An Aircraft-Manipulator System for Virtual Flight Testing of Longitudinal Flight Dynamics
Abstract
:1. Introduction
2. Scaled Aircraft Flight Dynamics
2.1. Aerodynamics
2.2. Flight Dynamics
3. Aircraft-Manipulator System Dynamics
3.1. Kinematics
3.2. Dynamics
3.3. Joint Control
4. Simulation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMS | Aircraft-Manipulator System |
DOF | Degrees Of Freedom |
PID | Proportional Integral Derivative |
References
- Greenwell, D.I. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, RI, USA, 16–19 August 2004. Number AIAA 2004-5276. [Google Scholar] [CrossRef]
- Cook, M.V. On the use of small scale aircraft models for dynamic wind tunnel investigation of stability and control. Trans. Inst. Meas. Control 1987, 9, 190–197. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Z.W. Review of wind tunnel based virtual flight testing techniques for evaluation of flight control systems. Int. J. Aerosp. Eng. 2015, 2015, 15. [Google Scholar] [CrossRef]
- Malvestuto, F.S.; Gale, L.J.; Wood, J.H. Compilation of Test Data on 111 Free-Spinning Airplane Models Tested in the Langley 15-Foot and 20-Foot Free-Spinning Tunnels; NASA: Washington, DC, USA, 1947; Research Memorandum NACA-RM-L7E1: 20090025259, NACA. [Google Scholar]
- Golovkin, M.A.; Efremov, A.A.; Kritskii, B.S.; Pavlenko, O.V.; Tsipenko, V.G. To the estimation of force and pitching moment coefficients acting on the model, full-scale aircraft and their elements at supercritical angles of attack and in a spin. Russ. Aeronaut. 2020, 63, 643–651. [Google Scholar] [CrossRef]
- Manning, T.E.; Ratliff, C.L.; Marquart, E.J. Bridging the gap between ground and flight tests: Virtual flight testing (VFT). In Proceedings of the 1st AIAA Aircraft Engineering, Technology and Operations Congress, Los Angele, CA, USA, 19–21 September 1995. Number AIAA-95-3875. [Google Scholar] [CrossRef]
- Ignatyev, D.D.; Sidoryuk, M.E.; Kolinko, K.A.; Khrabrov, A.N. Dynamic rig for validation of control algorithms at high angles of attack. J. Aircr. 2017, 54, 1760–1771. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, M.; Nie, B.; Kong, P.; Zhong, C. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system. Chin. J. Aeronaut. 2017, 30, 602–610. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Z.W.; Guo, Z.Y.; Niu, Y.B. Design of the wind tunnel based virtual flight testing evaluation method for flight control systems. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2018, 232, 17–29. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Wang, Y. Research on similarity criteria of virtual flight test in low-speed wind tunnel. In Proceedings of the IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS 2021), Shenyang, China, 29–31 July 2021; pp. 121–126. [Google Scholar] [CrossRef]
- Tai, S.; Wang, L.; Yue, T.; Liu, H. Test Data Processing of Fly-by-Wire Civil Aircraft in Low-Speed Wind Tunnel Virtual Flight. In Proceedings of the 12th International Conference on Mechanical and Aerospace Engineering (ICMAE 2021), Athens, Greece, 16–19 July 2021; pp. 96–101. [Google Scholar] [CrossRef]
- Fu, J.; Shi, Z.; Gong, Z.; Lowenberg, M.H.; Wu, D.; Pan, L. Virtual flight test techniques to predict a blended-wing-body aircraft in-flight departure characteristics. Chin. J. Aeronaut. 2022, 35, 215–225. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Zhu, Z.; Gao, L.; Chen, F.; Wu, F.; He, M. Virtual flight test of pitch and roll attitude control based on circulation control of tailless flying wing aircraft without rudders. Chin. J. Aeronaut. 2023, 36, 52–62. [Google Scholar] [CrossRef]
- Tai, S.; Wang, L.; Wang, Y.; Bu, C.; Yue, T. Flight dynamics modeling and aerodynamic parameter identification of four-degree-of-freedom virtual flight test. AIAA J. 2023, 61, 2652–2665. [Google Scholar] [CrossRef]
- Hinds, H.A. The Application of a Modified Stepwise Regression (MSR) Method to the Estimation of Aircraft Stability and Control Derivatives. Ph.D. Thesis, Cranfield University, Bedford, UK, 1996. [Google Scholar]
- Carnduff, S.D.; Erbsloeh, S.D.; Cooke, A.K.; Cook, M.V. Characterizing stability and control of subscale aircraft from wind-tunnel dynamic motion. J. Aircr. 2009, 46, 137–147. [Google Scholar] [CrossRef]
- Pattinson, J.; Lowenberg, M.H.; Goman, M.G. Investigation of poststall pitch oscillations of an aircraft wind-tunnel model. J. Aircr. 2013, 50, 1843–1855. [Google Scholar] [CrossRef]
- Gong, Z.; Araujo-Estrada, S.; Lowenberg, M.H.; Neild, S.A.; Goman, M.G. Experimental investigation of aerodynamic hysteresis using a five-degree-of-freedom wind-tunnel maneuver rig. J. Aircr. 2019, 56, 1029–1039. [Google Scholar] [CrossRef]
- Pontillo, A.; Yusuf, S.; Lopez, G.; Rennie, D.; Lone, M. Investigating pitching moment stall through dynamic wind tunnel test. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2020, 232, 267–279. [Google Scholar] [CrossRef]
- Asai, K.; Konno, A.; Jiang, X.; Numata, D.; Abe, H.; Nakata, N.; Hara, T. Multi-degree-of-freedom dynamic wind-tunnel testing of a delta wing using a robotic manipulator. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences (ICAS 2012), Brisbane, Australia, 23–28 September 2012. Number ICAS2012-3.1ST2. [Google Scholar]
- Wei, R.; Che, B.H.; Sun, C.B.; Zhang, J.; Lu, Y.Q. A three degree of freedom manipulator used for store separation wind tunnel test. IOP Conf. Ser. Mater. Sci. Eng. 2018, 372, 012035. [Google Scholar] [CrossRef]
- Davison, P.M.; Lowenberg, M.H.; Bernardo, M. Experimental analysis and modeling of limit cycles in a dynamic wind-tunnel rig. J. Aircr. 2003, 40, 776–785. [Google Scholar] [CrossRef]
- Navaratna, P.D.B.; Lowenberg, M.H.; Neild, S.A. Minimally constrained flight simulation in wind tunnel. J. Aircr. 2019, 56, 1353–1366. [Google Scholar] [CrossRef]
- Pattinson, J.; Lowenberg, M.H.; Goman, M.G. Multi-degree-of-freedom wind-tunnel maneuver rig for dynamic simulation and aerodynamic model identification. J. Aircr. 2013, 50, 551–566. [Google Scholar] [CrossRef]
- Wang, X.; Peng, M.; Hu, Z.; Chen, Y.; Lin, Q. Feasibility investigation of large-scale model suspended by cable-driven parallel robot in hypersonic wind tunnel test. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2017, 231, 2375–2383. [Google Scholar] [CrossRef]
- Ji, Y.; Peng, M.; Lin, Q.; Yin, C. Wire-driven parallel robot suspension system for SDM in a low-speed wind tunnel. Adv. Mech. Eng. 2023, 15, 16878132231170262. [Google Scholar] [CrossRef]
- Ahmadi, M.; Guigue, A.; Gibeault, M.; Tang, F.C. Mechatronic design of redundant robotic systems for captive trajectory simulation applications. In Proceedings of the 10th IASTED International Conference on Control and Applications (CA 2008), Quebec City, QC, Canada, 26–28 May 2008; pp. 24–29. [Google Scholar]
- Cook, M. Flight Dynamics Principles—A Linear Systems Approach to Aircraft Stability and Control, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Sinha, N.K.; Ananthkrishnan, N. Elementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Stengel, R.F. Flight Dynamics; Princeton University Press: Princeton, NJ, USA, 2004. [Google Scholar]
- Whidborne, J.F.; Jarzȩbowska, E.; Agarwal, V.; Ishola, A.A. Manipulator-aircraft dynamical system dedicated for wind tunnel testing. In Proceedings of the 16th Conference on Dynamical Systems—Theory and Applications (DSTA 2021), Lódź, Poland, 6–9 December 2021; Awrejcewicz, J., Kaźmierczak, M., Mrozowski, M., Olejnik, P., Eds.; Lodz University of Technology Press: Lodz, Poland, 2021; pp. 115–116. [Google Scholar] [CrossRef]
- Ishola, A.A.; Whidborne, J.F.; Kasula, P. Control for novel 3-DOF flight testing in a wind tunnel. In Proceedings of the 14th UKACC International Conference on Control (CONTROL 2024), Winchester, UK, 10–12 April 2024; pp. 321–322. [Google Scholar] [CrossRef]
- Malik, I.A. The Design, Development and Evaluation of an Active Control Aircraft Model Wind Tunnel Facility. Ph.D. Thesis, Cranfield University, Bedford, UK, 1982. [Google Scholar]
- Stevens, B.L.; Lewis, F.L. Aircraft Control and Simulation, 2nd ed.; John Wiley: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- O’Gorman, D. Flight Dynamics Modelling of a 4 Degrees-of-Freedom Dynamic Test Rig. Master’s Thesis, Cranfield University, Bedford, UK, 2006. [Google Scholar]
- Yoshikawa, T. Foundations of Robotics—Analysis and Control; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar] [CrossRef]
- Žefran, M.; Bullo, F. Langrangian Dynamics. In Robotics and Automation Handbook, 1st ed.; Kurfess, T.R., Ed.; CRC Press: Boca Raton, FL, USA, 2005; Chapter 5. [Google Scholar] [CrossRef]
- Whidborne, J.; Tang, G.; Ishola, A. Code—Nonlinear Dynamics and Control of a Novel 3-DOF Aircraft-Manipulator for Dynamic Wind Tunnel Tests; Cranfield Online Research Data (CORD) Repository: Bedford, UK, 2024. [Google Scholar] [CrossRef]
- Liang, B.; Xu, Y.; Bergerman, M. Mapping a space manipulator to a dynamically equivalent manipulator. J. Dyn. Syst. Meas. Control 1998, 120, 1–7. [Google Scholar] [CrossRef]
- Jarzębowska, E.; Kłak, M. Quaternion-based spacecraft dynamic modeling and reorientation control using the dynamically equivalent manipulator approach. In Advances in Spacecraft Attitude Control; Sands, T., Ed.; IntechOpen: Rijeka, Croatia, 2020; Chapter 3. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | Units |
---|---|---|---|
Wing area | 0.115 | m2 | |
Mean aerodynamic chord | 0.161 | m | |
Air density | 1.2238 | kg m−3 | |
Tailplane area | 0.029 | m2 | |
Wing body lift curve slope | 3.72 | rad−1 | |
Lift coefficient at zero | 0.21 | - | |
Tailplane lift curve slope | 2.29 | rad−1 | |
Oswald efficiency factor | e | 0.70 | - |
Zero lift drag coefficient | 0.028 | - | |
Initial pitch moment coefficient | - | ||
Pitch damping derivative | rad−1 s | ||
Aerodynamic centre fraction | 0.113 | - | |
Centre of gravity fraction | - | ||
Tail moment arm | 0.3656 | m | |
Aircraft moment of inertia | 0.219 | kg m2 | |
Length of Link-1 | 0.32 | m | |
Length of Link-2 | 0.32 | m | |
Mass of Link-1 | 2.074 | kg | |
Mass of Link-2 | 2.074 | kg | |
Mass of aircraft | 2.250 | kg | |
Controller Gain P | 100 | N m rad−1 | |
Controller Gain I | 4 | N m rad−1 s−1 | |
Controller Gain D | 200 | N m rad−1 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishola, A.A.; Whidborne, J.F.; Tang, G. An Aircraft-Manipulator System for Virtual Flight Testing of Longitudinal Flight Dynamics. Robotics 2024, 13, 179. https://doi.org/10.3390/robotics13120179
Ishola AA, Whidborne JF, Tang G. An Aircraft-Manipulator System for Virtual Flight Testing of Longitudinal Flight Dynamics. Robotics. 2024; 13(12):179. https://doi.org/10.3390/robotics13120179
Chicago/Turabian StyleIshola, Ademayowa A., James F. Whidborne, and Gilbert Tang. 2024. "An Aircraft-Manipulator System for Virtual Flight Testing of Longitudinal Flight Dynamics" Robotics 13, no. 12: 179. https://doi.org/10.3390/robotics13120179
APA StyleIshola, A. A., Whidborne, J. F., & Tang, G. (2024). An Aircraft-Manipulator System for Virtual Flight Testing of Longitudinal Flight Dynamics. Robotics, 13(12), 179. https://doi.org/10.3390/robotics13120179