Research on Trajectory Tracking and Obstacle Avoidance of Nonholonomic Mobile Robots in a Dynamic Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Two-Wheeled Differential Drive Robot
2.2. Kinematics of Mobile Robots
3. Controller Design
3.1. Nonlinear Model Control Prediction
- x(0) = ,
- u(k) U,[0, N−1], and
- x(k) X,[0, N],
3.2. Obstacle Avoidance
3.3. Direct, Single-Shooting Method
- Set the time parameter t, the number of prediction steps N, the time interval T, and the weight matrices Q and R;
- Get the initial state ;
- Obtain the obstacle poses and ;
- Solve the optimization problem (11) and get the optimal input control vector and prediction state;
- Wait for the next time interval and set the next time parameter, then repeat from Step 2.
3.4. CasADi Toolkit
4. Results
4.1. Circular Trajectory
yr = −1 + 2 * cos(0.5 * t).
4.1.1. Static Obstacle Avoidance
4.1.2. Dynamic Obstacle Avoidance
4.1.3. Experimental Results
4.2. Figure-of-Eight Trajectories
yr = −1 + 2 * cos(0.15 * t)
4.2.1. Static Obstacle Avoidance
4.2.2. Dynamic Obstacle Avoidance
4.2.3. Experimental Results
4.3. Linear Trajectory
yr = 0.
4.3.1. Obstacle Avoidance
4.3.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ismail, A.L.T.; Alaa, S.; Mohammed, A.-W. A Mobile Robot Path Planning Using Genetic Algorithm in Static Environment. J. Comput. Sci. 2008, 4, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, C.; Han, C.; Xu, Y.; Yin, Y.; Zhang, W. Path planning based on fuzzy logic algorithm for mobile robots in static environment. In Proceedings of the 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 18 July 2013; pp. 2866–2871. [Google Scholar]
- Dao, T.; Pan, T.; Pan, J. A multi-objective optimal mobile robot path planning based on whale optimization algorithm. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016; pp. 337–342. [Google Scholar]
- Švestka, P.; Overmars, M.H. Motion Planning for Carlike Robots Using a Probabilistic Learning Approach. Int. J. Robot. Res. 1997, 16, 119–143. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Gao, M.; Lu, E. Dynamic Collision Avoidance Path Planning for Mobile Robot Based on Multi-sensor Data Fusion by Support Vector Machine. In Proceedings of the 2007 International Conference on Mechatronics and Automation, Harbin, China, 5–9 August 2007; pp. 2779–2783. [Google Scholar]
- Riid, A.; Pahhomov, D.; Rüstern, E. Car navigation and collision avoidance system with fuzzy logic. In Proceedings of the 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542), Budapest, Hungary, 25–29 July 2004; pp. 1443–1448. [Google Scholar]
- Sugeno, M. Fuzzy control: Principles, practice and perspectives. In Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego, CA, USA, 8–12 March 1992; p. 109. [Google Scholar]
- Tanaka, K. Model-based fuzzy control of a trailer type mobile robot. In Proceedings of the 1995 IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 20–24 March 1995; pp. 65–70. [Google Scholar]
- Song, K.-T.; Sheen, L.-H. Fuzzy-neuro control design for obstacle avoidance of a mobile robot. In Proceedings of the 1995 IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 20–24 March 1995; pp. 71–76. [Google Scholar]
- Tang, L.; Dian, S.; Gu, G.; Zhou, K.; Wang, S.; Feng, X. A novel potential field method for obstacle avoidance and path planning of mobile robot. In Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010; pp. 633–637. [Google Scholar]
- Zhang, N.; Zhang, Y.; Ma, C.; Wang, B. Path planning of six-DOF serial robots based on improved artificial potential field method. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017; pp. 617–621. [Google Scholar]
- Liu, Z.; Jiang, T. Route planning based on improved artificial potential field method. In Proceedings of the 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Wuhan, China, 16–19 June 2017; pp. 196–199. [Google Scholar]
- Azzabi, A.; Nouri, K. Path planning for autonomous mobile robot using the Potential Field method. In Proceedings of the 2017 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 14–17 January 2017; pp. 389–394. [Google Scholar]
- Utkin, V.I.; Drakunov, S.V.; Hashimoto, H.; Harashima, F. Robot path obstacle avoidance control via sliding mode approach. In Proceedings of the IROS ’91: IEEE/RSJ International Workshop on Intelligent Robots and Systems ’91, Osaka, Japan, 3–5 November 1991; pp. 1287–1290. [Google Scholar]
- PSen, P.T.H.; Minh, N.Q.; Anh, D.T.T.; Minh, P.X. A New Tracking Control Algorithm for a Wheeled Mobile Robot Based on Backstepping and Hierarchical Sliding Mode Techniques. In Proceedings of the 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 16–18 January 2019; pp. 25–28. [Google Scholar]
- Li, Y.-D.; Wang, Z.; Zhu, L. Adaptive neural network PID sliding mode dynamic control of nonholonomic mobile robot. In Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010; pp. 753–757. [Google Scholar]
- Boukadida, W.; Bkekri, R.; Benamor, A.; Messaoud, H. Trajectory tracking of robotic manipulators using optimal sliding mode control. In Proceedings of the 2017 International Conference on Control, Automation and Diagnosis (ICCAD), Hammamet, Tunisia, 19–21 January 2017; pp. 545–550. [Google Scholar]
- Ferreau, H.J.; Almér, S.; Peyrl, H.; Jerez, J.L.; Domahidi, A. Survey of industrial applications of embedded model predictive control. In Proceedings of the 2016 European Control Conference (ECC), Aalborg, Denmark, 29 June–1 July 2016; p. 601. [Google Scholar]
- Qin, S.J.; Badgwell, T.A. A survey of industrial model predictive control technology. Control. Eng. Pr. 2003, 11, 733–764. [Google Scholar] [CrossRef]
- Li, Z.; Yang, C.; Su, C.-Y.; Deng, J.; Zhang, W. Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot. IEEE Trans. Control Syst. Technol. 2016, 24, 553–564. [Google Scholar] [CrossRef]
- Van Essen, H.; Nijmeijer, H. Non-linear model predictive control for constrained mobile robots. In Proceedings of the 2001 European Control Conference (ECC), Porto, Portugal, 4–7 September 2001; pp. 1157–1162. [Google Scholar]
- Falcone, P.; Tufo, M.; Borrelli, F.; Asgari, J.; Tseng, H.E. A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems. In Proceedings of the 2007 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007; pp. 2980–2985. [Google Scholar]
- Klančar, G.; Škrjanc, I. Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 2007, 55, 460–469. [Google Scholar] [CrossRef]
- Gu, D.; Hu, H. Receding horizon tracking control of wheeled mobile robots. IEEE Trans. Control Syst. Technol. 2006, 14, 743–749. [Google Scholar]
- Ostafew, C.J.; Schoellig, A.P.; Barfoot, T.D. Learning-based nonlinear model predictive control to improve vision-based mobile robot path-tracking in challenging outdoor environments. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 4029–4036. [Google Scholar]
- Mehrez, M.W.; Mann, G.K.I.; Gosine, R.G. Stabilizing NMPC of wheeled mobile robots using open-source real-time software. In Proceedings of the 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 November 2013; pp. 1–6. [Google Scholar]
- Lim, H.; Kang, Y.; Kim, C.; Kim, J.; You, B.-J. Nonlinear Model Predictive Controller Design with Obstacle Avoidance for a Mobile Robot. In Proceedings of the 2008 IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications, Beijing, China, 12–15 October 2008; pp. 494–499. [Google Scholar]
- Park, J.M.; Kim, D.-W.; Yoon, Y.; Kim, H.J.; Yi, K.-S. Obstacle avoidance of autonomous vehicles based on model predictive control. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2009, 223, 1499–1516. [Google Scholar] [CrossRef]
- Ji, J.; Khajepour, A.; Melek, W.W.; Huang, Y. Path Planning and Tracking for Vehicle Collision Avoidance Based on Model Predictive Control with Multiconstraints. IEEE Trans. Veh. Technol. 2017, 66, 952–964. [Google Scholar] [CrossRef]
- Kanayama, Y.; Kimura, Y.; Miyazaki, F.; Noguchi, T. A stable tracking control method for an autonomous mobile robot. In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990; pp. 384–389. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Gao, R.; Zhang, J. Research on Trajectory Tracking and Obstacle Avoidance of Nonholonomic Mobile Robots in a Dynamic Environment. Robotics 2020, 9, 74. https://doi.org/10.3390/robotics9030074
Zhang K, Gao R, Zhang J. Research on Trajectory Tracking and Obstacle Avoidance of Nonholonomic Mobile Robots in a Dynamic Environment. Robotics. 2020; 9(3):74. https://doi.org/10.3390/robotics9030074
Chicago/Turabian StyleZhang, Kai, Ruizhen Gao, and Jingjun Zhang. 2020. "Research on Trajectory Tracking and Obstacle Avoidance of Nonholonomic Mobile Robots in a Dynamic Environment" Robotics 9, no. 3: 74. https://doi.org/10.3390/robotics9030074
APA StyleZhang, K., Gao, R., & Zhang, J. (2020). Research on Trajectory Tracking and Obstacle Avoidance of Nonholonomic Mobile Robots in a Dynamic Environment. Robotics, 9(3), 74. https://doi.org/10.3390/robotics9030074