Spatial Patterns of COVID-19 Incidence in Relation to Crime Rate Across London
Abstract
:1. Introduction
2. Data and Research Methods
2.1. Case Study and Data
2.2. Spatial Clustering of Crime Rate
2.3. Spatial Association of Crime Rate and COVID-19 Infection Rate
2.4. Modeling of Crime Rate
2.4.1. Model Variables
2.4.2. Model Estimation
3. Empirical Results and Discussion
3.1. Spatial Clustering of Crime Rate
3.2. Spatial Association of Crime Rate and COVID-19 Infection Rate
3.3. Modelling of Crime Rate: Regression Model Estimation
3.4. Discussions
4. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M.; Sun, F.; Jit, M.; Munday, J.D.; et al. Early dynamics of transmission and control of COVID-19: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med. 2020, 26, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.H.; Schwartz, G.G. Spatial disparities in coronavirus incidence and mortality in the United States: An ecological analysis as of May 2020. J. Rural Health 2020, 36, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Yue, H.; Wang, C.; She, B.; Ye, X.; Liu, R.; Zhu, X.; Guan, W.W.; Bao, S. Racial Segregation, Testing Site Access, and COVID-19 Incidence Rate in Massachusetts, USA. Int. J. Environ. Res. Public Health 2020, 17, 9528. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; Fearnbach, S.N.; Heymsfield, S.B. Effects of COVID-19 lockdown on lifestyle behaviors in children with obesity living in Verona, Italy: A longitudinal study. Obesity 2020, 28, 1382–1385. [Google Scholar] [CrossRef]
- Ashby, M.P. Initial evidence on the relationship between the coronavirus pandemic and crime in the United States. Crime Sci. 2020, 9, 1–16. [Google Scholar] [CrossRef]
- Redondo, S.; Gonçalves, R.A.; Nistal, J.; Soler, C.; Moreira, J.S.; Andrade, J.; Andrés-Pueyo, A. Corrections and Crime in Spain and Portugal during the Covid-19 Pandemic: Impact, Prevention and Lessons for the Future. Vict. Offenders 2020, 1–30. [Google Scholar] [CrossRef]
- Boman, J.H.; Gallupe, O. Has COVID-19 changed crime? Crime rates in the United States during the pandemic. Am. J. Crim. Justice 2020, 45, 537–545. [Google Scholar] [CrossRef]
- Mohler, G.; Bertozzi, A.L.; Carter, J.; Short, M.B.; Sledge, D.; Tita, G.E.; Uchida, C.D.; Brantingham, P.J. Impact of social distancing during COVID-19 pandemic on crime in Los Angeles and Indianapolis. J. Crim. Justice 2020, 68, 101692. [Google Scholar] [CrossRef] [PubMed]
- Campedelli, G.M.; Aziani, A.; Favarin, S. Exploring the Immediate Effects of COVID-19 Containment Policies on Crime: An Empirical Analysis of the Short-Term Aftermath in Los Angeles. Am. J. Crim. Justice 2020, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Gerell, M.; Kardell, J.; Kindgren, J. Minor covid-19 association with crime in Sweden. Crime Sci. 2020, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.; Morgan, A.; Piquero, A.R. COVID19 and Social Distancing Measures in Queensland Australia are Associated with Short-Term Decreases in Recorded Violent Crime. J. Exp. Criminol. 2020, 1–25. [Google Scholar] [CrossRef]
- Felson, M.; Jiang, S.; Xu, Y. Routine activity effects of the Covid-19 pandemic on burglary in Detroit, March, 2020. Crime Sci. 2020, 9, 10. [Google Scholar] [CrossRef]
- Hodgkinson, T.; Andresen, M.A. Show me a man or a woman alone and I’ll show you a saint: Changes in the frequency of criminal incidents during the COVID-19 pandemic. J. Crim. Justice 2020, 69, 101706. [Google Scholar] [CrossRef]
- Campedelli, G.M.; Favarin, S.; Aziani, A.; Piquero, A.R. Disentangling community-level changes in crime trends during the COVID-19 pandemic in Chicago. Crime Sci. 2020, 9, 21. [Google Scholar] [CrossRef]
- Adunlin, G.; Adedoyin, A.C.A.; Adedoyin, O.O.; Njoku, A.; Bolade-Ogunfodun, Y.; Bolaji, B. Using the protection motivation theory to examine the effects of fear arousal on the practice of social distancing during the COVID-19 outbreak in rural areas. J. Hum. Behav. Soc. Environ. 2020, 1–5. [Google Scholar] [CrossRef]
- Klick, J.; Tabarrok, A. Using terror alert levels to estimate the effect of police on crime. J. Law Econ. 2020, 48, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Loukaitou-Sideris, A. Hot spots of bus stop crime: The importance of environmental attributes. J. Am. Plan. Assoc. 1999, 65, 395–411. [Google Scholar] [CrossRef]
- Sherman, L.; Gartin, P.; Burger, M. Hot spots of predatory crime: Routine activities and the criminology of place. Criminology 1989, 27, 27–55. [Google Scholar] [CrossRef]
- Weisburd, D.; Bushway, S.; Lum, C.; Yang, S.M. Trajectories of crime at places: A longitudinal study of street segments in the city of Seattle. Criminology 2004, 42, 283–321. [Google Scholar] [CrossRef]
- Uittenbogaard, A.C.; Ceccato, V. Space–time clusters of crime in Stockholm, Sweden. Rev. Eur. Stud. 2012, 4, 148–156. [Google Scholar] [CrossRef]
- Helbich, M.; Arsanjani, J.J. Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis. Cartogr. Geogr. Inf. Sci. 2014, 42, 134–148. [Google Scholar] [CrossRef]
- Pope, M.; Song, W. Spatial Relationship and Colocation of Crimes in Jefferson County, Kentucky. Appl. Geogr. 2015, 1, 243–250. [Google Scholar] [CrossRef]
- Murakami, D.; Griffith, D.A. Random effects specifications in eigenvector spatial filtering: A simulation study. J. Geogr. Syst. 2015, 17, 311–331. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, X.; Huang, Y.; On Chan, T. Spatial Patterns of Childhood Obesity Prevalence in Relation to Socioeconomic Factors across England. ISPRS Int. J. Geoinf. 2020, 9, 599. [Google Scholar]
- Sohn, D. Residential crimes and neighbourhood built environment: Assessing the effectiveness of crime prevention through environmental design (CPTED). Cities 2016, 52, 86–93. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Tiefelsdorf, M.; Griffith, D.A. Semiparametric filtering of spatial autocorrelation: The eigenvector approach. Environ. Plan. A 2007, 39, 1193–1221. [Google Scholar] [CrossRef]
- Murakami, D.; Griffith, D.A. Eigenvector spatial filtering for large data sets: Fixed and random effects approaches. Geogr. Anal. 2019, 51, 23–49. [Google Scholar] [CrossRef] [Green Version]
- Chun, Y.; Griffith, D.A.; Lee, M.; Sinha, P. Eigenvector Selection with Stepwise Regression Techniques to Construct Eigenvector Spatial Filters. J. Geogr. Syst. 2016, 18, 67–85. [Google Scholar] [CrossRef]
Crime Cases | March | April | May | June | July | August | Mean |
---|---|---|---|---|---|---|---|
2018 | 67,232 | 66,953 | 71,461 | 70,653 | 74,819 | 69,332 | 70,075 |
2019 | 78,906 | 74,947 | 77,354 | 76,721 | 81,740 | 76,618 | 77,714.3 |
2020 | 65,819 | 48,570 | 57,083 | 62,112 | 70,377 | 71,156 | 62,519.5 |
t-test | 2018 vs. 2020 0.031 * | ||||||
p-value | 2019 vs. 2020 0.002 ** |
(a) | |||||||
Variables | Full Names | March 2020 | April 2020 | May 2020 | |||
Mean | SD | Mean | SD | Mean | SD | ||
VAP_R | Violence-against-the-person rate (cases per 1000 persons) | 1.96 | 0.4 | 1.71 | 0.29 | 1.98 | 0.36 |
ROB_R | Robbery rate (cases per 1000 persons) | 0.3 | 0.18 | 0.12 | 0.06 | 0.15 | 0.06 |
BUG_R | Burglary rate (cases per 1000 persons) | 0.6 | 0.17 | 0.41 | 0.13 | 0.43 | 0.13 |
TH_R | Theft and handling rate (cases per 1000 persons) | 1.71 | 1.44 | 0.82 | 0.25 | 1.01 | 0.3 |
(b) | |||||||
Variables | Full Names | Time | Mean | SD | |||
A_P | Asian percent | 2018 | 17.82 | 12.39 | |||
B_P | Black percent | 2018 | 11.35 | 6.18 | |||
YP_P | Young people percent | 2019 | 10.93 | 1.05 | |||
INC_M | Median household income (1000£) | 2019 | 31.38 | 4.98 | |||
UNE_R | Unemployment rate (1000 persons/hectare) | 2019 | 4.57 | 0.75 | |||
NCC_R | Rate of new COVID-19 cases (cases per 1000 persons) | March 2020 | 1.12 | 0.3 | |||
April 2020 | 1.98 | 0.47 | |||||
May 2020 | 0.49 | 0.18 |
(a) | ||||
Moran’s I | VAP_R | ROB_R | BUG_R | TH_R |
Value | 0.012 | 0.120 . | 0.180 * | 0.301 ** |
(b) | ||||
Moran’s I | VAP_R | ROB_R | BUG_R | TH_R |
Value | −0.063 | −0.055 | 0.306 ** | 0.288 * |
(c) | ||||
Moran’s I | VAP_R | ROB_R | BUG_R | TH_R |
Value | 0.001 | −0.177 | 0.313 ** | 0.358 ** |
(a) | ||||
Moran’s I | VAP_R | ROB_R | BUG_R | TH_R |
NCC_R | 0.043 | 0.025 | −0.008 | −0.029 |
(b) | ||||
Moran’s I | VAP_R | ROB_R | BUG_R | TH_R |
NCC_R | 0.002 | −0.101 | −0.174 * | −0.278 ** |
(c) | ||||
Moran’s I | VAP_R | ROB_R | BUG_R | TH_R |
NCC_R | −0.058 | 0.003 | −0.245 * | −0.301 ** |
(a) | |||
Independent Variables | Coefficient | ||
March | April | May | |
Intercept | −0.036 | 0.595 | 0.127 |
A_P | 0.003 | 0.002 | 0.001 |
B_P | 0.016 | 0.012 * | 0.012 |
YP_P | 0.001 | −0.015 | 0.015 |
INC_M | 0.006 | −0.009 | −0.002 |
UNE_R | 0.098 . | 0.077 . | 0.076 |
NCC_R | −0.159 | −0.074 | −0.167 |
Adjusted R-squared | 0.356 | 0.564 | 0.499 |
AIC | 31.925 | 15.024 | 20.925 |
(b) | |||
Independent Variables | Coefficient | ||
March | April | May | |
Intercept | −3.981 . | 0.696 | −3.023 . |
A_P | 0.015 . | 0.014 . | 0.006 |
B_P | 0.054 * | 0.052 * | 0.027 |
YP_P | −0.016 | −0.155 | 0.095 |
INC_M | 0.055 . | −0.024 | 0.012 |
UNE_R | 0.112 | −0.025 | −0.037 |
NCC_R | −0.257 | −0.640 ** | −1.328 ** |
Adjusted R-squared | 0.604 | 0.637 | 0.456 |
AIC | 75.273 | 77.159 | 65.081 |
(c) | |||
Independent Variables | Coefficient | ||
March | April | May | |
Intercept | −3.800 *** | −0.756 | 0.193 |
A_P | −0.001 | 0.003 | 0.001 |
B_P | 0.017 * | 0.027 * | 0.006 |
YP_P | 0.050 | −0.057 | −0.053 |
INC_M | 0.057 *** | 0.017 | 0.000 |
UNE_R | 0.177 ** | 0.044 | 0.004 |
NCC_R | −0.040 | −0.351 ** | −1.217 *** |
Adjusted R-squared | 0.672 | 0.538 | 0.837 |
AIC | 23.120 | 47.928 | 26.563 |
(d) | |||
Independent Variables | Coefficient | ||
March | April | May | |
Intercept | −1.110 | −0.617 | 0.467 |
A_P | 0.011 | 0.007 | 0.0004 |
B_P | 0.039 . | 0.024 * | 0.005 |
YP_P | −0.083 | −0.025 | −0.018 |
INC_M | 0.067 * | 0.019 | 0.002 |
UNE_R | 0.049 | 0.066 | 0.011 |
NCC_R | −0.518 | −0.334 *** | −1.011 *** |
Adjusted R-squared | 0.434 | 0.551 | 0.739 |
AIC | 77.905 | 43.516 | 31.165 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Huang, Y.; Yuan, K.; Chan, T.O.; Wang, Y. Spatial Patterns of COVID-19 Incidence in Relation to Crime Rate Across London. ISPRS Int. J. Geo-Inf. 2021, 10, 53. https://doi.org/10.3390/ijgi10020053
Sun Y, Huang Y, Yuan K, Chan TO, Wang Y. Spatial Patterns of COVID-19 Incidence in Relation to Crime Rate Across London. ISPRS International Journal of Geo-Information. 2021; 10(2):53. https://doi.org/10.3390/ijgi10020053
Chicago/Turabian StyleSun, Yeran, Ying Huang, Ke Yuan, Ting On Chan, and Yu Wang. 2021. "Spatial Patterns of COVID-19 Incidence in Relation to Crime Rate Across London" ISPRS International Journal of Geo-Information 10, no. 2: 53. https://doi.org/10.3390/ijgi10020053
APA StyleSun, Y., Huang, Y., Yuan, K., Chan, T. O., & Wang, Y. (2021). Spatial Patterns of COVID-19 Incidence in Relation to Crime Rate Across London. ISPRS International Journal of Geo-Information, 10(2), 53. https://doi.org/10.3390/ijgi10020053