Changes of Spatiotemporal Pattern and Network Characteristic in Population Flow under COVID-19 Epidemic
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Data Sources
3.2. Methodology
3.2.1. Data Standardization
3.2.2. Calculation of Total Population Mobility
3.2.3. Network Feature Analysis Method
4. Results and Discussion
4.1. Temporal Characteristics of Population Mobility
4.2. Spatial Characteristics of City Population Mobility
4.2.1. The Spatial Pattern of Population Mobility during Pre-Outbreak Period
4.2.2. The Spatial Pattern of Population Mobility during Outbreak and Post-Peak Periods
4.3. Changes in the Structure of the Urban Population Mobility Network
4.4. Discussions and Policy Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, Y.; Song, W.; Xiu, C.; Zhao, Z. The rich-club phenomenon of China’s population flow network during the country’s spring festival. Appl. Geogr. 2018, 96, 77–85. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, Y.; Wei, Y.; Zhao, Z.; Pang, R.; Wang, S. Spatial-Temporal Pattern and Dynamic Mechanism of Population Flow of Changchun City During Chunyun Period Based on Baidu Migration Data. Econ. Geogr. 2019, 39, 101–109. [Google Scholar]
- Xu, Y.; Shaw, S.L.; Zhao, Z.; Yin, L.; Fang, Z.; Li, Q. Understanding aggregate human mobility patterns using passive mobile phone location data: A home-based approach. Transportation 2015, 42, 625–646. [Google Scholar] [CrossRef]
- Wang, X.; Hui, E.; Sun, J. Population migration, urbanization and housing prices: Evidence from the cities in China. Habitat Int. 2017, 66, 49–56. [Google Scholar] [CrossRef]
- Paszto, V.; Burian, J.; Macku, K. Covid-19 data sources: Evaluation of map applications and analysis of behavior changes in Europe’s population. Geografie 2020, 125, 171–209. [Google Scholar] [CrossRef]
- Liu, W.; Shi, E. Spatial pattern of population daily flow among cities based on ICT: A case study of “Baidu Migration”. J. Geogr. Sci. 2016, 71, 1667–1679. [Google Scholar]
- Kraemer, M.U.G.; Sadilek, A.; Zhang, Q.; Marchal, N.; Tuli, G.; Cohn, E.; Hswen, Y.; Perkins, T.; Smith, D.; Reiner, R., Jr.; et al. Mapping global variation in human mobility. Nat. Hum. Behav. 2020, 4, 800–810. [Google Scholar] [CrossRef]
- Li, J.; Ye, Q.; Deng, X.; Liu, Y.; Liu, Y. Spatial-Temporal Analysis on Spring Festival Travel Rush in China Based on Multisource Big Data. Sustainability 2016, 8, 1184. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.; Chen, S.; Jin, H.; Tan, K.; Wangm, D.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—An update on the status. Mil. Med. Res. 2020, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirkeci, I.M. Murat Yüceahin. Coronavirus and Migration: Analysis of Human Mobility and the Spread of COVID-19. Migr. Lett. 2020, 17, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wang, S.; Dong, J.; Shen, Z.; Xu, S. An analysis of the domestic resumption of social production and life under the COVID-19 epidemic. PLoS ONE 2020, 15, e0236387. [Google Scholar] [CrossRef]
- Jia, J.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.; Christakis, N. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 1–11. [Google Scholar] [CrossRef]
- Tong, Y.; Ma, Y.; Liu, H. The short-term impact of COVID-19 epidemic on the migration of Chinese urban population and the evaluation of Chinese urban resilience. Acta Geogr. Sin. 2020, 75, 2505–2520. [Google Scholar]
- He, L.; Yu, Q.; Li, W.; Li, J.; Yang, D. Inter-City Transportation Demand under the COVID-19 Pandemic. Urban Transp. China 2020, 18, 51–61. [Google Scholar]
- Zhou, C.; Su, F.; Pei, T.; Zhang, A.; Du, Y.; Luo, B.; Cao, Z.; Wang, J.; Yuan, W.; Song, C.; et al. COVID-19: Challenges to GIS with Big Data. Geogr. Sustain. 2020, 1, 77–87. [Google Scholar]
- Salvati, L.; Serra, P.; Bencardino, M.; Carlucci, M. Re-urbanizing the European City: A Multivariate Analysis of Population Dynamics During Expansion and Recession Times. Eur. J. Popul. 2018, 35, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Ruktanonchai, N.; Ruktanonchai, C.; Floyd, J.; Tatem, A. Using Google Location History data to quantify fine-scale human mobility. Int. J. Health Geogr. 2018, 17, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Li, A.; Li, D.; Liu, Y.; Du, Y.; Pei, T.; Ma, T.; Zhou, C. Difference of urban development in China from the perspective of passenger transport around Spring Festival. Appl. Geogr. 2017, 87, 85–96. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, L.; Liu, Y.; Huang, Z.; Liu, Y. Migration patterns in China extracted from mobile positioning data. Habitat Int. 2019, 86, 71–80. [Google Scholar] [CrossRef]
- Frith, J.; Saker, M. It Is All About Location: Smartphones and Tracking the Spread of COVID-19. Soc. Media Soc. 2020, 6, 2056305120948257. [Google Scholar] [CrossRef]
- Oliver, N.; Lepri, B.; Sterly, H.; Lambiotte, R.; Vinck, P. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Sci. Adv. 2020, 6, eabc0764. [Google Scholar] [CrossRef]
- Huang, X.; Li, Z.; Jiang, Y.; Li, X. Twitter, human mobility, and COVID-19. arXiv 2020, arXiv:2007.01100. [Google Scholar]
- Apple Inc. Apple and Google Partner on COVID-19 Contact Tracing Technology. 2020. Available online: https://www.apple.com/cz/newsroom/2020/04/apple-and-google-partner-on-covid-19-contacttracing-technology/ (accessed on 8 May 2020).
- Bonaccorsi, G.; Pierri, F.; Cinelli, M.; Flori, A.; Galeazzi, A.; Porcelli, F.; Schmidt, A.; Valensise, C.; Scala, A.; Quattrociocchi, W.; et al. Economic and social consequences of human mobility restrictions under COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 15530–15535. [Google Scholar] [CrossRef]
- Pászto, V.; Burian, J.; Mack, K. Changing Mobility Lifestyle: A Case Study on the Impact of COVID-19 Using Personal Google Locations Data. Int. J. E-Plan. Res. IJEPR 2021, 10, 66–79. [Google Scholar]
- Santamaria, C.; Sermi, F.; Spyrato, S.; Lacus, S.; Vespe, M. Measuring the impact of COVID-19 confinement measures on human mobility using mobile positioning data. A European regional analysis. Saf. Sci. 2020, 132, 104925. [Google Scholar] [CrossRef]
- Desjardins, M.; Hohl, A.; Delmelle, E. Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic: Detecting and evaluating emerging clusters. Appl. Geogr. 2020, 118, 102202. [Google Scholar] [CrossRef]
- Wellenius, G.; Vispute, S.; Espinosa, V.; Fabrikant, A.; Tsai, T.; Hennessy, J.; Williams, B.; Gadepalli, K.; Boulanger, A.; Pearce, A. Impacts of state-level policies on social distancing in the United States using aggregated mobility data during the COVID-19 pandemic. arXiv 2020, arXiv:2004.10172. [Google Scholar]
- Liu, J.; Zhang, K.; Wang, G. Comparative study on data standardization methods in comprehensive evaluation. Digit. Technol. Appl. 2018, 36, 84–85. [Google Scholar]
- Zhao, Z.; Wei, Z.; Pang, R.; Wang, S.; Feng, Z. Alter-based centrality and power of Chinese city network using inter-provincial population flow. J. Geogr. Sci. 2017, 72, 1032–1048. [Google Scholar]
- Zhang, X.; Song, Y.; Wang, H.; Song, Y. Epidemic Spreading Combined with Age and Region in Complex Networks. Math. Probl. Eng. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, S.; Yang, Y. Research on China’s Urban Population Mobility Network Based on Baidu LBS Big Data. Popul. Dev. 2017, 23, 13–23. [Google Scholar]
- Liu, Z.; Qian, J.; Du, Y.; Wang, N.; Yi, J.; Sun, Y.; Ma, T.; Pei, T.; Zhou, C. Multi-level spatial distribution estimation model of the inter-regional migrant population using multi-source spatio-temporal big data: A case study of migrants from Wuhan during the spread of COVID-19. J. Geo-Inf. Sci. 2020, 22, 147–160. [Google Scholar]
- Lai, J.; Pan, J. Spatial pattern of population flow among cities in China during the spring festival travel rush based on ‘Tecent Migration’ data. Hum. Geogr. 2019, 34, 108–117. [Google Scholar]
- Qi, W.; Liu, S.; Zhao, M.; Liu, Z. China’s different spatial patterns of population growth based on the “Hu Line”. J. Geogr. Sci. 2016, 26, 1611–1625. [Google Scholar] [CrossRef]
- Zhao, Z.; Wei, Z.; Pang, R.; Yang, R.; Wang, S. Spatiotemporal and structural characteristics of interprovincial population flow during the 2015 Spring Festival travel rush. Prog. Geogr. 2017, 36, 952–964. [Google Scholar]
- Watts, D.; Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Lai, J. Research on spatial pattern of population mobility among cities: A case study of “Tencent Migration” big data in “National Day-Mid-Autumn Festival” vacation. Geogr. Res. 2019, 38, 1678–1693. [Google Scholar]
- Li, H.; Cheng, Z.; Huang, Y.; Liu, J. Study on the relationship between the 2019 Novel Coronavirus Disease epidemic in China and population migration from Wuhan. Chin. J. Med. Sci. Res. Manag. 2020, 33, E007. [Google Scholar]
Order | City of Immigration | Ratio | City of Emigration | Ratio |
---|---|---|---|---|
1 | City B | 23.1% | City F | 34.1% |
2 | City C | 18.0% | City G | 14.0% |
3 | City D | 14.1% | City H | 11.1% |
… | … | … | … | … |
100 | City W | 0.2% | City S | 1.0% |
Administrative Level | Total Degree | Rank | Administrative Level | Total Degree | Rank |
---|---|---|---|---|---|
Directly administered municipality | Provincial capitals | ||||
Beijing | 2853 | 1 | Changsha | 1781 | 9 |
Shanghai | 2481 | 2 | Nanning | 1505 | 11 |
Chongqing | 1782 | 8 | Shanghai | 1450 | 12 |
Tianjin | 1140 | 23 | Hefei | 1361 | 13 |
Average | 2064 | Zhengzhou | 1303 | 15 | |
Sub-provincial city | Kunming | 1173 | 21 | ||
Shenzhen | 2421 | 3 | Lanzhou | 1122 | 24 |
Guangzhou | 2416 | 4 | Fuzhou | 908 | 34 |
Chengdu | 2401 | 5 | Shijiazhuang | 888 | 36 |
Shenyang | 1824 | 7 | Guiyang | 879 | 40 |
Nanjing | 1332 | 14 | Nanchang | 855 | 43 |
Hangzhou | 1286 | 16 | Taiyuan | 823 | 47 |
Dalian | 1244 | 17 | Urumqi | 733 | 74 |
Changchun | 1182 | 19 | Lhasa | 694 | 81 |
Harbin | 1181 | 20 | Xining | 690 | 83 |
Qingdao | 1060 | 25 | Hohhot | 657 | 93 |
Ningbo | 1051 | 27 | Yinchuan | 598 | 117 |
Jinan | 979 | 29 | Average | 1025 | |
Xi’an | 936 | 31 | Prefecture level city average | 472 | |
Xiamen | 819 | 49 | |||
Wuhan | 440 | 202 | |||
Average | 1371 |
Level (Total Network Value) | City |
---|---|
National network center (>2000) | Beijing, Shanghai, Shenzhen, Guangzhou, Chengdu, Dongguan |
National network subcenter (1301–2000) | Shenyang, Chongqing, Changsha, Suzhou, Nanning, Haikou, Hefei, Nanjing, Zhengzhou |
Regional network center (1001–1300) | Hangzhou, Dalian, Foshan, Changchun, Harbin, Kunming, Hengyang, Tianjin, Lanzhou, Qingdao, Xi’an, Ningbo |
Local network center (501–1000) | 134 cities including Yongzhou, Jinan, Yancheng, Zhoukou, Ganzhou, Fuzhou, Linyi, Shijiazhuang |
Local network nodes (<500) | 185 cities including Danzhou, Kashgar, Ma’anshan, Liupanshui, Baoshan, Putian, Yueyang, Xiaogan, Datong |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wu, Z.; Zhu, L.; Liu, L.; Zhang, C. Changes of Spatiotemporal Pattern and Network Characteristic in Population Flow under COVID-19 Epidemic. ISPRS Int. J. Geo-Inf. 2021, 10, 145. https://doi.org/10.3390/ijgi10030145
Li C, Wu Z, Zhu L, Liu L, Zhang C. Changes of Spatiotemporal Pattern and Network Characteristic in Population Flow under COVID-19 Epidemic. ISPRS International Journal of Geo-Information. 2021; 10(3):145. https://doi.org/10.3390/ijgi10030145
Chicago/Turabian StyleLi, Chengming, Zheng Wu, Lining Zhu, Li Liu, and Chengcheng Zhang. 2021. "Changes of Spatiotemporal Pattern and Network Characteristic in Population Flow under COVID-19 Epidemic" ISPRS International Journal of Geo-Information 10, no. 3: 145. https://doi.org/10.3390/ijgi10030145
APA StyleLi, C., Wu, Z., Zhu, L., Liu, L., & Zhang, C. (2021). Changes of Spatiotemporal Pattern and Network Characteristic in Population Flow under COVID-19 Epidemic. ISPRS International Journal of Geo-Information, 10(3), 145. https://doi.org/10.3390/ijgi10030145