Saline-Soil Deformation Extraction Based on an Improved Time-Series InSAR Approach
Abstract
:1. Introduction
2. Methodology
2.1. Interferometric Coherence Analysis
2.2. High Coherence Interferogram networking
2.3. Interferogram Network Inversion by WLS Estimator
3. Study Area and Data Source
4. Results
4.1. Interferometric Coherence Analysis and Networking of the Interferograms
4.2. The Deformation Velocity of the Study Area
5. Discussion
5.1. Comparison of Different Estimation Strategies
5.2. The Deformation Characteristics of Areas (a) and (b)
5.3. The Dynamic Evolution of Saline Soil
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, G.X.; Ding, X.L.; Chen, Y.Q.; Li, Z.L.; Zheng, D.W. New and potential technology for observation of earth from space: Synthetic aperture radar interferometry. Adv. Earth Sci. 2000, 15, 734–740. [Google Scholar]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inv. Prob. 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Buckley, S.M. Radar Interferometry Measurement of Land Subsidence. Ph.D. Thesis, University Texas, Austin, TX, USA, 2000. [Google Scholar]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Farolfi, G.; Piombino, A.; Catani, F. Fusion of GNSS and Satellite Radar Interferometry: Determination of 3D Fine-Scale Map of Present-Day Surface Displacements in Italy as Expressions of Geodynamic Processes. Remote Sens. 2019, 11, 394. [Google Scholar] [CrossRef] [Green Version]
- Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng. Geol. 2003, 68, 3–14. [Google Scholar] [CrossRef]
- Ansari, H.; Zan, F.D.; Bamler, R. Sequential estimator: Toward efficient InSAR time series analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5637–5652. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, D.A.; Bürgmann, R. Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J. Geophys. Res. Solid Earth 2003, 108, B9. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.X.; Buckley, S.M.; Ding, X.L.; Chen, Q.; Luo, X.J. Estimating spatiotemporal ground deformation with improved persistent scatterer radar interferometry. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3209–3219. [Google Scholar] [CrossRef]
- Liu, G.X.; Luo, X.J.; Chen, Q.; Huang, D.F.; Ding, X.L. Detecting land subsidence in Shanghai by PS-networking SAR interferometry. Sensors 2008, 8, 4725–4741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.X.; Jia, H.G.; Zhang, R.; Zhang, H.X.; Jia, H.L.; Yu, B.; Sang, M.Z. Exploration of subsidence estimation by persistent scatterer InSAR on time series of high resolution TerraSAR-X images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 159–169. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Repeat-Pass SAR Interferometry with Partially Coherent Targets. IEEE Trans. Geoence Remote Sens. 2011, 50, 271–280. [Google Scholar] [CrossRef]
- Tizzani, P.; Berardino, P.; Casu, F.; Euillades, P.; Manzo, M.; Ricciardi, G.P.; Zeni, G.; Lanari, R. Surface deformation of Long Valley Caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sens. Environ. 2007, 108, 277–289. [Google Scholar] [CrossRef]
- Casu, F.; Manzo, M.; Pepe, A.; Lanari, R. SBAS-DInSAR analysis of very extended areas: First results on a 60000-km2 test site. IEEE Geosci. Remote Sens. Lett. 2008, 5, 438–442. [Google Scholar] [CrossRef]
- Barbouchi, M.; Abdelfattah, R.; Chokmani, K.; Ben Aissa, N.; Lhissou, R.; El Harti, A. Soil salinity characterization using polarimetric insar coherence: Case studies in tunisia and morocco. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3823–3832. [Google Scholar] [CrossRef]
- Francesco, D.Z.; Zonno, M.; Paco, L.D. Phase Inconsistencies and Multiple Scattering in SAR Interferometry. IEEE Trans. Geoence Remote Sens. 2015, 53, 6608–6616. [Google Scholar]
- Jiang, M. Sentinel-1 TOPS co-registration over low-coherence areas and its application to velocity estimation using the all pairs shortest path algorithm. J. Geod. 2020, 94, 1–15. [Google Scholar] [CrossRef]
- Fattahi, H.; Agram, P.; Simons, M. A network-based enhanced spectral diversity approach for TOPS time-series analysis. IEEE Trans. Geosci. Remote Sens. 2016, 55, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.L.; Wang, J.C.; Li, Y. Research on the salt soluble disasters of saline lake subgrade along the Qinghai-Tibet railway in Chaerhan Salt Lake region. J. Railw. Eng. Soc. 2015, 32, 6–11. (In Chinese) [Google Scholar]
- Liu, G.X.; Jia, H.G.; Nie, Y.; Li, T.; Zhang, R.; Yu, B.; Li, Z.L. Detecting subsidence in coastal areas by ultrashort-baseline tcpinsar on the time series of high-resolution terrasar-x images. IEEE Trans. Geoence Remote Sens. 2014, 52, 1911–1923. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Fattahi, H.; Amelung, F. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geoence Remote Sens. 1997, 36, 813–821. [Google Scholar] [CrossRef]
- Ansari, H.; Zan, F.D.; Bamler, R. Efficient phase estimation for interferogram stacks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4109–4125. [Google Scholar] [CrossRef]
- Samiei-Esfahany, S.; Martins, J.E.; Leijen, F.V.; Hanssen, R.F. Phase estimation for distributed scatterers in InSAR stacks using integer least squares estimation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5671–5687. [Google Scholar] [CrossRef] [Green Version]
- Seymour, M.S.; Cumming, I.G. Maximum likelihood estimation for SAR interferometry. Geosci. Remote Sens. Symp. Igarss 1994, 94, 8–12. [Google Scholar]
- Lowenstein, T.K.; Risacher, F. Closed basin brine evolution and the influence of Ca-Cl inflow waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile. Aquat. Geochem. 2009, 15, 71–94. [Google Scholar] [CrossRef]
- Wei, H.C.; Fan, Q.S.; An, F.Y.; Shan, F.S.; Ma, H.Z.; Yuan, Q.; Qin, Z.J. Chemical elements in core sediments of the Qarhan Salt Lake and palaeoclimate evolution during 94–9 ka. Acta Geosci. Sin. 2016, 2, 193–203. (In Chinese) [Google Scholar]
- Zhu, Y.Z.; Li, Z.Y.; Wu, B.L.; Wang, M.L. The Formation of the Qarhan Saline Lakes as Viewed from the Neotectonic Movement. Acta Geol. Sin. 1990, 64, 13–21. (In Chinese) [Google Scholar]
- Yu, S.S.; Tan, H.B.; Liu, X.Q.; Cao, G.C. Sustainable Utilization of Qarhan Salt Lake Resources; Science Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Yang, H.R.; Jiang, F.Q.; Wang, X.; Zhang, J.D. Characteristics of rock salt and salt-dissolution engineering geology and subgrade construction in Chaerhan Salt Lake along Qinghai-Tibet railway. J. Railw. Eng. Soc. 2005, 000(0z1), 373–378. (In Chinese) [Google Scholar]
- Zhang, Z.C.; Wang, S.Z. Long-term monitoring of subgrade stability of the Qinghai-Tibet railway in the Charhan playa region. Int. J. Rock Mech. Min. Ences Geomech. Abstr. 1988, 25, 241. [Google Scholar]
- Sun, J.L.; Wang, S.Z.; Bai, L.T.; Zhang, Z.C. An analysis of the stability of railway in Chaerhan Saline Lake area. J. Beijing Univ. Technol. 1980, 3, 52–65. (In Chinese) [Google Scholar]
- Yu, C.; Penna, N.T.; Li, Z.H. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.H.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Wang, C.N.; Guo, X.H.; Ma, M.Z.; Li, J.-D. Ore-forming Geological Background of K-Mg Salt in Qarhan Salt Lake. Northwestern Geol. 2008, 41, 97–106. [Google Scholar]
CTs | Latitude (°N) | Longitude (°E) | CTs | Latitude (°N) | Longitude (°E) |
---|---|---|---|---|---|
T1 | 37.1335 | 95.1235 | T4 | 37.0160 | 95.4260 |
T2 | 37.1082 | 95.2029 | R1 | 37.2562 | 95.5599 |
T3 | 37.0418 | 95.2490 | R2 | 36.9126 | 95.3671 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, W.; Zhang, R.; Liu, G.; Wang, X.; Mao, W.; Zhang, B.; Fu, Y.; Wu, T. Saline-Soil Deformation Extraction Based on an Improved Time-Series InSAR Approach. ISPRS Int. J. Geo-Inf. 2021, 10, 112. https://doi.org/10.3390/ijgi10030112
Xiang W, Zhang R, Liu G, Wang X, Mao W, Zhang B, Fu Y, Wu T. Saline-Soil Deformation Extraction Based on an Improved Time-Series InSAR Approach. ISPRS International Journal of Geo-Information. 2021; 10(3):112. https://doi.org/10.3390/ijgi10030112
Chicago/Turabian StyleXiang, Wei, Rui Zhang, Guoxiang Liu, Xiaowen Wang, Wenfei Mao, Bo Zhang, Yin Fu, and Tingting Wu. 2021. "Saline-Soil Deformation Extraction Based on an Improved Time-Series InSAR Approach" ISPRS International Journal of Geo-Information 10, no. 3: 112. https://doi.org/10.3390/ijgi10030112
APA StyleXiang, W., Zhang, R., Liu, G., Wang, X., Mao, W., Zhang, B., Fu, Y., & Wu, T. (2021). Saline-Soil Deformation Extraction Based on an Improved Time-Series InSAR Approach. ISPRS International Journal of Geo-Information, 10(3), 112. https://doi.org/10.3390/ijgi10030112