Design, Implementation, and Kinematics of a Twisting Robot Continuum Arm Inspired by Human Forearm Movements
Abstract
:1. Introduction
2. The Rotation of the Human Forearm
3. The Design of a Twisting Soft Robot Arm
4. The Kinematics Models of the Twisting Soft Robot Arm
5. The Validation and the Experiment Results
6. Control the Twisting Angle
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ε | The contraction ratio |
L0 | The nominal length of the actuator [cm] |
L | The length of the actuator [cm] |
r1, r2 | Distance between the rotating centre and contraction PMA [cm] |
ΔZ, ΔY | The displacement in both Z and Y directions [cm] |
y | The output of the Plant system [Degree] |
u1 | The controller output for the NN controller |
kp | The proportional constant |
λ1 | The resultant side distances [cm] |
γ | The deviation angle of the left contraction PMA [Degree] |
β | The twisting angle [Degree] |
φ | The bending angle of the robot arm [Degree] |
ϕ | The angle between the second PMA and the vertical layout [Degree] |
u* | The duty cycle of the controlled signal |
u2 | The controller output for the P controller |
References
- Ranjan, R.; Upadhyay, P.K.; Kumar, A.; Dhyani, P. Theoretical and Experimental Modeling of Air Muscle. J. Emerg. Technol. Adv. Eng. 2012, 2, 112–119. [Google Scholar]
- Wickramatunge, K.C.; Leephakpreeda, T. Study on mechanical behaviors of pneumatic artificial muscle. Int. J. Eng. Sci. 2010, 48, 188–198. [Google Scholar] [CrossRef]
- Leephakpreeda, T. Fuzzy logic based PWM control and neural controlled-variable estimation of pneumatic artificial muscle actuators. Expert Syst. Appl. 2011, 38, 7837–7850. [Google Scholar] [CrossRef]
- Jamwal, P.K.; Xie, S.Q. Artificial Neural Network based dynamic modelling of indigenous pneumatic muscle actuators. In Proceedings of the 2012 IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Suzhou, China, 8–10 July 2012; pp. 190–195. [Google Scholar]
- Kang, B.-S.; Kothera, C.S.; Woods, B.K.S.; Wereley, N.M. Dynamic modeling of Mckibben pneumatic artificial muscles for antagonistic actuation. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 182–187. [Google Scholar]
- Trivedi, D.; Rahn, C.D.; Kier, W.M.; Walker, I.D. Soft robotics: Biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 2008, 5, 99–117. [Google Scholar] [CrossRef]
- Godage, I.S.; Walker, I.D. Dual Quaternion based modal kinematics for multisection continuum arms. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1416–1422. [Google Scholar]
- Zheng, T.; Branson, D.T.; Kang, R.; Cianchetti, M.; Guglielmino, E.; Follador, M.; Medrano-Cerda, G.A.; Godage, I.S.; Caldwell, D.G. Dynamic continuum arm model for use with underwater robotic manipulators inspired by octopus vulgaris. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 5289–5294. [Google Scholar]
- Anh, H.P.H. Online tuning gain scheduling MIMO neural PID control of the 2-axes pneumatic artificial muscle (PAM) robot arm. Expert Syst. Appl. 2010, 37, 6547–6560. [Google Scholar] [CrossRef]
- Thanh, T.D.C.; Ahn, K.K. Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network. Mechatronics 2006, 16, 577–587. [Google Scholar] [CrossRef]
- Szepe, T. Accurate force function approximation for pneumatic artificial muscles. In Proceedings of the LINDI 2011—3rd IEEE International Symposium on Logistics and Industrial Informatics, Budapest, Hungary, 25–27 August 2011. [Google Scholar]
- More, M.; Liska, O. Comparison of different methods for pneumatic artificial muscle control. In Proceedings of the 2013 IEEE 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any, Slovakia, 31 January–2 February 2013; pp. 117–120. [Google Scholar]
- Andrikopoulos, G.; Nikolakopoulos, G.; Manesis, S. Advanced nonlinear PID-based antagonistic control for pneumatic muscle actuators. IEEE Trans. Ind. Electron. 2014, 61, 6926–6937. [Google Scholar] [CrossRef]
- McMahan, W.; Chitrakaran, V.; Csencsits, M.; Dawson, D.; Walker, I.D.; Jones, B.A.; Pritts, M.; Dienno, D.; Grissom, M.; Rahn, C.D. Field trials and testing of the OctArm continuum manipulator. In Proceedings of the Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, Orlando, FL, USA, 15–19 May 2006; pp. 2336–2341. [Google Scholar]
- McMahan, W.; Jones, B.A.; Walker, I.D. Design and implementation of a multi-section continuum robot: Air-Octor. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 2578–2585. [Google Scholar]
- Trivedi, D.; Rahn, C.D. Model-Based Shape Estimation for Soft Robotic Manipulators: The Planar Case. J. Mech. Robot. 2014, 6, 021005. [Google Scholar] [CrossRef]
- Neppalli, S.; Jones, B.A. Design, construction, and analysis of a continuum robot. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 1503–1507. [Google Scholar]
- Giannaccini, M.E.; Xiang, C.; Atyabi, A.; Theodoridis, T.; Nefti-Meziani, S.; Davis, S. Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning. Soft Robot. 2018, 5, 54–70. [Google Scholar] [CrossRef]
- Al-Ibadi, A.; Nefti-Meziani, S.; Davis, S. Novel models for the extension pneumatic muscle actuator performances. In Proceedings of the 2017 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; pp. 1–6. [Google Scholar]
- Al-Ibadi, A.; Nefti-Meziani, S.; Davis, S. The Design, Kinematics and Torque Analysis of the Self-Bending Soft Contraction Actuator. Actuators 2020, 9, 33. [Google Scholar] [CrossRef]
- Sun, J.; Tighe, B.; Liu, Y.; Zhao, J. Twisted-and-Coiled Actuators with Free Strokes Enable Soft Robots with Programmable Motions. Soft Robot. 2020, 8, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Song, M.G.; Jung, H.; Park, J.; Moon, H.; Koo, J.C.; Nam, J.-D.; Choi, H.R. A robotic finger driven by twisted and coiled polymer actuator. In Proceedings of the Electroactive Polymer Actuators and Devices (EAPAD) 2016, Las Vegas, NV, USA, 20–24 March 2016. [Google Scholar]
- Liu, T.; Wang, Y.; Lee, K. Three-Dimensional Printable Origami Twisted Tower: Design, Fabrication, and Robot Embodiment. IEEE Robot. Autom. Lett. 2018, 3, 116–123. [Google Scholar] [CrossRef]
- Helps, T.; Taghavi, M.; Wang, S.; Rossiter, J. Twisted Rubber Variable-Stiffness Artificial Muscles. Soft Robot. 2020, 7, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft Robotic Grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrow, N.; Correll, N. A soft pneumatic actuator that can sense grasp and touch. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015. [Google Scholar]
- Yap, H.K.; Ng, H.Y.; Yeow, C.H. High-Force Soft Printable Pneumatics for Soft Robotic Applications. Soft Robot. 2016, 3, 144–158. [Google Scholar] [CrossRef]
- Jackson, N.; Chastain, P.; Crowther, M.; Shin, M. Development of Fast Prototyping Pneumatic Actuated Grippers. Int. J. Precis. Eng. Manuf. 2019, 20, 2183–2192. [Google Scholar] [CrossRef]
- Schmitt, F.; Piccin, O.; Barbé, L.; Bayle, B. Soft Robots Manufacturing: A Review. Front. Robot. AI 2018, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Robinson, G.; Davies, J.B.C. Continuum robots—A state of the art. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 4, pp. 2849–2854. [Google Scholar]
- Gong, Z.; Chen, B.; Liu, J.; Fang, X.; Liu, Z.; Wang, T.; Wen, L. An Opposite-Bending-and-Extension Soft Robotic Manipulator for Delicate Grasping in Shallow Water. Front. Robot. AI 2019, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Shih, B.; Christianson, C.; Gillespie, K.; Lee, S.; Mayeda, J.; Huo, Z.; Tolley, M.T. Design considerations for 3D printed, soft, multimaterial resistive sensors for soft robotics. Front. Robot. AI 2019, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Cullinan, M.F.; Bourke, E.; Kelly, K.; McGinn, C. A McKibben Type Sleeve Pneumatic Muscle and Integrated Mechanism for Improved Stroke Length. J. Mech. Robot. 2017, 9, 011013. [Google Scholar] [CrossRef]
- Al-Ibadi, A.; Nefti-Meziani, S.; Davis, S. A circular pneumatic muscle actuator (CPMA) inspired by human skeletal muscles. In Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 24–28 April 2018; pp. 7–12. [Google Scholar]
- Satheeshbabu, S.; Krishnan, G. Modeling the Bending Behavior of Fiber-Reinforced Pneumatic Actuators Using a Pseudo-Rigid-Body Model. J. Mech. Robot. 2019, 11, 031011. [Google Scholar] [CrossRef]
- Haddadin, S.; Albu-Schaffer, A.; Hirzinger, G. Dummy Crashtests for Evaluation of Rigid Human-Robot Impacts. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.525.296&rep=rep1&type=pdf (accessed on 6 April 2022).
- Szalai, S.; Dogossy, G. Speckle pattern optimization for DIC technologies. Acta Tech. Jaurinensis 2021, 14, 228–243. [Google Scholar] [CrossRef]
- Dobra, P.; Jósvai, J. OEE measurement at the automotive semi-automatic assembly lines. Acta Tech. Jaurinensis 2021, 14, 24–35. [Google Scholar] [CrossRef]
- Kozakiewicz, B.; Warsaw, T.W. Spring Based on Flat Permanent Magnets: Design, Analysis and Use in Variable Stiffness Actuator. Available online: http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/view/6852 (accessed on 6 April 2022).
- Vanderborght, B.; Albu-Schaeffer, A.; Bicchi, A.; Burdet, E.; Caldwell, D.G.; Carloni, R.; Catalano, M.; Eiberger, O.; Friedl, W.; Ganesh, G.; et al. Variable impedance actuators: A review. Rob. Auton. Syst. 2013, 61, 1601–1614. [Google Scholar] [CrossRef] [Green Version]
- Fryman, J.; Matthias, B. Safety of industrial robots: From conventional to collaborative applications. In Proceedings of the 7th German Conference on Robotics, Munich, Germany, 21–22 May 2012; pp. 51–55. [Google Scholar]
- Youm, Y.; Dryer, R.F.; Thambyrajah, K.; Flatt, A.E.; Sprague, B.L. Biomechanical analyses of forearm pronation-supination and elbow flexion-extension. J. Biomech. 1979, 12, 245–255. [Google Scholar] [CrossRef]
- James, B. Pianism: Performance communication and the playing technique. Front. Psychol. 2018, 2018, 2125. [Google Scholar] [CrossRef]
- Hamill, J.; Knutzen, K.M.; Derrick, T.R. Biomechanical Basis of Human Movement, 4th ed.; Wolters Kluwer Health Adis (ESP): London, UK, 2014; ISBN 9781469891828. [Google Scholar]
- Mukhopadhyay, P.; O’Sullivan, L.; Gallwey, T.J. Estimating upper limb discomfort level due to intermittent isometric pronation torque with various combinations of elbow angles, forearm rotation angles, force and frequency with upper arm at 90° abduction. Int. J. Ind. Ergon. 2007, 37, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Al-Ibadi, A.; Nefti-Meziani, S.; Davis, S. Valuable experimental model of contraction pneumatic muscle actuator. In Proceedings of the 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 29 August–1 September 2016; pp. 744–749. [Google Scholar]
- Al-Ibadi, A.; Nefti-Meziani, S.; Davis, S. Controlling of Pneumatic Muscle Actuator Systems by Parallel Structure of Neural Network and Proportional Controllers (PNNP). Front. Robot. AI 2020, 7, 115. [Google Scholar] [CrossRef]
Pressure (kPa) | β (Degree) |
---|---|
0 | 0 |
50 | 24 |
100 | 37 |
150 | 49 |
200 | 59 |
250 | 64 |
300 | 69 |
350 | 74 |
400 | 78 |
Pressure (kPa) | L1 (cm) | L2 (cm) |
---|---|---|
0 | 37 | 37.05 |
50 | 35.3 | 35.35 |
100 | 33 | 33.05 |
150 | 31.5 | 31.52 |
200 | 30.6 | 30.65 |
250 | 30.1 | 30.15 |
300 | 29.7 | 29.71 |
350 | 29.5 | 29.54 |
400 | 29.2 | 29.21 |
450 | 29.1 | 29.1 |
500 | 29.1 | 29.1 |
Figure 9a–d | Figure 10a–d | |
---|---|---|
R2(γ/β = 20/) | 0.99 | - |
R2(γ/β = 40/) | 0.979 | - |
R2(γ/β = 60/) | 0.996 | - |
R2(φ/β = 20/) | 0.999 | - |
R2(φ/β = 40/) | 0.997 | - |
R2(φ/β = 60/) | 0.999 | - |
R2(ΔY/β = 20/) | 0.981 | - |
R2(ΔY/β = 40/) | 0.989 | - |
R2(ΔY/β = 60/) | 0.995 | - |
R2(ΔZ/β = 20/) | 0.996 | - |
R2(ΔZ/β = 40/) | 0.996 | - |
R2(ΔZ/β = 60/) | 0.996 | - |
R2(ϕ/β = 20/) | - | 0.942 |
R2(ϕ/β = 40/) | - | 0.994 |
R2(ϕ/β = 60/) | - | 0.972 |
R2(φ/β = 20/) | - | 0.997 |
R2(φ/β = 40/) | - | 0.997 |
R2(φ/β = 60/) | - | 0.996 |
R2(ΔY/β = 20/) | - | 0.964 |
R2(ΔY/β = 40/) | - | 0.984 |
R2(ΔY/β = 60/) | - | 0.994 |
R2(ΔZ/β = 20/) | - | 0.995 |
R2(ΔZ/β = 40/) | - | 0.997 |
R2(ΔZ/β = 60/) | - | 0.988 |
Load (kg) | Length of the Contraction Actuators (cm) | Twisting Angle (Degree) |
---|---|---|
0 | 26 | 91 |
0.5 | 26.3 | 91 |
1 | 26.6 | 91 |
1.5 | 26.75 | 91 |
2 | 26.85 | 90.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ibadi, A.; Abbas, K.A.; Al-Atwani, M.; Al-Fahaam, H. Design, Implementation, and Kinematics of a Twisting Robot Continuum Arm Inspired by Human Forearm Movements. Robotics 2022, 11, 55. https://doi.org/10.3390/robotics11030055
Al-Ibadi A, Abbas KA, Al-Atwani M, Al-Fahaam H. Design, Implementation, and Kinematics of a Twisting Robot Continuum Arm Inspired by Human Forearm Movements. Robotics. 2022; 11(3):55. https://doi.org/10.3390/robotics11030055
Chicago/Turabian StyleAl-Ibadi, Alaa, Khalid A. Abbas, Mohammed Al-Atwani, and Hassanin Al-Fahaam. 2022. "Design, Implementation, and Kinematics of a Twisting Robot Continuum Arm Inspired by Human Forearm Movements" Robotics 11, no. 3: 55. https://doi.org/10.3390/robotics11030055
APA StyleAl-Ibadi, A., Abbas, K. A., Al-Atwani, M., & Al-Fahaam, H. (2022). Design, Implementation, and Kinematics of a Twisting Robot Continuum Arm Inspired by Human Forearm Movements. Robotics, 11(3), 55. https://doi.org/10.3390/robotics11030055