) on heart failure development. Nitric Oxide 2016, 54, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HCM (n = 215) | HCM no DD (n = 61) | HCM DD (n = 143) | p-Value | |
---|---|---|---|---|
Age (years) | 54 ± 15 | 44 ± 15 | 58 ± 13 | <0.001 |
Sex (males, n) | 125 (58.1%) | 43 (70.5%) | 75 (52.4%) | 0.017 |
BMI (kg/m2) | 27 ± 5 | 25 ± 4 | 28 ± 6 | <0.001 |
AF (medical history) (n) | 67 (31.2%) | 11 (18.0%) | 49 (34.3%) | 0.020 |
NYHA (n) | <0.001 | |||
I-II | 145 (67.4%) | 56 (91.8%) | 81 (56.6%) | |
III-IV | 70 (32.6%) | 5 (8.2%) | 62 (43.4%) | |
Creatinine (mg/dL) | 0.99 ± 0.27 | 0.93 ± 0.25 | 1.01 ± 0.28 | 0.034 |
eGFR (mL/min) | 81 ± 26 | 94 ± 27 | 76 ± 23 | <0.001 |
QTc (ms) | 438 ± 33 | 422 ± 27 | 444 ± 34 | <0.001 |
Concomitant Diseases | ||||
Diabetes mellitus | 25 (12%) | 4 (6.6%) | 19 (13.3%) | 0.164 |
Coronary artery disease | 36 (17%) | 4 (6.6%) | 28 (19.6%) | 0.019 |
Arterial hypertension | 96 (45%) | 18 (29.5%) | 74 (51.7%) | 0.003 |
Echocardiographic parameters | ||||
SW thickness (mm) | 22 ± 5 | 21 ± 6 | 22 ± 5 | 0.050 |
LW thickness (mm) | 14 ± 4 | 13 ± 4 | 15 ± 3 | 0.002 |
Obstruction (n) | 0.005 | |||
HNOCM | 71 (47.7%) | 24 (68.6%) | 45 (40.9%) | |
HLOCM | 19 (12.8%) | 5 (14.3%) | 13 (11.8%) | |
HOCM | 59 (39.6%) | 6 (17.1%) | 52 (47.3%) | |
Diastolic Function | ||||
No DD | 61 (29.9%) | 61 (29.9%) | 0 (0%) | |
Mild DD | 50 (24.5%) | 0 (0%) | 50 (24.5%) | |
Moderate DD | 86 (42.2%) | 0 (0%) | 86 (42.2%) | |
Severe DD | 7 (3.4%) | 0 (0%) | 7 (3.4%) | |
Reduced LVEF (n) | 20 (9.4%) | 2 (3.3%) | 16 (11.2%) | 0.068 |
E-wave (m/s) | 93 ± 29 | 87 ± 22 | 95 ± 32 | 0.036 |
A-wave (m/s) | 79 ± 54 | 60 ± 20 | 88 ± 61 | <0.001 |
E/A | 1.37 ± 0.68 | 1.55 ± 0.57 | 1.28 ± 0.71 | 0.007 |
Mean E‘(cm/s) | 6.8 ± 2.2 | 8.9 ± 1.9 | 5.9 ± 1.7 | <0.001 |
Mean E/E‘ | 16.1 ± 7.7 | 10.6 ± 2.8 | 18.7 ± 7.9 | <0.001 |
Mean IVRT (ms) | 123 ± 35 | 100 ± 20 | 134 ± 35 | <0.001 |
Left atrial diameter (mm) | 46 ± 10 | 41 ± 7 | 48 ± 10 | <0.001 |
Cardiac Magnetic Resonance Imaging Parameters | ||||
MCF (%) | 60 ± 27 | 65 ± 23 | 60 ± 28 | 0.312 |
LGE positive (n) | 114 (91.2%) | 36 (87.8%) | 71 (92.2%) | 0.433 |
HCM No DD | HCM Mild DD | HCM Moderate/Severe DD | p-Value for Linear Trend | |
---|---|---|---|---|
ADMA (µmol/L) | 0.66 ± 0.16 | 0.72 ± 0.24 | 0.76 ± 0.26 | 0.006 |
SDMA (µmol/L) | 0.52 ± 0.14 | 0.61 ± 0.29 | 0.58 ± 0.20 | 0.074 |
hArg (µmol/L) | 1.76 ± 0.64 | 1.52 ± 0.63 | 1.56 ± 0.71 | 0.069 |
ADMA | SDMA | hArg | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
HCM patients (moderate to severe DD vs. normal diastolic function) | ||||||
Model 1 | 1.79 (1.14–2.79) | 0.011 | 1.54 (0.99–2.40) | 0.056 | 0.76 (0.55–1.05) | 0.100 |
Model 2 | 1.53 (0.93–2.51) | 0.096 | 1.12 (0.70–1.79) | 0.624 | 0.86 (0.61–1.22) | 0.408 |
Model 3 | 1.76 (1.07–2.89) | 0.026 | 1.31 (0.79–2.16) | 0.292 | 0.72 (0.49–1.06) | 0.097 |
Model 4 | 1.87 (1.12–3.12) | 0.016 | 1.14 (0.68–1.94) | 0.615 | 0.73 (0.49–1.08) | 0.116 |
ADMA | SDMA | hArg | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Model 1 | 1.34 (0.99–1.82) | 0.060 | 1.91 (1.35–2.69) | <0.001 | 0.62 (0.44–0.87) | 0.006 |
Model 2 | 1.08 (0.79–1.49) | 0.620 | 1.50 (1.06–2.14) | 0.024 | 0.69 (0.48–0.98) | 0.039 |
Model 3 | 1.05 (0.75–1.46) | 0.781 | 1.51 (1.05–2.19) | 0.027 | 0.66 (0.46–0.95) | 0.027 |
Model 4 | 1.05 (0.76–1.47) | 0.751 | 1.39 (0.95–2.03) | 0.094 | 0.68 (0.47–0.98) | 0.038 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordts, K.; Seelig, D.; Lund, N.; Carrier, L.; Böger, R.H.; Avanesov, M.; Tahir, E.; Schwedhelm, E.; Patten, M. Association of Asymmetric Dimethylarginine and Diastolic Dysfunction in Patients with Hypertrophic Cardiomyopathy. Biomolecules 2019, 9, 277. https://doi.org/10.3390/biom9070277
Cordts K, Seelig D, Lund N, Carrier L, Böger RH, Avanesov M, Tahir E, Schwedhelm E, Patten M. Association of Asymmetric Dimethylarginine and Diastolic Dysfunction in Patients with Hypertrophic Cardiomyopathy. Biomolecules. 2019; 9(7):277. https://doi.org/10.3390/biom9070277
Chicago/Turabian StyleCordts, Kathrin, Doreen Seelig, Natalie Lund, Lucie Carrier, Rainer H. Böger, Maxim Avanesov, Enver Tahir, Edzard Schwedhelm, and Monica Patten. 2019. "Association of Asymmetric Dimethylarginine and Diastolic Dysfunction in Patients with Hypertrophic Cardiomyopathy" Biomolecules 9, no. 7: 277. https://doi.org/10.3390/biom9070277
APA StyleCordts, K., Seelig, D., Lund, N., Carrier, L., Böger, R. H., Avanesov, M., Tahir, E., Schwedhelm, E., & Patten, M. (2019). Association of Asymmetric Dimethylarginine and Diastolic Dysfunction in Patients with Hypertrophic Cardiomyopathy. Biomolecules, 9(7), 277. https://doi.org/10.3390/biom9070277