A Review of Human Mobility Research Based on Big Data and Its Implication for Smart City Development
Abstract
:1. Introduction
2. Materials and Methods
3. Big Data based Human Mobility Research
3.1. Discovering the Phenomenon
3.2. Identification of the Differences
3.3. Explanation of the Differences/Features
3.4. Prediction and Implication
3.4.1. Transportation System
3.4.2. Public Health
3.4.3. Urban Governance
3.4.4. Environmental Management and Policy
3.5. Summary of the Hierarchical Research
4. Hong Kong Smart City Policy
4.1. Views from Government
4.2. Issues and Barriers in Application
5. Discussion
5.1. Data, Method, and Theory
5.2. Continuous City Innovation
5.3. Limitation and Further Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spéc. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Raubal, M. Analyzing the distribution of human activity space from mobile phone usage: An individual and urban-oriented study. Int. J. Geogr. Inf. Sci. 2016, 30, 1594–1621. [Google Scholar] [CrossRef]
- Hilbert, M. Big Data for Development: A Review of Promises and Challenges. Dev. Policy Rev. 2016, 34, 135–174. [Google Scholar] [CrossRef] [Green Version]
- Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, J.; Li, W.; Liu, J. Rethinking big data: A review on the data quality and usage issues. ISPRS J. Photogramm. Remote. Sens. 2016, 115, 134–142. [Google Scholar] [CrossRef]
- Pan, G.; Qi, G.; Zhang, W.; Li, S.; Wu, Z.; Yang, L.T. Trace analysis and mining for smart cities: Issues, methods, and applications. IEEE Commun. Mag. 2013, 51, 120–126. [Google Scholar] [CrossRef]
- Yin, C.; Xiong, Z.; Chen, H.; Wang, J.; Cooper, D.; David, B. A literature survey on smart cities. Sci. China Inf. Sci. 2015, 58, 1–18. [Google Scholar] [CrossRef]
- Miller, H.J. Beyond sharing: Cultivating cooperative transportation systems through geographic information science. J. Transp. Geogr. 2013, 31, 296–308. [Google Scholar] [CrossRef]
- Lee, J.-G.; Kang, M. Geospatial Big Data: Challenges and Opportunities. Big Data Res. 2015, 2, 74–81. [Google Scholar] [CrossRef]
- Yao, H.; Xiong, M.; Zeng, D.; Gong, J. Mining multiple spatial–temporal paths from social media data. Futur. Gener. Comput. Syst. 2018, 87, 782–791. [Google Scholar] [CrossRef]
- Sagl, G.; Loidl, M.; Beinat, E. A Visual Analytics Approach for Extracting Spatio-Temporal Urban Mobility Information from Mobile Network Traffic. ISPRS Int. J. Geo-Inf. 2012, 1, 256–271. [Google Scholar] [CrossRef] [Green Version]
- Sainio, J.; Westerholm, J.; Oksanen, J. Generating Heat Maps of Popular Routes Online from Massive Mobile Sports Tracking Application Data in Milliseconds While Respecting Privacy. ISPRS Int. J. Geo-Inf. 2015, 4, 1813–1826. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zheng, C.; Tian, Y.; Liang, R.-H. Large-scale taxi O/D visual analytics for understanding metropolitan human movement patterns. J. Vis. 2015, 18, 185–200. [Google Scholar] [CrossRef]
- Fang, Z.; Yang, X.; Xu, Y.; Shaw, S.-L.; Yin, L. Spatiotemporal model for assessing the stability of urban human convergence and divergence patterns. Int. J. Geogr. Inf. Sci. 2017, 31, 2119–2141. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Z.; Yang, C.; Wu, C.; Zhang, H. Wireless big data in cellular networks: The cornerstone of smart cities. IET Commun. 2018, 12, 1517–1523. [Google Scholar] [CrossRef]
- Traunmueller, M.W.; Johnson, N.E.; Malik, A.; Kontokosta, C.E. Digital footprints: Using WiFi probe and locational data to analyze human mobility trajectories in cities. Comput. Environ. Urban Syst. 2018, 72, 4–12. [Google Scholar] [CrossRef]
- Hasan, S.; Schneider, C.M.; Ukkusuri, S.V.; Gonzalez, M.C. Spatiotemporal Patterns of Urban Human Mobility. J. Stat. Phys. 2013, 151, 304–318. [Google Scholar] [CrossRef] [Green Version]
- Ríos, S.A.; Munoz, R. Land Use detection with cell phone data using topic models: Case Santiago, Chile. Comput. Environ. Urban Syst. 2017, 61, 39–48. [Google Scholar] [CrossRef]
- Zhong, C.; Arisona, S.M.; Huang, X.; Batty, M.; Schmitt, G. Detecting the dynamics of urban structure through spatial network analysis. Int. J. Geogr. Inf. Sci. 2014, 28, 2178–2199. [Google Scholar] [CrossRef]
- Zhou, X.; Yeh, A.G.; Yue, Y. Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data. J. Transp. Geogr. 2018, 68, 102–108. [Google Scholar] [CrossRef]
- Song, Y.; Huang, B.; Cai, J.; Chen, B. Dynamic assessments of population exposure to urban greenspace using multi-source big data. Sci. Total. Environ. 2018, 634, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Paldino, S.; Bojic, I.; Sobolevsky, S.; Ratti, C.; González, M.C. Urban magnetism through the lens of geo-tagged photography. EPJ Data Sci. 2015, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Mizzi, C.; Fabbri, A.; Rambaldi, S.; Bertini, F.; Curti, N.; Sinigardi, S.; Luzi, R.; Venturi, G.; Davide, M.; Muratore, G.; et al. Unraveling pedestrian mobility on a road network using ICTs data during great tourist events. EPJ Data Sci. 2018, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Cao, G.; Mulligan, K.; Li, X. Explore spatiotemporal and demographic characteristics of human mobility via Twitter: A case study of Chicago. Appl. Geogr. 2016, 70, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, M.; Wanggen, W.; Cervantes, O.; Gwiazdzinski, L.; Wan, W. Using Location-Based Social Media Data to Observe Check-In Behavior and Gender Difference: Bringing Weibo Data into Play. ISPRS Int. J. Geo-Inf. 2018, 7, 196. [Google Scholar] [CrossRef] [Green Version]
- Semanjski, I.; Gautama, S.; Ahas, R.; Witlox, F. Spatial context mining approach for transport mode recognition from mobile sensed big data. Comput. Environ. Urban Syst. 2017, 66, 38–52. [Google Scholar] [CrossRef]
- Gong, L.; Liu, X.; Wu, L.; Liu, Y. Inferring trip purposes and uncovering travel patterns from taxi trajectory data. Cartogr. Geogr. Inf. Sci. 2016, 43, 103–114. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, L.; Guo, Z.; Yang, L.T.; Huang, B. Analysis of user behaviors by mining large network data sets. Futur. Gener. Comput. Syst. 2014, 37, 429–437. [Google Scholar] [CrossRef]
- Shen, J.; Cheng, T. A framework for identifying activity groups from individual space-time profiles. Int. J. Geogr. Inf. Sci. 2016, 30, 1785–1805. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Wang, D.; Wang, J. A Group Mining Method for Big Data on Distributed Vehicle Trajectories in WAN. Int. J. Distrib. Sens. Netw. 2015, 11, 756107. [Google Scholar] [CrossRef]
- Wijesinghe, W.O.K.I.S.; Kumarasinghe, C. Relationship Among the Diameter of the Area of Influence & Refill Usage of Sri Lanka Using Anonymized Call Detail Records. ICST Trans. Scalable Inf. Syst. 2017, 4, 152104. [Google Scholar] [CrossRef]
- Rodríguez-Echeverría, J.; Semanjski, I.; Gautama, S.; Van De Weghe, N.; Ochoa, D. Unsupervised Hierarchical Clustering Approach for Tourism Market Segmentation Based on Crowdsourced Mobile Phone Data. Sensors 2018, 18, 2972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toader, B.; Sprumont, F.; Faye, S.; Popescu, M.; Viti, F. Usage of Smartphone Data to Derive an Indicator for Collaborative Mobility between Individuals. ISPRS Int. J. Geo-Inf. 2017, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Chorley, M.J.; Whitaker, R.M.; Allen, S.M. Personality and location-based social networks. Comput. Hum. Behav. 2015, 46, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Alessandretti, L.; Lehmann, S.; Baronchelli, A. Understanding the interplay between social and spatial behaviour. EPJ Data Sci. 2018, 7, 36. [Google Scholar] [CrossRef]
- Zhao, Z.-D.; Yang, Z.; Zhang, Z.; Zhou, T.; Huang, Z.-G.; Lai, Y.-C. Emergence of scaling in human-interest dynamics. Sci. Rep. 2013, 3, 3472. [Google Scholar] [CrossRef]
- Hu, T.; Bigelow, E.; Luo, J.; Kautz, H. Tales of Two Cities: Using Social Media to Understand Idiosyncratic Lifestyles in Distinctive Metropolitan Areas. IEEE Trans. Big Data 2017, 3, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.-D.; Huang, Z.-G.; Huang, L.; Liu, H.; Lai, Y.-C. Scaling and correlation of human movements in cyberspace and physical space. Phys. Rev. E 2014, 90, 050802. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.-M.; Zeng, A.; Xiao-Yong, Y.; Wang, W.-X.; Lai, Y.-C. Unified underpinning of human mobility in the real world and cyberspace. New J. Phys. 2016, 18, 53025. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Kilmartin, L. Comparing Rural and Urban Social and Economic Behavior in Uganda: Insights from Mobile Voice Service Usage. J. Urban Technol. 2014, 21, 61–89. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Chen, M.; Chen, S. Mobile cellular big data: Linking cyberspace and the physical world with social ecology. IEEE Netw. 2016, 30, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wang, J.; Dai, T. The Geography of Cultural Ties and Human Mobility: Big Data in Urban Contexts. Ann. Am. Assoc. Geogr. 2016, 106, 612–630. [Google Scholar] [CrossRef]
- Wang, J.; Kong, X.; Rahim, A.; Xia, F.; Tolba, A.; Al-Makhadmeh, Z. IS2Fun: Identification of Subway Station Functions Using Massive Urban Data. IEEE Access 2017, 5, 27103–27113. [Google Scholar] [CrossRef]
- Niu, N.; Liu, X.; Jin, H.; Ye, X.; Liu, Y.; Li, X.; Chen, Y.; Li, S. Integrating multi-source big data to infer building functions. Int. J. Geogr. Inf. Sci. 2017, 31, 1–20. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Z. Inferring Passenger Denial Behavior of Taxi Drivers from Large-Scale Taxi Traces. PLoS ONE 2016, 11, e0165597. [Google Scholar] [CrossRef] [PubMed]
- Sobolevsky, S.; Sitko, I.; Combes, R.T.D.; Hawelka, B.; Arias, J.M.; Ratti, C. Cities through the Prism of People’s Spending Behavior. PLoS ONE 2016, 11, e0146291. [Google Scholar] [CrossRef]
- Dong, X.; Suhara, Y.; Bozkaya, B.; Singh, V.K.; Lepri, B.; Pentland, A. ‘Sandy’ Social Bridges in Urban Purchase Behavior. ACM Trans. Intell. Syst. Technol. 2018, 9, 1–29. [Google Scholar] [CrossRef]
- Lopez, C.; Leclercq, L.; Krishnakumari, P.; Chiabaut, N.; Van Lint, H. Revealing the day-to-day regularity of urban congestion patterns with 3D speed maps. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- De Domenico, M.; Lima, A.; González, M.C.; Arenas, A. Personalized routing for multitudes in smart cities. EPJ Data Sci. 2015, 4, 1. [Google Scholar] [CrossRef]
- Pappalardo, L.; Simini, F. Data-driven generation of spatio-temporal routines in human mobility. Data Min. Knowl. Discov. 2018, 32, 787–829. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Gonzalez, M.C. Collective benefits in traffic during mega events via the use of information technologies. J. R. Soc. Interface 2017, 14, 20161041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.Y.; Song, H.Y. Method of predicting human mobility patterns using deep learning. Neurocomputing 2018, 280, 56–64. [Google Scholar] [CrossRef]
- Bao, J.; Liu, P.; Yu, H.; Xu, C. Incorporating twitter-based human activity information in spatial analysis of crashes in urban areas. Accid. Anal. Prev. 2017, 106, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, D.; Li, N.; Zhou, Z.-H. B-Planner: Planning Bidirectional Night Bus Routes Using Large-Scale Taxi GPS Traces. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1451–1465. [Google Scholar] [CrossRef] [Green Version]
- Ranjit, S.; Witayangkurn, A.; Nagai, M.; Shibasaki, R. Agent-Based Modeling of Taxi Behavior Simulation with Probe Vehicle Data. ISPRS Int. J. Geo-Inf. 2018, 7, 177. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Song, Y.; Jiang, T.; Chen, Z.; Huang, B.; Xu, B. Real-Time Estimation of Population Exposure to PM2.5 Using Mobile- and Station-Based Big Data. Int. J. Environ. Res. Public Health 2018, 15, 573. [Google Scholar] [CrossRef] [Green Version]
- Gariazzo, C.; Pelliccioni, A.; Bolignano, A. A dynamic urban air pollution population exposure assessment study using model and population density data derived by mobile phone traffic. Atmos. Environ. 2016, 131, 289–300. [Google Scholar] [CrossRef]
- Mao, L.; Yin, L.; Song, X.; Mei, S. Mapping intra-urban transmission risk of dengue fever with big hourly cellphone data. Acta Trop. 2016, 162, 188–195. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Bisanzio, D.; Reiner, R.C.; Zakar, R.; Hawkins, J.B.; Freifeld, C.C.; Smith, D.L.; Hay, S.I.; Brownstein, J.S.; Perkins, T.A. Inferences about spatiotemporal variation in dengue virus transmission are sensitive to assumptions about human mobility: A case study using geolocated tweets from Lahore, Pakistan. EPJ Data Sci. 2018, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mari, L.; Gatto, M.; Ciddio, M.; Dia, E.D.; Sokolow, S.H.; De Leo, G.A.; Casagrandi, R. Big-data-driven modeling unveils country-wide drivers of endemic schistosomiasis. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wesolowski, A.; Buckee, C.O.; Engø-Monsen, K.; Metcalf, C.J.E. Connecting Mobility to Infectious Diseases: The Promise and Limits of Mobile Phone Data. J. Infect. Dis. 2016, 214, S414–S420. [Google Scholar] [CrossRef] [PubMed]
- Google. COVID-19 Community Mobility Reports. 2020. Available online: https://www.google.com/covid19/mobility/ (accessed on 7 December 2020).
- Baidu. Baidu Qianxi—Baidu Map Huiyan. 2020. Available online: https://qianxi.baidu.com/ (accessed on 7 December 2020).
- Badr, H.S.; Du, H.; Marshall, M.; Dong, E.; Squire, M.M.; Gardner, L. Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 1247–1254. [Google Scholar] [CrossRef]
- Iacus, S.M.; Santamaria, C.; Sermi, F.; Spyratos, S.; Tarchi, D.; Vespe, M. Human mobility and COVID-19 initial dynamics. Nonlinear Dyn. 2020, 101, 1901–1919. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Shiono, T.; Kusumoto, B.; Fujinuma, J. Multiple drivers of the COVID-19 spread: The roles of climate, international mobility, and region-specific conditions. PLoS ONE 2020, 15, e0239385. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, C.; Sermi, F.; Spyratos, S.; Iacus, S.M.; Annunziato, A.; Tarchi, D.; Vespe, M. Measuring the impact of COVID-19 confinement measures on human mobility using mobile positioning data. A European regional analysis. Saf. Sci. 2020, 132, 104925. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Barton, D.N.; Gundersen, V.; Figari, H.; Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020, 15, 104075. [Google Scholar] [CrossRef]
- Jia, J.S.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.; Christakis, N.A. Population flow drives spatio-temporal distribution of COVID-19 in China. Nat. Cell Biol. 2020, 582, 389–394. [Google Scholar] [CrossRef]
- Wang, H.Y.; Yamamoto, N. Using a partial differential equation with Google Mobility data to predict COVID-19 in Arizona. Math. Biosci. Eng. 2020, 17, 4891–4904. [Google Scholar] [CrossRef]
- Kraemer, M.; Yang, C.-H.; Gutiérrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; Du Plessis, L.; Faria, N.R.; Li, R.; Hanage, W.P.; et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 368, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Gatto, M.; Bertuzzo, E.; Mari, L.; Miccoli, S.; Carraro, L.; Casagrandi, R.; Rinaldo, A. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proc. Natl. Acad. Sci. USA 2020, 117, 10484–10491. [Google Scholar] [CrossRef] [Green Version]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total. Environ. 2020, 731, 139052. [Google Scholar] [CrossRef] [PubMed]
- Cheval, S.; Adamescu, C.M.; Georgiadis, T.; Herrnegger, M.; Piticar, A.; LeGates, D.R. Observed and Potential Impacts of the COVID-19 Pandemic on the Environment. Int. J. Environ. Res. Public Health 2020, 17, 4140. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorsi, G.; Pierri, F.; Cinelli, M.; Flori, A.; Galeazzi, A.; Porcelli, F.; Schmidt, A.L.; Valensise, C.M.; Scala, A.; Quattrociocchi, W.; et al. Economic and social consequences of human mobility restrictions under COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 15530–15535. [Google Scholar] [CrossRef] [PubMed]
- Boulos, M.N.K.; Geraghty, E.M. Geographical tracking and mapping of coronavirus disease COVID-19/severe acute res-piratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. Int. J. Health Geogr. 2020, 19, 8. [Google Scholar]
- Zhou, C.; Su, F.; Pei, T.; Zhang, A.; Du, Y.; Luo, B.; Cao, Z.; Wang, J.; Yuan, W.; Zhu, Y.; et al. COVID-19: Challenges to GIS with Big Data. Geogr. Sustain. 2020, 1, 77–87. [Google Scholar] [CrossRef]
- Mazimpaka, J.D.; Timpf, S. How They Move Reveals What Is Happening: Understanding the Dynamics of Big Events from Human Mobility Pattern. ISPRS Int. J. Geo-Inf. 2017, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Shibasaki, R.; Yuan, N.J.; Xie, X.; Li, T.; Adachi, R. DeepMob. ACM Trans. Inf. Syst. 2017, 35, 1–19. [Google Scholar] [CrossRef]
- Bogomolov, A.; Lepri, B.; Staiano, J.; Letouzé, E.; Oliver, N.; Pianesi, F.; Pentland, A. Moves on the Street: Classifying Crime Hotspots Using Aggregated Anonymized Data on People Dynamics. Big Data 2015, 3, 148–158. [Google Scholar] [CrossRef]
- Kadar, C.; Pletikosa, I. Mining large-scale human mobility data for long-term crime prediction. EPJ Data Sci. 2018, 7, 26. [Google Scholar] [CrossRef]
- Kong, X.; Liu, Y.; Wang, Y.; Tong, D.; Zhang, J. Investigating Public Facility Characteristics from a Spatial Interaction Perspective: A Case Study of Beijing Hospitals Using Taxi Data. ISPRS Int. J. Geo-Inf. 2017, 6, 38. [Google Scholar] [CrossRef]
- Giordani, I.; Archetti, F.; Candelieri, A. Data Science and Environmental Management in Smart Cities. Environ. Eng. Manag. J. 2015, 14, 2095–2102. [Google Scholar] [CrossRef]
- Ardanuy, J.F.; Castano-Solis, S.; Álvaro-Hermana, R.; Merino, J.; Castillo, Á. Using mobility information to perform a feasibility study and the evaluation of spatio-temporal energy demanded by an electric taxi fleet. Energy Convers. Manag. 2018, 157, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Karimi, H.A. A novel methodology for prediction of spatial-temporal activities using latent features. Comput. Environ. Urban Syst. 2017, 62, 74–85. [Google Scholar] [CrossRef]
- Lu, S.; Fang, Z.; Zhang, X.; Shaw, S.-L.; Yin, L.; Zhao, Z.; Yang, X. Understanding the Representativeness of Mobile Phone Location Data in Characterizing Human Mobility Indicators. ISPRS Int. J. Geo-Inf. 2017, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Arai, A.; Fan, Z.; Matekenya, D.; Shibasaki, R. Comparative Perspective of Human Behavior Patterns to Uncover Ownership Bias among Mobile Phone Users. ISPRS Int. J. Geo-Inf. 2016, 5, 85. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Chen, C. On data processing required to derive mobility patterns from passively-generated mobile phone data. Transp. Res. Part C: Emerg. Technol. 2018, 87, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Devkota, B.; Miyazaki, H.; Witayangkurn, A.; Kim, S.M. Using Volunteered Geographic Information and Nighttime Light Remote Sensing Data to Identify Tourism Areas of Interest. Sustainability 2019, 11, 4718. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Song, X.; Jiang, R.; Chen, Q.; Shibasaki, R. Decentralized Attention-based Personalized Human Mobility Prediction. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–26. [Google Scholar] [CrossRef]
- Cugurullo, F. Exposing smart cities and eco-cities: Frankenstein urbanism and the sustainability challenges of the experimental city. Environ. Plan. A: Econ. Space 2018, 50, 73–92. [Google Scholar] [CrossRef]
- Li, T.; Sun, D.; Jing, P.; Yang, K. Smart Card Data Mining of Public Transport Destination: A Literature Review. Information 2018, 9, 18. [Google Scholar] [CrossRef] [Green Version]
Data Source | Mobile Phone | Mass Media | Taxi and Car | Bank Card | Metro Card | Website | Multi- Source Data | |
---|---|---|---|---|---|---|---|---|
Research Objective | ||||||||
Discover the phenomenon | human mobility pattern | convergence and divergence pattern, accessibility | spatial-temporal path | mobility pattern, crashes | mobility patterns | travel pattern along railway | mobility pattern | |
space feature | activity pattern, land use pattern, street, green space usage, traffic condition | heat maps | congestion pattern | spatiotemporal structure, spatial pattern | ||||
Identify the differences | population clustering | central behaviour, collaborative behaviour, clustering by personality, distance, demographic feature, use feature, transport mode | micro-populations clustered by demographic feature or by personality | driver/passenger behaviour clustered by trip purpose or pattern | social bridge, human consumption pattern | rhythms of urban life | ||
space clarification | Job–housing balance, locational uncertainty | tourism market segmentation | interaction parcels | city ability | vibrant areas, station functions, urban form | the effectiveness of growth boundary | ||
Explain the differences | dynamics of human behaviour in space usage | social ecology, social and economic activity, human-interest, deep knowledge, cyberspace and physical space relation | cultural mechanism | migration effect | mobility features and app usage behaviour | |||
Imply to city management | for quality of life | health-disease, health-air quality, crime prediction | health-disease, crime prediction | public facility | activity pattern and prediction | collective travel time | ||
for resource use | infrastructure | touristic potential | bus route plan, electric cabs | environmental management, transport system | ||||
Count (excluding COVID-19 research) | 84 | 39 | 12 | 14 | 4 | 6 | 2 | 7 |
COVID-19 and human mobility | behavioural change, forecast of epidemic risk, impacts of mobility restriction | - | - | - | factors of pandemic transmission, forecast of epidemic risk, control measures, impacts of mobility restriction | |||
factors of pandemic transmission, control measures | post-pandemic economic recovery | |||||||
Count (COVID-19 research) | 40 | 20 | 4 | 0 | 0 | 0 | 11 | 5 |
Department | Question |
---|---|
Transport Department (TD) | 1. About Route Planning of Public Transport 2. About Big Event Transportation Management 3. About Taxi Dispatching 4. About Vehicle Crash Analysis |
Hong Kong Police Force (HKPF) | 5. About Crime Prediction |
Department of Health (HD) | 6. About Disease Control |
Environmental Protection Department (EPD) | 7. About Air Pollution Exposure 8. About Electric Vehicle Adoption |
Hong Kong Tourism Board (HKTB) | 9. About Tourism Behaviour 10. About Market Segmentation 11. About Old Town Heritage Tourism |
Planning Department (PD) | 12. About Land Use Function |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Zhang, A.; Chan, E.H.W.; Shi, W.; Zhou, X.; Liu, Z. A Review of Human Mobility Research Based on Big Data and Its Implication for Smart City Development. ISPRS Int. J. Geo-Inf. 2021, 10, 13. https://doi.org/10.3390/ijgi10010013
Wang A, Zhang A, Chan EHW, Shi W, Zhou X, Liu Z. A Review of Human Mobility Research Based on Big Data and Its Implication for Smart City Development. ISPRS International Journal of Geo-Information. 2021; 10(1):13. https://doi.org/10.3390/ijgi10010013
Chicago/Turabian StyleWang, Anqi, Anshu Zhang, Edwin H. W. Chan, Wenzhong Shi, Xiaolin Zhou, and Zhewei Liu. 2021. "A Review of Human Mobility Research Based on Big Data and Its Implication for Smart City Development" ISPRS International Journal of Geo-Information 10, no. 1: 13. https://doi.org/10.3390/ijgi10010013
APA StyleWang, A., Zhang, A., Chan, E. H. W., Shi, W., Zhou, X., & Liu, Z. (2021). A Review of Human Mobility Research Based on Big Data and Its Implication for Smart City Development. ISPRS International Journal of Geo-Information, 10(1), 13. https://doi.org/10.3390/ijgi10010013