A Spatial and Temporal Assessment of Vegetation Greening and Precipitation Changes for Monitoring Vegetation Dynamics in Climate Zones over Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methodology
2.3.1. Pre-Processing
2.3.2. Data Processing
3. Results
3.1. Evaluation of Statistical Analysis of NDVI3g from 1982 to 2015
3.2. Index of Persistence of NDVI3g
3.3. Statistical Analysis of the Monthly Mean NDVI3g through the Four Seasons
3.4. Evaluation of Rainfall Dynamics through Time Series
3.4.1. Rainfall Analysis
3.4.2. Precipitation Distribution in Climate Zones from 1982 to 2015
3.5. Analysis of Vegetation Trend Dynamics
3.6. Change Detection for Each Type of Vegetation per Pixcel Value
3.7. Consistency between NDVI3g and Precipitation Interannual Variation
4. Discussion
4.1. Vegetation Trend Analysis from 1982 to 2015
4.2. Analysis of Vegetation by Index of Persistence
4.3. Correlation Coefficient between NDVI3g and Precipitation from 1982 to 2015
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Platts, P.J.; McClean, C.J.; Lovett, J.C.; Marchant, R. Predicting tree distributions in an East African biodiversity hotspot: Model selection, data bias and envelope uncertainty. Ecol. Model. 2008, 218, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Bucini, G.; Hanan, N.P. A continental-scale analysis of tree cover in African savannas. Glob. Ecol. Biogeogr. 2007, 16, 593–605. [Google Scholar] [CrossRef]
- Greve, M.; Lykke, A.M.; Blach-Overgaard, A.; Svenning, J.-C. Environmental and anthropogenic determinants of vegetation distribution across Africa. Glob. Ecol. Biogeogr. 2011, 20, 661–674. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Gascon, M.; Cirach, M.; Martínez, D.; Dadvand, P.; Valentín, A.; Plasència, A.; Nieuwenhuijsen, M.J. Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological studies: The case of Barcelona city. Urban For. Urban Green. 2016, 19, 88–94. [Google Scholar] [CrossRef]
- Rhew, I.C.; Stoep, A.V.; Kearney, A.; Smith, N.L.; Dunbar, M.D. Validation of the normalized difference vegetation index as a measure of neighborhood greenness. Ann. Epidemiol. 2011, 21, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Uyanık, G.K.; Güler, N. A study on multiple linear regression analysis. Procedia Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Nordberg, M.-L.; Evertson, J. Vegetation index differencing and linear regression for change detection in a Swedish mountain range using Landsat TM® and ETM+® imagery. Land Degrad. Dev. 2005, 16, 139–149. [Google Scholar] [CrossRef]
- Luppino, L.T.; Bianchi, F.M.; Moser, G.; Anfinsen, S.N. Unsupervised image regression for heterogeneous change detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9960–9975. [Google Scholar] [CrossRef] [Green Version]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Zhou, L.; Oechel, W. Variability of the seasonally integrated normalized difference vegetation index across the north slope of alaska in the 1990s. Int. J. Remote Sens. 2003, 24, 1111–1117. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Major, D.J.; Baret, F.; Guyot, G. A ratio vegetation index adjusted for soil brightness. Int. J. Remote Sens. 1990, 11, 727–740. [Google Scholar] [CrossRef]
- Lyon, J.G.; Yuan, D.; Lunetta, R.S.; Elvidge, C.D. A change detection experiment using vegetation indices. Photogramm. Eng. Remote Sens. 1998, 64, 143–150. [Google Scholar]
- Duan, H.; Yan, C.; Tsunekawa, A.; Song, X.; Li, S.; Xie, J. Assessing vegetation dynamics in the Three-North Shelter Forest region of China using AVHRR NDVI data. Environ. Earth Sci. 2011, 64, 1011–1020. [Google Scholar] [CrossRef]
- Scanlon, T.M.; Albertson, J.D.; Caylor, K.K.; Williams, C.A. Determining land surface fractional cover from NDVI and rainfall time series for a savanna ecosystem. Remote Sens. Environ. 2002, 82, 376–388. [Google Scholar] [CrossRef]
- Lotsch, A.; Friedl, M.A.; Anderson, B.T.; Tucker, C.J. Coupled vegetation-precipitation variability observed from satellite and climate records. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Liu, Z. Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Kaspersen, P.; Huber, S.; Horion, S.; Swinnen, E. Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens. 2013, 5, 664–686. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; He, Y.; Zhou, M.; Liang, J. Potential feedback of recent vegetation changes on summer rainfall in the Sahel. Phys. Geogr. 2015, 36, 449–470. [Google Scholar] [CrossRef]
- Georganos, S.; Abdi, A.M.; Tenenbaum, D.E.; Kalogirou, S. Examining the NDVI-rainfall relationship in the semi-arid Sahel using geographically weighted regression. J. Arid Environ. 2017, 146, 64–74. [Google Scholar] [CrossRef]
- Kalisa, W.; Igbawua, T.; Henchiri, M.; Ali, S.; Zhang, S.; Bai, Y.; Zhang, J. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 2019, 9, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Rousvel, S.; Armand, N.; Andre, L.; Tengeleng, S.; Alain, T.S.; Armel, K. Comparison between vegetation and rainfall of bioclimatic ecoregions in central Africa. Atmosphere 2013, 4, 411–427. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, M.; Nutini, F.; Brivio, P.A.; Bartholomé, E.; Stroppiana, D.; Hościło, A. Identification of environmental anomaly hot spots in West Africa from time series of NDVI and rainfall. ISPRS J. Photogramm. Remote Sens. 2013, 78, 26–40. [Google Scholar] [CrossRef]
- Bunting, E.L.; Southworth, J.; Herrero, H.; Ryan, S.J.; Waylen, P. Understanding Long-Term Savanna Vegetation Persistence across Three Drainage Basins in Southern Africa. Remote Sens. 2018, 10, 1013. [Google Scholar] [CrossRef] [Green Version]
- Wingate, V.; Phinn, S.; Kuhn, N. Mapping precipitation-corrected NDVI trends across Namibia. Sci. Total Environ. 2019, 684, 96–112. [Google Scholar] [CrossRef]
- Gilbert, E.; Reynolds, J.T. Africa in World History; Pearson Education: London, UK, 2011. [Google Scholar]
- Els, M.J.T. Transfer pricing in Africa. TaxTalk 2012, 2012, 26–27. [Google Scholar]
- Changara, M. Potential of Genetically Modified (gm) Crops to Increase Food Security on the African Continent. Available online: https://www.academia.edu/download/31416541/Potential_of_genetically_modified.pdf (accessed on 27 February 2021).
- Davis-Reddy, C. Assessing Vegetation Dynamics in Response to Climate Variability and Change across Sub-Saharan Africa; Stellenbosch University: Stellenbosch, South Africa, 2018. [Google Scholar]
- Steele, T. Late Pleistocene of Africa. In Encyclopedia of Quaternary Science; Elsevier BV: Amsterdam, The Netherlands, 2007; pp. 3139–3150. [Google Scholar]
- Mousivand, A.; Arsanjani, J.J. Insights on the historical and emerging global land cover changes: The case of ESA-CCI-LC datasets. Appl. Geogr. 2019, 106, 82–92. [Google Scholar] [CrossRef]
- Plummer, S.; LeComte, P.; Doherty, M. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- Zhu, Z.C.; Piao, S.L.; Myneni, R.B.; Huang, M.T.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Ibrahim, Y.Z.; Balzter, H.; Kaduk, J.; Tucker, C.J. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in sub-Saharan west Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef] [Green Version]
- Pinzon, J.; Tucker, C. Revisiting error, precision and uncertainty in NDVI AVHRR data: Development of a consistent NDVI3g time series. Remote Sens. 2013. in preparation. [Google Scholar]
- Tian, F.; Fensholt, R.; Verbesselt, J.; Grogan, K.; Horion, S.; Wang, Y.J. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 2015, 163, 326–340. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D.; Dillabaugh, C. Identification and correction of systematic error in NOAA AVHRR long-term satellite data record. Remote Sens. Environ. 2012, 127, 84–97. [Google Scholar] [CrossRef]
- Dinku, T. Validation of the CHIRPS satellite rainfall estimate. in Seasonal Prediction of Hydro-Climatic Extremes in the Greater Horn of Africa. In Proceedings of the 7th International Precipitation Working Group (IPWG) Workshop, Tsukuba, Japan, 17–21 November 2014. [Google Scholar]
- Funk, C.; Michaelsen, J.; Marshall, M.T. Mapping recent decadal climate variations in precipitation and temperature across eastern Africa. In Remote Sensing of Drought: Innovative Monitoring Approaches; CRC Press: Boca Raton, FL, USA, 2012; Volume 331. [Google Scholar]
- Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G. A global satellite-assisted precipitation climatology. Earth Syst. Sci. Data 2015, 7, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Kirches, G.; Wevers, J.; Boettcher, M.; Brockmann, C.; Lamarche, C.; Defourny, P. Land Cover CCI: Product User Guide Version 2.0; Climate Change Initiative Belgium: Belgium, Leuven, 2017. [Google Scholar]
- Jarvis, A. Hole-Field Seamless SRTM Data; International Centre for Tropical Agriculture (CIAT): Japan, Tokyo, 2008. [Google Scholar]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Appelhans, T.; Detsch, F.; Nauss, T. Remote: Empirical orthogonal teleconnections in R. J. Stat. Softw. 2015, 65, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Tucker, C.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Bogaert, J.; Zhou, L.; Tucker, C.J.; Myneni, R.B.; Ceulemans, R. Evidence for a persistent and extensive greening trend in Eurasia inferred from satellite vegetation index data. J. Geophys. Res. Space Phys. 2002, 107, ACL 4-1–ACL 4-14. [Google Scholar] [CrossRef]
- Nzabarinda, V.; Bao, A.; Xu, W.; Uwamahoro, S.; Jiang, L.; Duan, Y.; Nahayo, L.; Yu, T.; Wang, T.; Long, G. Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa. Sustainability 2021, 13, 1234. [Google Scholar] [CrossRef]
- Olsson, L.; Eklundh, L.; Ardö, J. A recent greening of the Sahel—Trends, patterns and potential causes. J. Arid Environ. 2005, 63, 556–566. [Google Scholar] [CrossRef]
- Dardel, C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Grippa, M.; Tucker, C. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens. Environ. 2014, 140, 350–364. [Google Scholar] [CrossRef]
- Brandt, M.; Mbow, C.; Diouf, A.A.; Verger, A.; Samimi, C.; Fensholt, R. Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel. Glob. Chang. Biol. 2015, 21, 1610–1620. [Google Scholar] [CrossRef] [Green Version]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Rasmussen, K. Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 2011, 115, 438–451. [Google Scholar] [CrossRef]
- Berrahmouni, N.; Tapsoba, F.; Berte, C.J. The Great Green Wall for the Sahara and the Sahel Initiative: Building resilient landscapes in African drylands. In Genetic Considerations in Ecosystem Restoration Using Native Tree Species; Forest Assessment, Management and Conservation Division, Forestry Department, Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; p. 15. [Google Scholar]
- Diallo, M.D.; Goalbaye, T.; Mahamat-Saleh, M.; Sarr, P.S.; Masse, D.; Wood, S.A.; Diop, L.; Dick, R.P.; Diop, A.; Guisse, A. Effects of major woody species of the Senegalese Great Green Wall on N mineralization and microbial biomass in soils. Bois For. Trop. 2017, 333, 43–54. [Google Scholar]
- Bader, J.; Latif, M. The 1983 drought in the West Sahel: A case study. Clim. Dyn. 2011, 36, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Calow, R.C.; Macdonald, A.M.; Nicol, A.L.; Robins, N.S. Ground water security and drought in Africa: Linking availability, access, and demand. Ground Water 2010, 48, 246–256. [Google Scholar] [CrossRef]
- Nicholson, S.E. A detailed look at the recent drought situation in the Greater Horn of Africa. J. Arid Environ. 2014, 103, 71–79. [Google Scholar] [CrossRef]
- UNOCHA. Eastern Africa Drought; Humanitarian Report; No 4, 2011; OCHA Eastern Africa: Nairobi, Kenya, 2011. [Google Scholar]
- Ogutu, J.O.; Piepho, H.-P.; Dublin, H.T.; Bhola, N.; Reid, R.S. El Niño-southern oscillation, rainfall, temperature and normalized difference vegetation index fluctuations in the Mara-Serengeti ecosystem. Afr. J. Ecol. 2008, 46, 132–143. [Google Scholar] [CrossRef]
- Nicholson, S.E. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Chang. 2000, 26, 137–158. [Google Scholar] [CrossRef]
- Ackerman, D.E.; Finlay, J.C. Road dust biases NDVI and alters edaphic properties in Alaskan arctic tundra. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Telesca, L.; Lasaponara, R. Pre-and post-fire behavioral trends revealed in satellite NDVI time series. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Telesca, L.; Lasaponara, R. Quantifying intra-annual persistent behaviour in SPOT-VEGETATION NDVI data for Mediterranean ecosystems of southern Italy. Remote Sens. 2006, 101, 95–103. [Google Scholar] [CrossRef]
- Telesca, L.; Lasaponara, R. Discriminating dynamical patterns in burned and unburned vegetational covers by using SPOT-VGT NDVI data. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- De Jong, R.; Schaepman, M.E.; Furrer, R.; De Bruin, S.; Verburg, P.H. Spatial relationship between climatologies and changes in global vegetation activity. Glob. Chang. Biol. 2013, 19, 1953–1964. [Google Scholar] [CrossRef]
- Wu, D.H.; Zhao, X.; Liang, S.L.; Zhou, T.; Huang, K.C.; Tang, B.J.; Zhao, W.Q. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Davenport, M.L.; Nicholson, S.E. On the relation between rainfall and the Normalized Difference Vegetation Index for diverse vegetation types in East Africa. Int. J. Remote Sens. 1993, 14, 2369–2389. [Google Scholar] [CrossRef]
NDVI3g | Rainfall | Correlation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | T | WT | P | B | A | T | WT | P | B | A | T | WT | P | B | A |
1982 | 1 | 4 | 1 | ||||||||||||
1983 | 4 | 3 | 3 | 1 | 2 | 1 | 3 | 4 | 2 | 1 | 2 | 3 | 4 | ||
1984 | 2 | 1 | 1 | 1 | 5 | ||||||||||
1985 | 3 | 5 | |||||||||||||
1986 | 3 | 1 | 3 | ||||||||||||
1987 | 4 | 4 | |||||||||||||
1988 | 5 | 4 | |||||||||||||
1989 | 4 | 1 | 4 | ||||||||||||
1990 | 5 | ||||||||||||||
1991 | 2 | ||||||||||||||
1992 | 5 | 1 | 4 | 3 | 2 | 4 | 2 | 3 | 1 | 2 | 3 | 4 | |||
1993 | 3 | 2 | 1 | 2 | 3 | 5 | |||||||||
1994 | 2 | 1 | 5 | ||||||||||||
1995 | 5 | 2 | |||||||||||||
1997 | 5 | 2 | 3 | 1 | 2 | 6 | |||||||||
1998 | 2 | ||||||||||||||
1999 | 3 | 5 | |||||||||||||
2000 | 5 | 4 | |||||||||||||
2001 | 2 | ||||||||||||||
2004 | 4 | 5 | 5 | 1 | |||||||||||
2005 | 4 | 5 | 5 | ||||||||||||
2006 | 5 | 3 | 2 | 5 | 5 | 1 | 2 | ||||||||
2007 | 1 | 4 | |||||||||||||
2008 | 3 | 2 | 3 | 5 | 5 | 3 | |||||||||
2009 | 3 | 2 | 4 | 3 | 4 | 5 | |||||||||
2010 | 4 | 1 | 3 | 6 | |||||||||||
2011 | 1 | 1 | 2 | 1 | 1 | ||||||||||
2012 | 1 | 3 | 4 | 7 | |||||||||||
2013 | 4 | 3 | 2 | 8 | |||||||||||
2014 | 5 | ||||||||||||||
2015 | 4 | 5 | 3 |
Tropical Zone | Warm Temperate Zone | Polar Zone | Arid Zone | Boreal Zone | |
---|---|---|---|---|---|
(a) | Seasonal mean NDVI3g for four seasons in 1982 | ||||
DJF | 0.578 | 0.58 | 0.507 | 0.18 | 0.208 |
MAM | 0.633 | 0.597 | 0.499 | 0.182 | 0.204 |
JJA | 0.614 | 0.478 | 0.458 | 0.174 | 0.191 |
SON | 0.632 | 0.687 | 0.482 | 0.181 | 0.188 |
(b) | Seasonal mean NDVI3g for four seasons in 2015 | ||||
DJF | 0.589 | 0.578 | 0.495 | 0.184 | 0.199 |
MAM | 0.625 | 0.595 | 0.462 | 0.181 | 0.217 |
JJA | 0.615 | 0.462 | 0.448 | 0.171 | 0.188 |
SON | 0.659 | 0.445 | 0.502 | 0.182 | 0.196 |
Tropical Zone | Warm Temperate Zone | Polar Zone | Arid Zone | Boreal Zone | |
---|---|---|---|---|---|
Elevation (m)(MSL) | −4 to 2675 | −3 to 4102 | 2417 to 5871 | −151 to 3330 | 1701 to 4033 |
Precipitation (mm) | 1195.23 to 1475.1 | 852.80 to 1051.18 | 1213.79 to 1559.7 | 157.46 to 232.4 | 532.46 to 797.782 |
NDVI3g | 0.78 to 0.83 | 0.67 to 0.73 | 0.58 to 0.63 | 0.22 to 0.26 | 0.24 to 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nzabarinda, V.; Bao, A.; Xu, W.; Uwamahoro, S.; Udahogora, M.; Umwali, E.D.; Nyirarwasa, A.; Umuhoza, J. A Spatial and Temporal Assessment of Vegetation Greening and Precipitation Changes for Monitoring Vegetation Dynamics in Climate Zones over Africa. ISPRS Int. J. Geo-Inf. 2021, 10, 129. https://doi.org/10.3390/ijgi10030129
Nzabarinda V, Bao A, Xu W, Uwamahoro S, Udahogora M, Umwali ED, Nyirarwasa A, Umuhoza J. A Spatial and Temporal Assessment of Vegetation Greening and Precipitation Changes for Monitoring Vegetation Dynamics in Climate Zones over Africa. ISPRS International Journal of Geo-Information. 2021; 10(3):129. https://doi.org/10.3390/ijgi10030129
Chicago/Turabian StyleNzabarinda, Vincent, Anming Bao, Wenqiang Xu, Solange Uwamahoro, Madeleine Udahogora, Edovia Dufatanye Umwali, Anathalie Nyirarwasa, and Jeanine Umuhoza. 2021. "A Spatial and Temporal Assessment of Vegetation Greening and Precipitation Changes for Monitoring Vegetation Dynamics in Climate Zones over Africa" ISPRS International Journal of Geo-Information 10, no. 3: 129. https://doi.org/10.3390/ijgi10030129
APA StyleNzabarinda, V., Bao, A., Xu, W., Uwamahoro, S., Udahogora, M., Umwali, E. D., Nyirarwasa, A., & Umuhoza, J. (2021). A Spatial and Temporal Assessment of Vegetation Greening and Precipitation Changes for Monitoring Vegetation Dynamics in Climate Zones over Africa. ISPRS International Journal of Geo-Information, 10(3), 129. https://doi.org/10.3390/ijgi10030129