Twitter Use in Hurricane Isaac and Its Implications for Disaster Resilience
Abstract
:1. Introduction
2. Background
2.1. Disaster-Resilience Measurement
2.2. Social Media in Disaster Research
2.3. Hurricane Isaac
3. Data and Methods
3.1. Resilience Inference Measurement (RIM) Model
3.2. Twitter Data Collection and Preprocessing
3.3. Twitter Indices
4. Results
4.1. Disaster-Resilience Scores
4.2. Spatial–Temporal Patterns of Tweet Density and Sentiment
4.3. Correlations between Twitter Indices and Disaster Resilience
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
TDPreparedness | TDResponse | TDRecovery | TDAll | RIMscore | SSPreparedness | SSResponse | SSRecovery | SSAll | |
---|---|---|---|---|---|---|---|---|---|
Wind speed (knots) | 0.223 ** | 0.258 ** | 0.259 ** | 0.259 ** | 0.505 ** | 0.024 | −0.103 | −0.004 | −0.018 |
Damage per capita | 0.061 | 0.033 | 0.089 | 0.047 | 0.203 * | 0.000 | −0.093 | −0.074 | −0.077 |
Pop. growth rate | 0.320 ** | 0.303 ** | 0.265 ** | 0.304 ** | 0.533 ** | −0.012 | −0.056 | 0.038 | −0.008 |
% over 65 | −0.191 * | −0.230 ** | −0.161 | −0.217 ** | −0.283 ** | 0.013 | 0.066 | −0.034 | 0.006 |
% hh, with teleph. | −0.077 | −0.056 | −0.068 | −0.062 | 0.254 ** | 0.063 | −0.162 | 0.148 | 0.100 |
% hous. in urb. area | 0.300 ** | 0.352 ** | 0.264 ** | 0.337 ** | 0.420 ** | −0.068 | −0.120 | 0.019 | −0.065 |
% pop. below 9th grade | −0.250 ** | −0.246 ** | −0.162 | −0.236 ** | −0.460 ** | −0.080 | 0.093 | −0.041 | −0.045 |
% female householder | −0.073 | −0.012 | 0.013 | −0.015 | −0.393 ** | −0.058 | −0.026 | −0.065 | −0.076 |
Households per km2 | 0.728 ** | 0.787 ** | 0.816 ** | 0.799 ** | 0.488 ** | −0.004 | −0.004 | 0.016 | 0.007 |
% hh, no vehicle | 0.022 | 0.060 | 0.116 | 0.066 | −0.439 ** | −0.073 | −0.025 | −0.070 | −0.100 |
% hh below poverty | −0.111 | −0.074 | −0.054 | −0.077 | −0.656 ** | −0.060 | 0.023 | −0.047 | −0.052 |
Median income | 0.139 | 0.133 | 0.089 | 0.129 | 0.701 ** | 0.048 | −0.053 | 0.052 | 0.040 |
Median housing value | 0.372 ** | 0.383 ** | 0.332 ** | 0.380 ** | 0.632 ** | 0.015 | −0.051 | 0.060 | 0.031 |
% mining/constr/maint | −0.090 | −0.140 | −0.118 | −0.132 | 0.132 | −0.059 | 0.003 | −0.016 | −0.064 |
% mobile home units | −0.301 ** | −0.314 ** | −0.263 ** | −0.309 ** | −0.161 | −0.038 | 0.053 | −0.002 | −0.011 |
% hous. built after 2000 | 0.069 | 0.063 | −0.013 | 0.051 | 0.356 ** | 0.040 | −0.043 | −0.014 | −0.017 |
Health prov. per cap. | 0.078 | 0.114 | 0.105 | 0.110 | −0.145 | −0.017 | 0.018 | −0.082 | −0.057 |
% native people | −0.319 ** | −0.334 ** | −0.297 ** | −0.332 ** | −0.413 ** | −0.055 | 0.051 | 0.050 | 0.024 |
Employed rate | 0.199 * | 0.188 * | 0.131 | 0.182 * | 0.596 ** | −0.019 | 0.017 | −0.052 | −0.056 |
% bachelor’s degree | 0.314 ** | 0.366 ** | 0.256 ** | 0.347 ** | 0.397 ** | 0.017 | 0.046 | 0.016 | 0.040 |
Unemployment rate | −0.042 | −0.059 | −0.008 | −0.049 | −0.480 ** | −0.062 | 0.127 | 0.017 | 0.035 |
Median age | −0.188 * | −0.233 ** | −0.118 | −0.211 * | −0.029 | 0.002 | 0.054 | 0.026 | 0.043 |
Average hh size | −0.158 | −0.156 | −0.129 | −0.154 | 0.001 | 0.033 | 0.062 | 0.040 | 0.077 |
Median rent | 0.356 ** | 0.356 ** | 0.310 ** | 0.354 ** | 0.548 ** | 0.011 | −0.077 | 0.051 | 0.012 |
% ag. employment | −0.199 * | −0.204 * | −0.143 | −0.196 * | −0.318 ** | −0.071 | 0.030 | 0.036 | −0.001 |
% disability | 0.024 | 0.038 | 0.039 | 0.037 | −0.047 | 0.053 | −0.181 * | 0.090 | 0.047 |
Mean elev (meters) | −0.138 | −0.196 * | −0.163 | −0.187 * | −0.273 ** | 0.071 | 0.109 | −0.048 | 0.038 |
% FEMA flood zone | −0.058 | −0.030 | −0.078 | −0.042 | −0.015 | −0.047 | 0.069 | 0.017 | 0.016 |
% civilian labor force | 0.042 | 0.080 | −0.003 | 0.062 | 0.284 ** | −0.007 | 0.025 | −0.098 | −0.050 |
% people voted | −0.185 * | −0.176 * | −0.113 | −0.170* | −0.209 * | −0.052 | 0.079 | −0.150 | −0.108 |
% water area | 0.325 ** | 0.312 ** | 0.332 ** | 0.323 ** | 0.411 ** | −0.045 | −0.119 | −0.045 | −0.100 |
% fed. exp., disab/retir. | −0.156 | −0.202 * | −0.201 * | −0.200 * | 0.144 | −0.021 | 0.046 | −0.019 | −0.012 |
% impervious area | 0.631 ** | 0.680 ** | 0.704 ** | 0.691 ** | 0.554 ** | −0.014 | −0.020 | 0.007 | −0.011 |
References
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Sherrieb, K.; Norris, F.H.; Galea, S. Measuring Capacities for Community Resilience. Soc. Indic. Res. 2010, 99, 227–247. [Google Scholar] [CrossRef]
- Waller, M.A. Resilience in Ecosystemic Context: Evolution of the Concept. Am. J. Orthopsychiatry 2001, 71, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A Place-Based Model for Understanding Community Resilience to Natural Disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Lam, N.S.N.; Reams, M.; Li, K.; Li, C.; Mata, L.P. Measuring Community Resilience to Coastal Hazards along the Northern Gulf of Mexico. Nat. Hazards Rev. 2016, 17, 04015013. [Google Scholar] [CrossRef] [Green Version]
- Brown, K. Global Environmental Change I: A Social Turn for Resilience? Prog. Hum. Geogr. 2014, 38, 107–117. [Google Scholar] [CrossRef] [Green Version]
- FEMA Independent Study Program: Principles of Emergency Management: Independent Study Manual. Available online: https://training.fema.gov/emiweb/downloads/is230.pdf (accessed on 5 January 2019).
- Cutter, S.L.; Ahearn, J.A.; Amadei, B.; Crawford, P.; Eide, E.A.; Galloway, G.E.; Goodchild, M.F.; Kunreuther, H.C.; Li-Vollmer, M.; Schoch-Spana, M. Disaster Resilience: A National Imperative. Environment 2013, 55, 25–29. [Google Scholar] [CrossRef]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.R.; Rockström, J. Social-Ecological Resilience to Coastal Disasters. Science 2005, 309, 1036–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, H.; Lam, N.S.N.; Zou, L.; Qiang, Y.; Li, K. Assessing Community Resilience to Coastal Hazards in the Lower Mississippi River Basin. Water 2016, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Cutter, S.L.; Burton, C.G.; Emrich, C.T. Disaster Resilience Indicators for Benchmarking Baseline Conditions. J. Homel. Secur. Emerg. Manag. 2010, 7. [Google Scholar] [CrossRef]
- Liu, W.; Dugar, S.; McCallum, I.; Thapa, G.; See, L.; Khadka, P.; Budhathoki, N.; Brown, S.; Mechler, R.; Fritz, S.; et al. Integrated Participatory and Collaborative Risk Mapping for Enhancing Disaster Resilience. Isprs Int. J. Geo-Inf. 2018, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Rifat, S.A.A.; Liu, W. Measuring Community Disaster Resilience in the Conterminous Coastal United States. ISPRS Int. J. Geo-Inf. 2020, 9, 469. [Google Scholar] [CrossRef]
- Karami, A.; Shah, V.; Vaezi, R.; Bansal, A. Twitter Speaks: A Case of National Disaster Situational Awareness. J. Inf. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- de Albuquerque, J.P.; Herfort, B.; Brenning, A.; Zipf, A. A Geographic Approach for Combining Social Media and Authoritative Data towards Identifying Useful Information for Disaster Management. Int. J. Geogr. Inf. Sci. 2015, 29, 667–689. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Chen, C. Using Social Media Data to Understand and Assess Disasters. Nat Hazards 2014, 74, 837–850. [Google Scholar] [CrossRef]
- Tsou, M.H. Research Challenges and Opportunities in Mapping Social Media and Big Data. Cartogr. Geogr. Inf. Sci. 2015, 42, 70–74. [Google Scholar] [CrossRef]
- Zou, L.; Lam, N.S.N.; Cai, H.; Qiang, Y. Mining Twitter Data for Improved Understanding of Disaster Resilience. Ann. Am. Assoc. Geogr. 2018, 108, 1422–1441. [Google Scholar] [CrossRef]
- Zou, L.; Lam, N.S.N.; Shams, S.; Cai, H.; Meyer, M.A.; Yang, S.; Lee, K.; Park, S.J.; Reams, M.A. Social and Geographical Disparities in Twitter Use during Hurricane Harvey. Int. J. Digit. Earth 2019, 12, 1300–1318. [Google Scholar] [CrossRef]
- Earle, P.S.; Bowden, D.C.; Guy, M. Twitter Earthquake Detection: Earthquake Monitoring in a Social World. Ann. Geophys. 2012, 54. [Google Scholar] [CrossRef]
- Lam, N.S.N.; Qiang, Y.; Arenas, H.; Brito, P.; Liu, K. Mapping and Assessing Coastal Resilience in the Caribbean Region. Cartogr. Geogr. Inf. Sci. 2015, 42, 315–322. [Google Scholar] [CrossRef]
- Cui, P.; Li, D. Measuring the Disaster Resilience of an Urban Community Using ANP-FCE Method from the Perspective of Capitals. Soc. Sci. Q. 2019, 100, 2059–2077. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, J.; Wan, J.; Jia, H. Resilience to Natural Hazards: A Geographic Perspective. Nat Hazards 2010, 53, 21–41. [Google Scholar] [CrossRef]
- Cai, H.; Lam, N.S.N.; Qiang, Y.; Zou, L.; Correll, R.M.; Mihunov, V. A Synthesis of Disaster Resilience Measurement Methods and Indices. Int. J. Disaster Risk Reduct. 2018, 31, 844–855. [Google Scholar] [CrossRef]
- Rufat, S.; Tate, E.; Emrich, C.T.; Antolini, F. How Valid Are Social Vulnerability Models? Ann. Am. Assoc. Geogr. 2019, 109, 1131–1153. [Google Scholar] [CrossRef]
- Mihunov, V.V.; Lam, N.S.N.; Zou, L.; Rohli, R.V.; Bushra, N.; Reams, M.A.; Argote, J.E. Community Resilience to Drought Hazard in the South-Central United States. Ann. Am. Assoc. Geogr. 2018, 108, 739–755. [Google Scholar] [CrossRef]
- Mihunov, V.V.; Lam, N.S.N.; Rohli, R.V.; Zou, L. Emerging Disparities in Community Resilience to Drought Hazard in South-Central United States. Int. J. Disaster Risk Reduct. 2019, 41, 101302. [Google Scholar] [CrossRef]
- Li, X.; Lam, N.; Qiang, Y.; Li, K.; Yin, L.; Liu, S.; Zheng, W. Measuring County Resilience After the 2008 Wenchuan Earthquake. Int. J. Disaster. Risk Sci. 2016, 7, 393–412. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ye, X. Social Media Analytics for Natural Disaster Management. Int. J. Geogr. Inf. Sci. 2018, 32, 49–72. [Google Scholar] [CrossRef]
- Dong, H.; Halem, M.; Zhou, S. Social Media Data Analytics Applied to Hurricane Sandy. In Proceedings of the 2013 International Conference on Social Computing, Alexandria, VA, USA, 1 September 2013; pp. 963–966. [Google Scholar] [CrossRef]
- Freberg, K.; Saling, K.; Vidoloff, K.G.; Eosco, G. Using Value Modeling to Evaluate Social Media Messages: The Case of Hurricane Irene. Public Relat. Rev. 2013, 39, 185–192. [Google Scholar] [CrossRef]
- Dufty, N. Using Social Media to Build Community Disaster Resilience. Aust. J. Emerg. Manag. 2012, 27, 40–45. Available online: https://search.informit.org/doi/10.3316/informit.046981962746932 (accessed on 17 January 2019).
- Keim, M.; Noji, E. Emergent Use of Social Media: A New Age of Opportunity for Disaster Resilience. Am. J. Disaster Med. 2011, 6, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Houston, J.B.; Hawthorne, J.; Perreault, M.F.; Park, E.H.; Hode, M.G.; Halliwell, M.R.; McGowen, S.E.T.; Davis, R.; Vaid, S.; McElderry, J.A.; et al. Social Media and Disasters: A Functional Framework for Social Media Use in Disaster Planning, Response, and Research. Disasters 2015, 39, 1–22. [Google Scholar] [CrossRef]
- Redshaw, S.; Ingham, V.; McCutcheon, M.; Hicks, J.; Burmeister, O. Assessing the Impact of Vulnerability on Perceptions of Social Cohesion in the Context of Community Resilience to Disaster in the Blue Mountains. Aust. J. Rural Health 2018, 26, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Lam, N.S.N.; Obradovich, N.; Ye, X. Are Vulnerable Communities Digitally Left behind in Social Responses to Natural Disasters? An Evidence from Hurricane Sandy with Twitter Data. Appl. Geogr. 2019, 108, 1–8. [Google Scholar] [CrossRef]
- Mihunov, V.V.; Lam, N.S.N.; Zou, L.; Wang, Z.; Wang, K. Use of Twitter in Disaster Rescue: Lessons Learned from Hurricane Harvey. Int. J. Digit. Earth 2020, 13, 1454–1466. [Google Scholar] [CrossRef]
- Sadri, A.M.; Hasan, S.; Ukkusuri, S.V.; Cebrian, M. Understanding Information Spreading in Social Media during Hurricane Sandy: User Activity and Network Properties. arXiv 2017, arXiv:1706.03019. [Google Scholar]
- Tsou, M.H.; Leitner, M. Visualization of Social Media: Seeing a Mirage or a Message? Cartogr. Geogr. Inf. Sci. 2013, 40, 55–60. [Google Scholar] [CrossRef]
- Li, L.; Goodchild, M.F.; Xu, B. Spatial, Temporal, and Socioeconomic Patterns in the Use of Twitter and Flickr. Cartogr. Geogr. Inf. Sci. 2013, 40, 61–77. [Google Scholar] [CrossRef]
- Robbie Berg, National Hurricane Center. Tropical Cyclone Report Hurricane Isaac (AL092012) 21 August–1 September 2012. Available online: https://www.nhc.noaa.gov/data/tcr/AL092012_Isaac.pdf (accessed on 5 January 2019).
- Lam, N.S.N.; Qiang, Y.; Li, K.; Cai, H.; Zou, L.; Mihunov, V. Extending Resilience Assessment to Dynamic System Modeling: Perspectives on Human Dynamics and Climate Change Research. J. Coast. Res. 2018, 85, 1401–1405. [Google Scholar] [CrossRef]
- Liu, K.; Lam, N.S.N. Paleovegetational Reconstruction Based on Modern and Fossil Pollen Data: An Application of Discriminant Analysis. Ann. Assoc. Am. Geogr. 1985, 75, 115–130. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Storm Events Database. StormEvents_locations-ftp_v1.0_d2012_c20170519.csv. 2017. Available online: Ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/. (accessed on 3 October 2018).
- Kent, J.D.; Capello, H.T., Jr. Spatial Patterns and Demographic Indicators of Effective Social Media Content during TheHorsethief Canyon Fire of 2012. Cartogr. Geogr. Inf. Sci. 2013, 40, 78–89. [Google Scholar] [CrossRef]
- Mandel, B.; Culotta, A.; Boulahanis, J.; Stark, D.; Lewis, B.; Rodrigue, J. A Demographic Analysis of Online Sentiment during Hurricane Irene. In Proceedings of the Second Workshop on Language in Social Media, Association for Computational Linguistics, Montreal, QC, Canada, 7 June 2012; pp. 27–36. [Google Scholar]
- Lachlan, K.A.; Spence, P.R.; Lin, X. Expressions of Risk Awareness and Concern through Twitter: On the Utility of Using the Medium as an Indication of Audience Needs. Comput. Hum. Behav. 2014, 35, 554–559. [Google Scholar] [CrossRef]
- Hutto, C.; Gilbert, E. VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. ICWSM 2014, 8. Available online: https://ojs.aaai.org/index.php/ICWSM/article/view/14550 (accessed on 11 December 2020).
N | Min | Max | Mean | Std. Dev. | |
---|---|---|---|---|---|
Windspeed (knots) | 144 | 0.00 | 80.16 | 14.13 | 19.96 |
Damage per capita (1k USD) | 98 | 0.00 | 2.67 | 0.09 | 0.36 |
Population growth rate | 144 | −6.50 | 9.95 | −0.26 | 2.01 |
% households, telephone av. | 144 | 75.42 | 98.36 | 93.88 | 3.17 |
# households per km2 | 144 | 0.44 | 303.25 | 14.45 | 30.96 |
% households with no vehicle | 144 | 2.48 | 18.22 | 8.18 | 3.29 |
Median income | 144 | 21,360.00 | 63,716.00 | 36,659.00 | 8841.00 |
% area covered by water | 144 | 0.00 | 0.74 | 0.06 | 0.13 |
% impervious area | 144 | 0.10 | 21.95 | 1.62 | 2.59 |
RIM score | 144 | 1.09 | 4.00 | 1.96 | 0.49 |
TDPreparedness | 144 | 0.00 | 0.02 | 0.00 | 0.00 |
TDResponse | 144 | 0.00 | 0.12 | 0.01 | 0.01 |
TDRecovery | 144 | 0.00 | 0.03 | 0.00 | 0.00 |
TDAll | 144 | 0.00 | 0.17 | 0.01 | 0.02 |
SSPreparedness | 139 | −0.65 | 0.56 | 0.04 | 0.16 |
SSResponse | 143 | −0.14 | 0.39 | 0.06 | 0.07 |
SSRecovery | 139 | −0.63 | 0.60 | 0.03 | 0.20 |
SSAll | 143 | −0.17 | 0.31 | 0.04 | 0.09 |
Category | Variables | Source |
---|---|---|
Social | % population over 65 years old | U.S Census Bureau |
% population less than 9th grade | U.S Census Bureau | |
% female householder | U.S Census Bureau | |
# households per km2 | U.S Census Bureau | |
% household no vehicle available | U.S Census Bureau | |
Median age | U.S Census Bureau | |
Average household size | U.S Census Bureau | |
% people voted | U.S Census Bureau | |
Economic | % natural res., constr., maint. occupations | U.S Census Bureau |
% agriculture employment | U.S Census Bureau | |
Household median income | U.S Census Bureau | |
Median value of housing | U.S Census Bureau | |
Median rent | U.S Census Bureau | |
% civilian labor force | U.S Census Bureau | |
Community | % people born in US | U.S Census Bureau |
% household below poverty level | U.S Census Bureau | |
Employed rate | U.S Census Bureau | |
Unemployment rate | U.S Census Bureau | |
% pop. over 25 with bachelor’s degree | U.S Census Bureau | |
% people with a disability | U.S Census Bureau | |
% federal exp. on disability and retirement | U.S Census Bureau | |
Infrastructure | % mobile homes and all other types of units | U.S Census Bureau |
% housing built 2000 and later | U.S Census Bureau | |
# healthcare providers per capita | U.S Census Bureau | |
% urban housing units in whole county | U.S Census Bureau | |
% households with telephone available | U.S Census Bureau | |
Environment | Mean elevation (meters) | National Elevation Dataset |
% area in FEMA flood zone | National Flood Hazard Layer | |
% area covered by water | National Land Cover Database | |
% impervious area | National Land Cover Database |
K-Means Analysis | Discriminant Analysis | ||||
---|---|---|---|---|---|
Susceptible | Recovering | Resistant | Usurper | Total | |
Susceptible | 4 (57.1%) | 2 | 1 | 0 | 7 |
Recovering | 10 | 59 (79.7%) | 5 | 0 | 74 |
Resistant | 3 | 3 | 10 (62.5%) | 0 | 16 |
Usurper | 0 | 0 | 0 | 2 (100%) | 2 |
Ungrouped | 10 | 31 | 6 | 0 | 47 |
Total | 27 | 95 | 22 | 2 | 146 |
Preparedness | Response | Recovery | Total | |
---|---|---|---|---|
Geocoded Tweets | 552,742 | 852,433 | 281,605 | 1,686,851 |
All Tweets | 912,035 | 1,459,252 | 496,491 | 2,876,726 |
Rank | Tweet Content | Scores |
---|---|---|
Top 5 negative tweets | ||
1 | <expletive> Tropical/Hurricane Issac <expletive> Bobby Jindal pdn <expletive> Romney <expletive> the police & <expletive> u hating <expletive> <expletive> & <expletive> <expletive> <expletive>!!! | −0.9881 |
2 | <expletive> Romney, <expletive> that 12*21*12 BS, <expletive> Sprint, <expletive> Hurricane Isaac tht did 2 Billion in damage, <expletive> Summer and <expletive> dead beat dads. | −0.9826 |
3 | RT @<user>: <EXPLETIVE> THIS <expletive> <expletive> HURRICANE IF YOU COME THRU & RUIN MY WEEKEND I’LL KILL YOUR FAMILY | −0.9795 |
4 | <expletive> all this stupid hurricane <expletive> It’s not like Oma get hurt any worse <expletive> this <expletive> #drove | −0.9781 |
5 | SO WORRIED ABOUT MY ♥’S N NEW ORLEANS I HATE THIS HURRICANE :( ITS GONNA RUIN MY VERY PLANNED MUCH NEEDED VACATION I HATE MI :( | −0.9755 |
Top 5 positive tweets | ||
1 | HA HA HA HA HA HA RIGHT RT @BreakingNews VP Biden to skip stop in Tampa to ensure resources are not distracted as Isaac approaches | 0.9788 |
2 | I HOPE GOD PROTECTS MY BEST FRIEND THAT LIVEs ON THE COAST WHEN THAT HURRICANE COMES I ALSO HOPES HE PROTECTS ME MY FAMILY & FRIENDS ALSO ! | 0.9782 |
3 | FLORIDA URGENT-HELP NEEDED TO KEEP RESCUE DOGS SAFE FROM TROPICAL STORM ISAAC! SHARE SHARE!! If <link> | 0.9772 |
4 | Good Morning ERRRBODY! THANK GOD FOR ANOTHER BLESSED DAY! PLEASE BE SAFE N PRAY FOR US HERE N FLORIDA HAITI DOMIN REP ! #Isaac! | 0.9763 |
5 | Prayers And Blessings For The Good People Of New Orleans And Gulf Coast For Oncoming Hurricane BE SAFE BE WELL Peace And Love God Bless You" | 0.9763 |
RIM Score | TDPreparedness | TDResponse | TDRecovery | TDAll | SSPreparedness | SSResponse | SSRecovery | SSAll | |
---|---|---|---|---|---|---|---|---|---|
Windspeed (knots) | 0.505 ** | 0.223 ** | 0.258 ** | 0.259 ** | 0.259 ** | 0.024 | −0.103 | −0.004 | −0.018 |
Population growth rate | 0.533 ** | 0.320 ** | 0.303 ** | 0.265 ** | 0.304 ** | −0.012 | −0.056 | 0.038 | −0.008 |
% hh, teleph. av. | 0.254 ** | −0.077 | −0.056 | −0.068 | −0.062 | 0.063 | −0.162 | 0.148 | 0.100 |
Households per km2 | 0.488 ** | 0.728 ** | 0.787 ** | 0.816 ** | 0.799 ** | −0.004 | −0.004 | 0.016 | 0.007 |
% household, no vehicle | −0.439 ** | 0.022 | 0.060 | 0.116 | 0.066 | −0.073 | −0.025 | −0.070 | −0.100 |
Median income | 0.701 ** | 0.139 | 0.133 | 0.089 | 0.129 | 0.048 | −0.053 | 0.052 | 0.040 |
% area covered by water | 0.411 ** | 0.325 ** | 0.312 ** | 0.332 ** | 0.323 ** | −0.045 | −0.119 | −0.045 | −0.100 |
% impervious area | 0.554 ** | 0.631 ** | 0.680 ** | 0.704 ** | 0.691 ** | −0.014 | −0.020 | 0.007 | −0.011 |
RIM score | 1.000 | 0.312 ** | 0.331 ** | 0.374 ** | 0.342 ** | 0.043 | −0.077 | 0.035 | 0.022 |
TD Preparedness | 0.312 ** | 1.000 | 0.936 ** | 0.903 ** | 0.955 ** | −0.004 | −0.026 | −0.032 | −0.037 |
TD Response | 0.331 ** | 0.936 ** | 1.000 | 0.918 ** | 0.996 ** | −0.005 | −0.062 | −0.007 | −0.030 |
TDRecovery | 0.374 ** | 0.903 ** | 0.918 ** | 1.000 | 0.947 ** | −0.014 | −0.025 | 0.012 | −0.008 |
TDAll | 0.342 ** | 0.955 ** | 0.996 ** | 0.947 ** | 1.000 | −0.006 | −0.053 | −0.007 | −0.027 |
SSPreparedness | 0.043 | −0.004 | −0.005 | −0.014 | −0.006 | 1.000 | −0.115 | −0.016 | 0.571 ** |
SSResponse | −0.077 | −0.026 | −0.062 | −0.025 | −0.053 | −0.115 | 1.000 | 0.027 | 0.256 ** |
SSRecovery | 0.035 | −0.032 | −0.007 | 0.012 | −0.007 | −0.016 | 0.027 | 1.000 | 0.775 ** |
SSAll | 0.022 | −0.037 | −0.030 | −0.008 | −0.027 | 0.571 ** | 0.256 ** | 0.775 ** | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Lam, N.S.N.; Zou, L.; Mihunov, V. Twitter Use in Hurricane Isaac and Its Implications for Disaster Resilience. ISPRS Int. J. Geo-Inf. 2021, 10, 116. https://doi.org/10.3390/ijgi10030116
Wang K, Lam NSN, Zou L, Mihunov V. Twitter Use in Hurricane Isaac and Its Implications for Disaster Resilience. ISPRS International Journal of Geo-Information. 2021; 10(3):116. https://doi.org/10.3390/ijgi10030116
Chicago/Turabian StyleWang, Kejin, Nina S. N. Lam, Lei Zou, and Volodymyr Mihunov. 2021. "Twitter Use in Hurricane Isaac and Its Implications for Disaster Resilience" ISPRS International Journal of Geo-Information 10, no. 3: 116. https://doi.org/10.3390/ijgi10030116
APA StyleWang, K., Lam, N. S. N., Zou, L., & Mihunov, V. (2021). Twitter Use in Hurricane Isaac and Its Implications for Disaster Resilience. ISPRS International Journal of Geo-Information, 10(3), 116. https://doi.org/10.3390/ijgi10030116