The Dynamic Influence of High-Speed Rail on the Spatial Structure of Economic Networks and the Underlying Mechanisms in Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Description and Work Flow of the Study
2.3. Methodology
2.3.1. The Accessibility Index Considering Train Service Frequency
2.3.2. The Radiation Model to Assess Economic Linkages between Cities
2.3.3. Social Network Analysis to Characterize Spatial Structure of Economic Networks
- Network centrality. The degree centrality reflects the relative importance of the nodes’ role in network analysis. Degree centrality measures the number of nodes that are directly connected [39]. The economic linkage network as described in Section 2.3.2 is a directed network and there are two measures of degree, namely in-degree and out-degree. In-degree is the number of edges that point inward at a vertex while out-degree is the number of edges that point outward to other vertices.
- Network community detection. Modular structure means the existence of strongly connected groups of nodes with relatively weak connections between groups [40]. The capacity to detect the nodes in network datasets in groups or communities has important practical implications in the real world. This paper utilized modularity to find good divisions of networks and divide networks into an optimal quantity of communities, defined as ( is the number of edges between node and ; and are the degrees of node and ; m is the total number of edges in the network; is equal to 1 if node belongs to group 1 and if it belongs to group 2). The method of optimal modularity developed by Newman [40] was applied to detect the community structure in networks because this algorithm is fast and accurate.
2.3.4. Spatial Regression Models to Examine the Driving Factors of Nodal Centrality in Economic Networks
3. Results
3.1. The Spatial Pattern of Economic Networks before and after HSR
3.2. The Influence of HSR on the Out-Degree and In-Degree Centrality of Economic Networks
3.3. The Influence of HSR on the Community Structure of Economic Networks
3.4. The Driving Factors of Nodal Centrality in Economic Networks Using Spatial Regression Models
4. Discussion and Policy Implications
4.1. Discussion
4.2. Policy Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Givoni, M. Development and Impact of the Modern High-speed Train: A Review. Transp. Rev. 2006, 26, 593–611. [Google Scholar] [CrossRef]
- Wei, S.; Jiao, J.; Wang, L.; Xu, J. Evolving Characteristics of High-Speed Railway Network Structure in Yangtze River Delta, China: The Perspective of Passenger Flows. Appl. Spat. Anal. Policy 2020, 13, 925–943. [Google Scholar] [CrossRef]
- Wang, L.; Xuejun, D. High-speed rail network development and winner and loser cities in megaregions: The case study of Yangtze River Delta, China. Cities 2018, 83, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J. Location, economic potential and daily accessibility: An analysis of the accessibility impact of the high-speed line Madrid–Barcelona–French border. J. Transp. Geogr. 2001, 9, 229–242. [Google Scholar] [CrossRef]
- Spiekermann, K.; Wegener, M. The shrinking continent: New time-space maps of Europe. Environ. Plan. B Plan. Des. 1994, 21, 653–673. [Google Scholar] [CrossRef]
- Weng, J.; Zhu, X.; Li, X. Impact of High-speed Rail on Destination Accessibility: A Case Study of China. J. China Tour. Res. 2020, 16, 494–509. [Google Scholar] [CrossRef]
- Jin, F.; Jiao, J.; Qi, Y.; Yang, Y. Evolution and geographic effects of high-speed rail in East Asia: An accessibility approach. J. Geogr. Sci. 2017, 27, 515–532. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Vadali, S. Evaluating accessibility impacts of the proposed America 2050 high-speed rail corridor for the Appalachian Region. J. Transp. Geogr. 2014, 37, 28–46. [Google Scholar] [CrossRef]
- Li, X.; Huang, B.; Li, R.; Zhang, Y. Exploring the impact of high speed railways on the spatial redistribution of economic activities-Yangtze River Delta urban agglomeration as a case study. J. Transp. Geogr. 2016, 57, 194–206. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, M. High-speed rail impacts on travel times, accessibility, and economic productivity: A benchmarking analysis in city-cluster regions of China. J. Transp. Geogr. 2018, 73, 25–40. [Google Scholar] [CrossRef]
- Liu, S.; Wan, Y.; Zhang, A. Does China’s high-speed rail development lead to regional disparities? A network perspective. Transp. Res. Part A Policy Pract. 2020, 138, 299–321. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Wang, J.; Jin, F.; Dunford, M. Impacts on accessibility of China’s present and future HSR network. J. Transp. Geogr. 2014, 40, 123–132. [Google Scholar] [CrossRef]
- Wetwitoo, J.; Kato, H. High-speed rail and regional economic productivity through agglomeration and network externality: A case study of inter-regional transportation in Japan. Case Stud. Transp. Policy 2017, 5, 549–559. [Google Scholar] [CrossRef]
- Wang, J.J.; Xu, J.; He, J. Spatial Impacts of High-Speed Railways in China: A Total-Travel-Time Approach. Environ. Plan. A Econ. Space 2013, 45, 2261–2280. [Google Scholar] [CrossRef]
- Geurs, K.T.; van Wee, B. Accessibility evaluation of land-use and transport strategies: Review and research directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- Wang, L. High-speed rail services development and regional accessibility restructuring in megaregions: A case of the Yangtze River Delta, China. Transp. Policy 2018, 72, 34–44. [Google Scholar] [CrossRef]
- Malavenda, G.A.; Musolino, G.; Rindone, C.; Vitetta, A. Residential Location, Mobility, and Travel Time: A Pilot Study in a Small-Size Italian Metropolitan Area. J. Adv. Transp. 2020, 31, 1–11. [Google Scholar] [CrossRef]
- Zheng, S.; Kahn, M.E. China’s bullet trains facilitate market integration and mitigate the cost of megacity growth. Proc. Natl. Acad. Sci. USA 2013, 110, E1248–E1253. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhao, Y.; Zhu, X.; Cai, Z.; Xu, J.; Shi, S. Spatial structure of urban agglomeration under the impact of high-speed railway construction: Based on the social network analysis. Sustain. Cities Soc. 2020, 62, 102404. [Google Scholar] [CrossRef]
- Shaw, S.-L.; Fang, Z.; Lu, S.; Tao, R. Impacts of high speed rail on railroad network accessibility in China. J. Transp. Geogr. 2014, 40, 112–122. [Google Scholar] [CrossRef]
- Monzón, A.; Ortega, E.; Lopez, E. Efficiency and spatial equity impacts of high-speed rail extensions in urban areas. Cities 2013, 30, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Ureña, J.M.; Menerault, P.; Garmendia, M. The high-speed rail challenge for big intermediate cities: A national, regional and local perspective. Cities 2009, 26, 266–279. [Google Scholar] [CrossRef]
- Derudder, B.; Taylor, P. Change in the World City Network, 2000–2012. Prof. Geogr. 2016, 68, 624–637. [Google Scholar] [CrossRef]
- Vickerman, R. Can high-speed rail have a transformative effect on the economy? Transp. Policy 2018, 62, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cai, X. Empirical analysis of a scale-free railway network in China. Phys. A Stat. Mech. Appl. 2007, 382, 693–703. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, J.; Jin, F. Impacts of high-speed rail lines on the city network in China. J. Transp. Geogr. 2017, 60, 257–266. [Google Scholar] [CrossRef]
- Simini, F.; González MCMaritan, A.; Barabási, A. A universal model for mobility and migration patterns. Nature 2012, 484, 96–100. [Google Scholar] [CrossRef]
- Camacho, D.; Panizo-Lledot, Á.; Bello-Orgaz, G.; Gonzalez-Pardo, A.; Cambria, E. The four dimensions of social network analysis: An overview of research methods, applications, and software tools. Inf. Fusion 2020, 63, 88–120. [Google Scholar] [CrossRef]
- Scott, J.; Carrington, P.J. The SAGE Handbook of Social Network Analysis; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Leung, X.; Yu, W.; Fang, W.; Bihu, B.; Billy, S.; Kurt, A.; Xie, Z.J. A social network analysis of overseas tourist movement patterns in Beijing: The impact of the Olympic Games. Int. J. Tour. Res. 2012, 14, 469–484. [Google Scholar] [CrossRef]
- Tahmasebi, A.; Askaribezayeh, F. Microfinance and social capital formation- a social network analysis approach. Socio-Econ. Plan. Sci. 2021, 76, 100978. [Google Scholar] [CrossRef]
- Dupuy, G.; Stransky, V. Cities and highway networks in Europe. J. Transp. Geogr. 1996, 4, 107–121. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, J.; Qiu, G. China’s high-speed rail network construction and planning over time: A network analysis. J. Transp. Geogr. 2018, 70, 40–54. [Google Scholar] [CrossRef]
- Chen, C.-L.; Vickerman, R.W. Can transport infrastructure change regions’ economic fortunes? Some evidence from Europe and China. Reg. Stud. 2017, 51, 144–160. [Google Scholar] [CrossRef]
- Castells, M. Grassrooting the space of flows. Urban Geogr. 1999, 20, 294–302. [Google Scholar] [CrossRef]
- Shao, S.; Tian, Z.; Yang, L. High speed rail and urban service industry agglomeration: Evidence from China’s Yangtze River Delta region. J. Transp. Geogr. 2017, 64, 174–183. [Google Scholar] [CrossRef]
- Russo, F. Which High-Speed Rail? LARG Approach between Plan and Design. Futur. Transp. 2021, 1, 202–226. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Duan, X. Understanding Accessibility Changes from the Development of a High-Speed Rail Network in the Yangtze River Delta, China: Speed Increases and Distance Deductions. Appl. Spat. Anal. Policy 2019, 12, 1011–1029. [Google Scholar] [CrossRef]
- Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 101, 3747–3752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [Green Version]
- Garmendia, M.; de Ureña, J.M.; Ribalaygua, C.; Leal, J.; Coronado, J.M. Urban Residential Development in Isolated Small Cities That Are Partially Integrated in Metropolitan Areas By High Speed Train. Eur. Urban Reg. Stud. 2008, 15, 249–264. [Google Scholar] [CrossRef]
- Wetwitoo, J.; Kato, H. Inter-regional transportation and economic productivity: A case study of regional agglomeration economies in Japan. Ann. Reg. Sci. 2017, 59, 321–344. [Google Scholar] [CrossRef]
- Fang, C.; Pang, B.; Liu, H. Global city size hierarchy: Spatial patterns, regional features, and implications for China. Habitat Int. 2017, 66, 149–162. [Google Scholar] [CrossRef]
Variables | Description | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
In-degree(2007) | The in-degree value of each node in 2007 | 0.09 | 0.16 | 0.01 | 1.28 |
Out-degree(2007) | The out-degree value of each node in 2007 | 0.09 | 0.27 | 0 | 2.73 |
hsrcity | If the city has a HSR station, then the value is 1, otherwise 0. | 0.27 | 0.45 | 0 | 1 |
lngdp | The natural logarithm of GDP | 5.26 | 1.17 | 2.43 | 8.94 |
lnpop | The natural logarithm of population | 3.78 | 0.72 | 1.95 | 6.31 |
expend | The ratio of public fiscal expenditure to GDP | 0.22 | 0.13 | 0.05 | 1.17 |
lnfixed | The natural logarithm of fixed asset investment | 13.79 | 1.14 | 10.94 | 17.56 |
indu | The ratio of industrial output to GDP | 0.35 | 0.15 | 0.03 | 0.71 |
edu | The ratio of secondary students to the total population at year end | 2.05 | 2.87 | 0.13 | 24 |
2007 | 2016 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rank | city | value | rank | origin | destination | value | OD distance | rank | city | value | rank | origin | destination | value | OD distance |
1 | Daqing 2 | 31.25 | 1 | Harbin 1 | Acheng 3 | 1132.6 | 49.0 | 1 | Chaoyang 2 | 103.0 | 1 | Harbin 1 | Shuangcheng 3 | 689.3 | 73.8 |
2 | Harbin 1 | 17.08 | 2 | Dashiqiao 3 | Haicheng 3 | 957.1 | 36.9 | 2 | Jiutai 3 | 85.8 | 2 | Daqing 2 | Shuangcheng 3 | 683.9 | 212.7 |
3 | Dalian 2 | 14.66 | 3 | Siping 2 | Changchun 1 | 884.6 | 119.0 | 3 | Donggang 3 | 68.2 | 3 | Shenyang 1 | Benxi 3 | 627.4 | 32.6 |
4 | Dashiqiao 3 | 11.44 | 4 | Dalian 2 | Wafangdian 3 | 854.4 | 99.9 | 4 | Wuchang 3 | 50.0 | 4 | Dalian 2 | Donggang 3 | 492.2 | 284.7 |
5 | Siping 2 | 6.77 | 5 | Daqing 2 | Anda 3 | 616.2 | 28.7 | 5 | Wudalianchi 3 | 49.7 | 5 | Anda 3 | Daqing 2 | 460.5 | 28.8 |
6 | Anshan 2 | 5.61 | 6 | Dashiqiao 3 | Anshan 2 | 566.1 | 81.4 | 6 | Daqing 2 | 43.6 | 6 | Daqing 2 | Harbin 1 | 449.3 | 153.8 |
7 | Shenyang 1 | 4.87 | 7 | Daqing 2 | Zhaodong 3 | 486.4 | 97.6 | 7 | Manbin 3 | 31.7 | 7 | Siping 2 | Gongzhuling 3 | 437.6 | 64.5 |
8 | Zhaodong 3 | 4.77 | 8 | Daqing 2 | Changchun 1 | 483.7 | 342.5 | 8 | Shuangliao 3 | 28.6 | 8 | Gongzhuling 3 | Jiutai 3 | 426.8 | 123.1 |
9 | Jilin 2 | 4.35 | 9 | Harbin 1 | Daqing 2 | 479.2 | 153.8 | 9 | Yichun 2 | 28.5 | 9 | Haicheng 3 | Dashiqiao 3 | 409.5 | 36 |
10 | Jinzhou 2 | 4.18 | 10 | Harbin 1 | Anda 3 | 478.8 | 131.6 | 10 | Qian’an 3 | 20.8 | 10 | Shuangcheng 3 | Gongzhuling 3 | 344.7 | 269.7 |
11 | Duerbote 3 | 3.92 | 11 | Daqing 2 | Shenyang 1 | 442.6 | 649.3 | 11 | Shuangcheng 3 | 19.6 | 11 | Pulandian 3 | Qiqihaer 2 | 330.4 | 1039.4 |
12 | Kaiyuan 3 | 3.35 | 12 | Jilin 2 | Changchun 1 | 439.7 | 117.6 | 12 | Jiamusi 2 | 19.2 | 12 | Dashiqiao 3 | Gaizhou 3 | 329.1 | 33.4 |
13 | Shuangyashan 2 | 3.16 | 13 | Dalian 2 | Pulandian 3 | 408.8 | 66.9 | 13 | Dandong 2 | 18.5 | 13 | Dehui 3 | Shuangcheng 3 | 308.9 | 126 |
14 | Tieling 2 | 3.13 | 14 | Dalian 2 | Shenyang 1 | 405.6 | 378.5 | 14 | Yixian 3 | 14.6 | 14 | Jilin 2 | Yongji 3 | 306.6 | 23.5 |
15 | Jiamusi 2 | 3.04 | 15 | Dehui 3 | Changchun 1 | 363.5 | 109.1 | 15 | Benxi 3 | 13.7 | 15 | Wafangdian 3 | Pulandian 3 | 295.9 | 30.9 |
16 | Gongzhuling 3 | 2.99 | 16 | Daqing 2 | Qiqihaer 2 | 330.4 | 158.6 | 16 | Kuandian 3 | 13.4 | 16 | Benxi 3 | Fengcheng 3 | 293.9 | 152.1 |
17 | Dehui 3 | 2.95 | 17 | Harbin 1 | Zhaodong 3 | 324.3 | 62.2 | 17 | Harbin 1 | 12.4 | 17 | Dandong 2 | Donggang 3 | 293.3 | 28.3 |
18 | Jiutai 3 | 2.68 | 18 | Kaiyuan 3 | Tieling 3 | 320.0 | 55.8 | 18 | Yongji 3 | 11.7 | 18 | Daqing 2 | Jilin 2 | 284.6 | 441.5 |
19 | Liaoyang 2 | 2.67 | 19 | Jiutai 3 | Jilin 2 | 314.5 | 78.2 | 19 | Qitaihe 2 | 11.5 | 19 | Fuyu 3 | Shuangcheng 3 | 284.1 | 56.4 |
20 | Suifenhe 3 | 2.65 | 20 | Gongzhuling 3 | Siping 2 | 313.8 | 63.7 | 20 | Dalian 2 | 11.0 | 20 | Dalian 2 | Dashiqiao 3 | 281.5 | 225.8 |
Type | Number of Cities | Out Degree in 2007 | Out Degree in 2016 | In Degree in 2007 | In Degree in 2016 | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | CV | Mean | CV | Mean | CV | Mean | CV | ||
Administrative rank: | |||||||||
Provincial capital city | 3 | 0.644 | 1.207 | 1.049 | 0.760 | 0.814 | 0.677 | 1.505 | 0.316 |
Prefecture-level city | 32 | 0.240 | 2.189 | 1.318 | 2.143 | 0.150 | 0.835 | 0.883 | 0.510 |
Small city | 150 | 0.047 | 2.334 | 0.557 | 2.912 | 0.063 | 1.660 | 0.641 | 0.510 |
Provincial level: | |||||||||
Heilongjiang | 77 | 0.098 | 3.646 | 0.562 | 2.596 | 0.072 | 1.731 | 0.570 | 0.705 |
Jilin | 49 | 0.057 | 2.029 | 0.657 | 2.852 | 0.090 | 2.051 | 0.771 | 0.369 |
Liaoning | 59 | 0.108 | 2.130 | 0.906 | 2.602 | 1.114 | 1.474 | 0.801 | 0.460 |
Having HSR stations or not: | |||||||||
Cities with HSR stations | 51 | - | - | 0.941 | 2.055 | - | - | 1.004 | 0.494 |
Cities without HSR stations | 134 | - | - | 0.604 | 3.098 | - | - | 0.580 | 0.402 |
The whole region | 185 | 0.090 | 3.000 | 0.697 | 2.711 | 0.090 | 1.737 | 0.697 | 0.541 |
Network/Modules | Modularity | Connection Strength (%Total) | Module Number | Minimum Size | Maximum Size | Average Size | |
---|---|---|---|---|---|---|---|
Within Modules | Between Modules | ||||||
CR network in 2007 | 0.202 | 40.61% | 59.39% | 8 | 1 | 80 | 23 |
CR and HSR network in 2016 | 0.131 | 49.30% | 50.70% | 7 | 1 | 81 | 26 |
Variables | In-Degree (2016) | Out-Degree (2016) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All Cities | HSR Cities | CR Cities | All Cities | HSR Cities | CR Cities | |||||||||||||
OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | |
in-degree (2007) | −0.42 *** | −0.42 *** | −0.41 *** | −0.70 ** | −0.68 ** | −0.63 ** | 0.01 | −0.01 | 0.01 | |||||||||
out-degree (2007) | 1.47 ** | 1.47 ** | 1.50 ** | 1.88 ** | 1.89 *** | 1.91 *** | 0.07 | 0.06 | −0.10 | |||||||||
hsrcity | 0.27 *** | 0.27 *** | 0.26 *** | −0.14 | −0.14 | −0.14 | ||||||||||||
lngdp | 0.13 *** | 0.13 *** | 0.12 *** | 0.16 | 0.14 | 0.14 | 0.12 *** | 0.11 *** | 0.11 *** | 0.53 * | 0.53 * | 0.54 ** | −0.16 | −0.16 | −0.10 | 0.68 ** | 0.63 ** | 0.60 * |
lnpop | −0.28 *** | −0.28 *** | −0.30*** | −0.28 | −0.29 | −0.35 ** | −0.25 *** | −0.23 *** | −0.25 *** | 0.16 | 0.16 | 0.16 | 0.58 | 0.58 | 0.53 | 0.06 | 0.06 | 0.04 |
lnfixed | 0.12 *** | 0.12 *** | 0.12 *** | 0.13 | 0.14 | 0.11 | 0.10 *** | 0.09 *** | 0.10 *** | −0.19 | −0.19 | −0.21 | 0.28 | 0.28 | 0.26 | −0.20 | −0.16 | −0.11 |
expend | −0.60 *** | −0.57 *** | −0.66 *** | −1.80 ** | −2.14 *** | −1.87 *** | −0.42 *** | −0.34 *** | −0.41 *** | 0.01 | 0.01 | 0.00 | −0.24 | −0.15 | −0.15 | 0.24 | 0.20 | 0.26 |
edu | 0.04 *** | 0.04 *** | 0.05 *** | 0.04 * | 0.05 ** | 0.07 *** | 0.01 | 0.00 | 0.00 | −0.11 | −0.11 | −0.11 | −0.14 | −0.14 | −0.15 | −0.01 | 0.03 | 0.06 |
indu | −0.08 | −0.09 | −0.10 | −0.11 | −0.11 | −0.13 | 0.06 | 0.00 | 0.07 | −0.84 | −0.84 | −0.81 | 0.91 | 0.90 | 0.81 | −1.69 | −1.78 | −1.77 |
Constant | −0.49 | −0.49 | −0.38 | −0.32 | −0.07 | 0.35 | −0.41 | −0.47 * | −0.42 | 0.39 | 0.39 | 0.56 | −4.80 | −4.88 | −4.72 | 0.27 | 0.00 | −0.58 |
ρ/λ | 0.03 | −0.22 * | −0.20 | −0.35 ** | 0.23 *** | 0.04 | 0.00 | 0.04 | 0.02 | 0.08 | −0.14 | −0.16 | ||||||
N | 184 | 184 | 184 | 50 | 50 | 50 | 134 | 134 | 134 | 184 | 184 | 184 | 50 | 50 | 50 | 134 | 134 | 134 |
R2 | 0.65 | 0.65 | 0.65 | 0.50 | 0.53 | 0.55 | 0.67 | 0.69 | 0.67 | 0.10 | 0.10 | 0.10 | 0.18 | 0.18 | 0.18 | 0.09 | 0.10 | 0.10 |
Log likelihood | 15.58 | 15.66 | 17.00 | −16.22 | −15.41 | −14.85 | 78.91 | 83.32 | 78.95 | −368.34 | −368.34 | −368.3 | −98.9 | − 98.9 | −98.8 | −267.4 | −266.8 | −266.7 |
LM Test (lag) | 0.14 | 1.39 | 8.28 *** | 0.00 | 0.01 | 0.94 | ||||||||||||
Robust LM (lag) | 3.80 * | 0.03 | 13.31 *** | 1.47 | 0.35 | 0.01 | ||||||||||||
LM Test (error) | 1.98 | 1.53 | 0.05 | 0.07 | 0.10 | 1.00 | ||||||||||||
Robust LM (error) | 5.64 ** | 0.18 | 5.08 ** | 1.54 | 0.43 | 0.06 | ||||||||||||
Appropriate model | SEM | OLS | SLM | OLS | OLS | OLS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Mei, L.; Wang, L. The Dynamic Influence of High-Speed Rail on the Spatial Structure of Economic Networks and the Underlying Mechanisms in Northeastern China. ISPRS Int. J. Geo-Inf. 2021, 10, 776. https://doi.org/10.3390/ijgi10110776
He S, Mei L, Wang L. The Dynamic Influence of High-Speed Rail on the Spatial Structure of Economic Networks and the Underlying Mechanisms in Northeastern China. ISPRS International Journal of Geo-Information. 2021; 10(11):776. https://doi.org/10.3390/ijgi10110776
Chicago/Turabian StyleHe, Sanwei, Lei Mei, and Lei Wang. 2021. "The Dynamic Influence of High-Speed Rail on the Spatial Structure of Economic Networks and the Underlying Mechanisms in Northeastern China" ISPRS International Journal of Geo-Information 10, no. 11: 776. https://doi.org/10.3390/ijgi10110776
APA StyleHe, S., Mei, L., & Wang, L. (2021). The Dynamic Influence of High-Speed Rail on the Spatial Structure of Economic Networks and the Underlying Mechanisms in Northeastern China. ISPRS International Journal of Geo-Information, 10(11), 776. https://doi.org/10.3390/ijgi10110776