Optimization of Link Length Fitting between an Operator and a Robot with Digital Annealer for a Leader-Follower Operation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Approach
2.2. Implementation of Digital Annealer
2.3. Experimental Setup
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Habibnezhad, M.; Jebelli, H. Brain-computer interface for hands-free teleoperation of construction robots. Autom. Constr. 2021, 123, 103523. [Google Scholar] [CrossRef]
- Gonzalez, G.; Agarwal, M.; Balakuntala, V.M.; Rahman, M.M.; Kaur, U.; Voyles, M.R.; Agarwal, V.; Xue, Y.; Wachs, J. DESERTS: DElay-tolerant SEmi-autonomous Robot Teleoperation for Surgery. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation, Xi’an, China, 30 May–5 June 2021; pp. 12693–12700. [Google Scholar]
- Sian, E.N.; Yokoi, K.; Kajita, S.; Tanie, K. Whole body teleoperation of a humanoid robot integrating operator’s intention and robot’s autonomy: An experimental verification. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 27–31 October 2003; pp. 1651–1656. [Google Scholar]
- Shi, H.; Liu, Q.; Mei, X. Accurate Parameter Estimation for Master–Slave Operation of a Surgical Robot. Machines 2021, 9, 213. [Google Scholar] [CrossRef]
- Gonzalez, C.; Solanes, E.J.; Munoz, A.; Gracia, L.; Girbes-Juan, V. Advanced teleoperation and control system for industrial robots based on augmented virtuality and haptic feedback. J. Manuf. Syst. 2021, 59, 283–298. [Google Scholar] [CrossRef]
- Wang, S.; Murphy, K.; Kenney, D.; Ramos, J. A Comparison Between Joint Space and Task Space Mappings for Dynamic Teleoperation of an Anthropomorphic Robotic Arm in Reaction Tests. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation, Xi’an, China, 30 May–5 June 2021; pp. 2846–2852. [Google Scholar]
- Zhang, T.; McCarthy, Z.; Jow, O.; Lee, D.; Chen, X.; Goldberg, K.; Abbeel, P. Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 5628–5635. [Google Scholar]
- Nunez, M.L.; Dajles, D.; Siles, F. Teleoperation of a Humanoid Robot Using an Optical Motion Capture System. In Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence, San Carlos, Costa Rica, 18–20 July 2018; pp. 1–8. [Google Scholar]
- Miller, N.; Jenkins, C.O.; Kallmann, M.; Mataric, M. Motion capture from inertial sensing for untethered humanoid teleoperation. In Proceedings of the IEEE-RAS International Conference on Humanoid Robotics, Santa Monica, CA, USA, 10–12 November 2004; pp. 547–565. [Google Scholar]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.-E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 172–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Digo, E.; Antonelli, M.; Cornagliotto, V.; Pastorelli, S.; Gastaldii, L. Collection and Analysis of Human Upper Limbs Motion Features for Collaborative Robotic Applications. Robotics 2020, 9, 33. [Google Scholar] [CrossRef]
- Su, H.; Enayati, N.; Vantadori, L.; Spinoglio, A.; Ferrigno, G.; Momi, D.E. Online human-like redundancy optimization for tele-operated anthropomorphic manipulators. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418814695. [Google Scholar] [CrossRef]
- Gleicher, M. Retargetting Motion to New Characters. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, USA, 19–24 July 1998. [Google Scholar]
- Nakamura, S.; Mochizuki, N.; Konno, T.; Yoda, J.; Hashimoto, H. Research on Updating of Body Schema Using AR Limb and Measurement of the Updated Value. IEEE Syst. J. 2016, 10, 903–911. [Google Scholar] [CrossRef]
- Penco, L.; Clement, B.; Modugno, V.; Hoffman, M.E.; Nava, G.; Pucci, D.; Tsagarakis, G.N.; Mouret, J.-B.; Ivaldi, S. Robust Real-time Whole-Body Motion Retargeting from Human to Humanoid. In Proceedings of the IEEE-RAS International Conference on Humanoid Robotics, Beijing, China, 6–9 November 2018; pp. 425–432. [Google Scholar]
- Gomes, W.; Radhakrishnan, V.; Penco, L.; Modugno, V.; Mouret, J.-B.; Ivaldi, S. Humanoid Whole-Body Movement Optimization from Retargeted Human Motions. In Proceedings of the 2019 IEEE-RAS 19th International Conference on Humanoid Robots, Toronto, ON, Canada, 15–17 October 2019; pp. 178–185. [Google Scholar]
- Matsubara, S.; Takatsu, M.; Miyazawa, T.; Shibasaki, T.; Watanabe, Y.; Takemoto, K.; Tamura, H. Digital Annealer for High-Speed Solving of Combinatorial Optimization Problems and Its Applications. In Proceedings of the 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 13–16 January 2020. [Google Scholar]
- Sao, M.; Watanabe, H.; Musha, Y.; Utsunomiya, A. Application of Digital Annealer for Faster Combinatorial Optimization. Fujitsu Sci. Tech. J. 2019, 55, 45–51. [Google Scholar]
- Maruo, A.; Igarashi, H.; Oshima, H.; Shimokawa, S. Optimization of Planar Magnet Array Using Digital Annealer. IEEE Trans. Magn. 2020, 56, 7512104. [Google Scholar] [CrossRef]
- Rahman, T.M.; Han, S.; Tadayon, N.; Valaee, S. Ising Model Formulation of Outlier Rejection, with Application in WiFi Based Positioning. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4405–4409. [Google Scholar]
- Zaman, M.; Tanahashi, K.; Tanaka, S. PyQUBO: Python Library for QUBO Creation. IEEE Trans. Comput. 2021, 1. [Google Scholar] [CrossRef]
- Kouchi, M.; Mochimaru, M. Human Dimension Database; AIST Digital Human Research Center: Tokyo, Japan, 2005. [Google Scholar]
Goal of Hand Position | X | Y | |
---|---|---|---|
Goal A | Ratio compared to whole arm length % | 30 | 50 |
Human mm | 162 | 270 | |
Robot mm | 135 | 225 | |
Goal B | Ratio compared to whole arm length % | −30 | 50 |
Human mm | −162 | 270 | |
Robot mm | −135 | 225 |
Parameters | Values |
---|---|
Robot upper arm length mm | 300 |
Robot forearm length mm | 150 |
Resolution of compensation parameters r | 0.03 |
Max. number of steps | 100 |
Weighting factor w | 10,000 |
Iteration number | 1,000,000 |
Shoulder | Elbow | ||
---|---|---|---|
Goal A | Compensation parameters | 2.40 | 1.20 |
Joint angles of an operator rad | 0.23 | 1.92 | |
Compensated joint angles rad | 0.55 | 2.30 | |
Goal B | Compensation parameters | 1.14 | 0.96 |
Joint angles of an operator rad | 1.31 | 1.92 | |
Compensated joint angles rad | 1.49 | 1.84 |
X mm | Y mm | ||
---|---|---|---|
Goal A | Target hand position of a robot | 135 | 225 |
Robot hand position without compensation | 211 | 194 | |
Robot hand position with compensation | 112 | 201 | |
Goal B | Target hand position of a robot | −135 | 225 |
Robot hand position without compensation | −72 | 277 | |
Robot hand position with compensation | −124 | 271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otani, T.; Takanishi, A.; Nakamura, M.; Kimura, K. Optimization of Link Length Fitting between an Operator and a Robot with Digital Annealer for a Leader-Follower Operation. Robotics 2022, 11, 12. https://doi.org/10.3390/robotics11010012
Otani T, Takanishi A, Nakamura M, Kimura K. Optimization of Link Length Fitting between an Operator and a Robot with Digital Annealer for a Leader-Follower Operation. Robotics. 2022; 11(1):12. https://doi.org/10.3390/robotics11010012
Chicago/Turabian StyleOtani, Takuya, Atsuo Takanishi, Makoto Nakamura, and Koichi Kimura. 2022. "Optimization of Link Length Fitting between an Operator and a Robot with Digital Annealer for a Leader-Follower Operation" Robotics 11, no. 1: 12. https://doi.org/10.3390/robotics11010012
APA StyleOtani, T., Takanishi, A., Nakamura, M., & Kimura, K. (2022). Optimization of Link Length Fitting between an Operator and a Robot with Digital Annealer for a Leader-Follower Operation. Robotics, 11(1), 12. https://doi.org/10.3390/robotics11010012