Online Computation of Time-Optimization-Based, Smooth and Path-Consistent Stop Trajectories for Robots
Abstract
:1. Introduction
- With respect to [9,31,32,33,34,35] we present a simpler formulation that defines a two-parameter ad hoc set of smooth parametrizations. Such a set does not have a fixed end-point along the path as a constraint, allowing us to compute the required point of the curve where the motion stops. Moreover, our approach is compatible with off-the-shelf optimizers, avoiding the need to develop a custom optimizer to account for the special structure of these methods. In addition, we do not construct a piece-wise constant parametrization and provide an analysis of the construction of a fifth-order polynomial parametrization.
- With respect to control-based approaches [20,22,23,24], the proposed planning perspective ensures the smoothness of the motion and allows us to decouple the design of the controller from the planning of the stopping trajectory. This makes our approach compatible with any controller, which is responsible for tracking the desired stop trajectory and handling issues such as parametric uncertainties and unmodeled dynamics;
- With respect to [28,29], our methodology is computationally less expensive and does not formulate the optimal stopping problem as an Optimal Control Problem. On the contrary, we formulate an optimization problem on a custom set of parametrizations of the path. In doing so, we avoid the implementation of the differential and path consistency constraints, allowing a significant reduction in the size of the optimization problem.
2. Problem Formulation
- The norm of the jerk, relative to the nominal path
3. Smooth Stopping Parametrization
4. Numerical Implementation
- The norm of the jerk, relative to the nominal path
- The max norm of the acceleration, relative to the nominal path
5. Convergence and Complexity Analysis
- A random minimum jerk trajectory computed as described in [8].
- A random desired stopping time .
6. Experimental Comparison
7. Conclusions and Outlook
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyriakopoulos, K.J.; Saridis, G.N. Minimum jerk path generation. In Proceedings of the International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 24–29 April 1988; pp. 364–369. [Google Scholar]
- Flash, T.; Hogan, N. The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 1985, 5, 1688–1703. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.; Isik, C. A trigonometric trajectory generator for robotic arms. Int. J. Control 1993, 57, 505–517. [Google Scholar] [CrossRef]
- Piazzi, A.; Visioli, A. Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 2000, 47, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Gasparetto, A.; Zanotto, V. A new method for smooth trajectory planning of robot manipulators. Mech. Mach. Theory 2007, 42, 455–471. [Google Scholar] [CrossRef]
- Gasparetto, A.; Lanzutti, A.; Vidoni, R.; Zanotto, V. Validation of minimum time-jerk algorithms for trajectory planning of industrial robots. J. Mech. Robot. 2011, 3, 031003. [Google Scholar] [CrossRef]
- Boscariol, P.; Gasparetto, A.; Vidoni, R. Planning continuous-jerk trajectories for industrial manipulators. Eng. Syst. Des. Anal. Am. Soc. Mech. Eng. 2012, 3, 127–136. [Google Scholar]
- Rojas, R.A.; Garcia, M.A.R.; Wehrle, E.; Vidoni, R. A Variational Approach to Minimum-Jerk Trajectories for Psychological Safety in Collaborative Assembly Stations. IEEE Robot. Autom. Lett. 2019, 4, 823–829. [Google Scholar] [CrossRef]
- Rojas, R.A.; Vidoni, R. Designing Fast and Smooth Trajectories in Collaborative Workstations. IEEE Robot. Autom. Lett. 2021, 6, 1700–1706. [Google Scholar] [CrossRef]
- Meirovitch, Y.; Bennequin, D.; Flash, T. Geometrical invariance and smoothness maximization for task-space movement generation. IEEE Trans. Robot. 2016, 32, 837–853. [Google Scholar] [CrossRef]
- Oguz, O.S.; Zhou, Z.; Glasauer, S.; Wollherr, D. An Inverse Optimal Control Approach to Explain Human Arm Reaching Control Based on Multiple Internal Models. Sci. Rep. 2018, 8, 5583. [Google Scholar] [CrossRef]
- Kühnlenz, B.; Kühnlenz, K. Reduction of Heart Rate by Robot Trajectory Profiles in Cooperative HRI. In Proceedings of the ISR 2016: 47st International Symposium on Robotics, Munich, Germany, 21–22 June 2016; pp. 1–6. [Google Scholar]
- ISO. ISO/TC 299: ISO 10218-1: 2011; Robots and Robotic Devices—Safety Requirements for Industrial Robots—Part 1: Robots. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO/TC 299: ISO/TS 15066: 2016; Robots and Robotic Devices—Collaborative Robots. International Organization for Standardization: Geneva, Switzerland, 2016.
- Haddadin, S. Towards Safe Robots: Approaching Asimov’s 1st Law; Springer: Berlin/Heidelberg, Germany, 2013; Volume 90. [Google Scholar]
- Lacevic, B.; Rocco, P.; Zanchettin, A.M. Safety Assessment and Control of Robotic Manipulators Using Danger Field. IEEE Trans. Robot. 2013, 29, 1257–1270. [Google Scholar] [CrossRef]
- Zanchettin, A.M.; Ceriani, N.M.; Rocco, P.; Ding, H.; Matthias, B. Safety in human-robot collaborative manufacturing environments: Metrics and control. IEEE Trans. Autom. Sci. Eng. 2016, 13, 882–893. [Google Scholar] [CrossRef] [Green Version]
- Althoff, M.; Giusti, A.; Liu, S.B.; Pereira, A. Effortless creation of safe robots from modules through self-programming and self-verification. Sci. Robot. 2019, 4, eaaw1924. [Google Scholar] [CrossRef] [PubMed]
- Scalera, L.; Giusti, A.; Vidoni, R.; Di Cosmo, V.; Matt, D.; Riedl, M. Application of Dynamically Scaled Safety Zones Based on the ISO/TS 15066:2016 for Collaborative Robotics. Int. J. Mech. Control 2020, 21, 41–49. [Google Scholar]
- Safeea, M.; Neto, P.; Bearee, R. On-line collision avoidance for collaborative robot manipulators by adjusting off-line generated paths: An industrial use case. Robot. Auton. Syst. 2019, 119, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Pupa, A.; Arrfou, M.; Andreoni, G.; Secchi, C. A Safety-Aware Kinodynamic Architecture for Human-Robot Collaboration. IEEE Robot. Autom. Lett. 2021, 6, 4465–4471. [Google Scholar] [CrossRef]
- Zanchettin, A.M.; Rocco, P.; Chiappa, S.; Rossi, R. Towards an optimal avoidance strategy for collaborative robots. Robot. Comput.-Integr. Manuf. 2019, 59, 47–55. [Google Scholar] [CrossRef]
- Merckaert, K.; Convens, B.; Wu, C.J.; Roncone, A.; Nicotra, M.M.; Vanderborght, B. Real-time motion control of robotic manipulators for safe human–robot coexistence. Robot. Comput.-Integr. Manuf. 2022, 73, 102223. [Google Scholar] [CrossRef]
- Ferraguti, F.; Bertuletti, M.; Landi, C.T.; Bonfè, M.; Fantuzzi, C.; Secchi, C. A control barrier function approach for maximizing performance while fulfilling to iso/ts 15066 regulations. IEEE Robot. Autom. Lett. 2020, 5, 5921–5928. [Google Scholar] [CrossRef]
- Glogowski, P.; Lemmerz, K.; Hypki, A.; Kuhlenkötter, B. Extended Calculation of the Dynamic Separation Distance for Robot Speed Adaption in the Human-Robot Interaction. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil, 2–6 December 2019; pp. 205–212. [Google Scholar]
- Byner, C.; Matthias, B.; Ding, H. Dynamic speed and separation monitoring for collaborative robot applications–concepts and performance. Robot. Comput.-Integr. Manuf. 2019, 58, 239–252. [Google Scholar] [CrossRef]
- Beckert, D.; Pereira, A.; Althoff, M. Online verification of multiple safety criteria for a robot trajectory. In Proceedings of the 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, 12–15 December 2017; pp. 6454–6461. [Google Scholar]
- Wang, L.; Wu, Z.; Li, J.; Stiller, C. Real-Time Safe Stop Trajectory Planning via Multidimensional Hybrid A*-Algorithm. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–7. [Google Scholar]
- Svensson, L.; Masson, L.; Mohan, N.; Ward, E.; Brenden, A.P.; Feng, L.; Törngren, M. Safe stop trajectory planning for highly automated vehicles: An optimal control problem formulation. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 517–522. [Google Scholar]
- Chitta, S.; Marder-Eppstein, E.; Meeussen, W.; Pradeep, V.; Tsouroukdissian, A.R.; Bohren, J.; Coleman, D.; Magyar, B.; Raiola, G.; Lüdtke, M.; et al. ros_control: A generic and simple control framework for ROS. J. Open Source Softw. 2017, 2, 456. [Google Scholar] [CrossRef]
- Pham, Q.C. A general, fast, and robust implementation of the time-optimal path parameterization algorithm. IEEE Trans. Robot. 2014, 30, 1533–1540. [Google Scholar] [CrossRef] [Green Version]
- Shiller, Z.; Lu, H.H. Computation of path constrained time optimal motions with dynamic singularities. J. Dyn. Syst. Meas. Control 1992, 114, 34–40. [Google Scholar] [CrossRef]
- Pham, H.; Pham, Q.C. A new approach to time-optimal path parameterization based on reachability analysis. IEEE Trans. Robot. 2018, 34, 645–659. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.W.; Gao, S.; Yan, H.T.; Lv, Q.; Hu, G.Q. A new approach to time-optimal trajectory planning with torque and jerk limits for robot. Robot. Auton. Syst. 2021, 140, 103744. [Google Scholar] [CrossRef]
- Palleschi, A.; Hamad, M.; Abdolshah, S.; Garabini, M.; Haddadin, S.; Pallottino, L. Fast and Safe Trajectory Planning: Solving the Cobot Performance/Safety Trade-Off in Human-Robot Shared Environments. IEEE Robot. Autom. Lett. 2021, 6, 5445–5452. [Google Scholar] [CrossRef]
- Benson, D.A.; Huntington, G.T.; Thorvaldsen, T.P.; Rao, A.V. Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control Dyn. 2006, 29, 1435–1440. [Google Scholar] [CrossRef] [Green Version]
- Trefethen, L.N. Approximation Theory and Approximation Practice; SIAM: Philadelphia, PA, USA, 2013; Volume 128. [Google Scholar]
- Rojas, R.A. GSplines Source Code. 2022. Available online: https://github.com/rafaelrojasmiliani/gsplines (accessed on 20 June 2022).
- Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 2006, 106, 25–57. [Google Scholar] [CrossRef]
- Robots, U. Universal Robots: User Manual. Available online: https://www.universal-robots.com/download/manuals-cb-series/user/ur3/315/user-manual-ur3-cb-series-sw315-english-international-en/ (accessed on 22 May 2022).
- Emika, F. Panda’s Instruction Handbook. Available online: https://dentec.pl/pliki/Artykul/855_dentec-franka-instrukcja-uzytkownika.pdf (accessed on 1 June 2022).
- Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2. [Google Scholar]
- Rojas, R.A. Opstop Source Code. 2022. Available online: https://github.com/rafaelrojasmiliani/opstop_cpp (accessed on 20 June 2022).
linear_solver | ma27 |
fast_step_computation | yes |
jacobian_approximation | exact |
hessian_approximation | limited-memory |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, R.A.; Giusti, A.; Vidoni, R. Online Computation of Time-Optimization-Based, Smooth and Path-Consistent Stop Trajectories for Robots. Robotics 2022, 11, 70. https://doi.org/10.3390/robotics11040070
Rojas RA, Giusti A, Vidoni R. Online Computation of Time-Optimization-Based, Smooth and Path-Consistent Stop Trajectories for Robots. Robotics. 2022; 11(4):70. https://doi.org/10.3390/robotics11040070
Chicago/Turabian StyleRojas, Rafael A., Andrea Giusti, and Renato Vidoni. 2022. "Online Computation of Time-Optimization-Based, Smooth and Path-Consistent Stop Trajectories for Robots" Robotics 11, no. 4: 70. https://doi.org/10.3390/robotics11040070
APA StyleRojas, R. A., Giusti, A., & Vidoni, R. (2022). Online Computation of Time-Optimization-Based, Smooth and Path-Consistent Stop Trajectories for Robots. Robotics, 11(4), 70. https://doi.org/10.3390/robotics11040070