Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends
Abstract
:1. Introduction
2. Search Methodology
- Literature selection.
- Context and content analysis.
- Classification of the articles obtained according to two sets of criteria.
2.1. First Phase: Literature Selection
2.2. Second Phase: Context and Content Analysis
- Authors’ key word co-occurrence in the selected articles from WoS and Scopus.
- The most common sources of LCZ-related articles and the citation links between them from WoS and Scopus.
- The most-cited sources of LCZ-related articles and the citation links in WoS and Scopus.
- The geographical extent of the studies identified (areas studied).
2.3. Third Phase: Classification of LCZ Studies
- Expert knowledge-based method. This refers to the definition of LCZs based on author(s)’ expertise and local knowledge of given urban/hinterland areas, or on author(s)’ judgement based on general urban surface calculations that are not explained in detail in the publication.
- GIS-based method. This presents the calculations of relevant parameters for LCZs definition by the exclusive use of Geographic Information System (GIS) tools or platforms.
- Remote sensing imagery-based method. This indicates reliance on remote-sensing datasets (e.g., satellite images) and the employment of one or more methods to land-cover feature calculations from imagery in order to define LCZs.
- Combined method. This specifies that at least some part of the definition of LCZs was based on clearly-defined values of geometric, surface cover, thermal radiative and metabolic properties, and that the previously-mentioned methods are evenly combined for these surface/thermal calculations.
- Thermal analysis based on in-situ measurements.
- Thermal analysis based on mobile measurements.
- Thermal analysis based on land-surface measurements.
- Thermal analysis based on modelling approaches.
3. Results
3.1. Context and Content of LCZ Studies
3.2. Methods of LCZ Detection and Delineation
3.2.1. Expert Knowledge-Based Method
3.2.2. GIS-Based Method
3.2.3. Remote Sensing Imagery-Based Method
3.2.4. Combined Method
3.3. Thermal Analyses Using the LCZ Concept
3.3.1. Thermal Analysis Based on In-Situ Measurements
3.3.2. Thermal Analysis Based on Mobile Measurements
3.3.3. Thermal Analysis Based on Land-Surface Measurements
3.3.4. Thermal Analysis Based on Modelling Approaches
3.3.5. Summary of Thermal Responses of Local Climate Zones
4. Challenges and Further Development
- Higher accuracy in defining training areas (TAs). With the aim of standardizing the LCZ classification process, the most problematic, even controversial, step is the highly subjective (expert-based) selection of TAs, particularly in cases where the classification for each urban area must be trained individually [66]. Hence, LCZ mapping might prove quite complicated. Similar LCZs in different regions have dissimilar spectral properties due to differences in vegetation, building materials and other variations in cultural and physical environmental factors [102]. Outcomes appear to indicate that LCZ maps are of only moderate quality, i.e., around 50–60% in terms of OA, and some studies have demonstrated that appropriate selection of TAs may increase OA by around 20–30% [66]. However, the quality of TAs remains the foundation of the protocol for generating LCZ maps [103]. Working on standardization of perspectives in defining the typical built-up zone/LCZ, and enhancing the expertise of the volunteer local experts/researchers involved in classification of satellite images, may be a crucial move towards defining TAs with higher accuracy for cities around the world. In this light, Bechtel et al. [154] pointed out that results from the Human Influence Experiment (HUMINEX) revealed large differences between LCZ maps for a single city as developed by different researchers. The HUMINEX outcome suggested that a high-quality LCZ map for a given city can be achieved by the use of ten to fifteen individual TA sets created by untrained experts/researchers. However, this proposal appears in need of further investigation.
- Better quality of satellite images. Current possibilities for the improvement of the accuracy of LCZ mapping include the combination of moderate-resolution satellite images and encouraging researchers to employ other data sets in parallel [52]. Dian et al. [116] presented a series of satellite images from geostationary satellites together with their advantages and disadvantages for use in spatial and climate analysis. It follows that very high-resolution aerial imagery obtained from commercial satellites and unmanned aerial vehicles (UAVs) should be beneficial to accurate LCZ mapping. However, these remain to be studied in detail and data sets are not yet freely available.
- Quality assessment approaches. Bechtel et al. [52] contributed a detailed discussion of the importance of WUDAPT L0 method to the quality assessment and of the checking steps required for successful LCZ maps. They drew attention to an automated cross-validation approach that applies bootstrapping measures [155,156], followed by manual review [52], in a way that involves human visual comparison of the map with high-resolution imagery from Google Earth, and a cross-comparison approach whereby LCZ maps may be compared with other independent data-sets. These cross-comparisons between WUDAPT L0 LCZ maps may be performed in parallel with many sources, among them: GHSL-LABEL (global human settlement layer) or the EEA (European Environment Agency) soil-sealing data set [156]; with selected city-specific comparisons; together with Geo-Wiki data [157]; Google Street View imagery [158,159]; Google Street Map [160]; with vector datasets developed by the nationally-funded MApUCE project [133]; by comparison with the GIS-based method [51]; or by comparisons based on air temperature measurements [114]. Hence, the cross-comparison approach has the potential to become an obligatory step in the standard evaluation procedure for further research [52].
- Improvements in the methods of LCZ mapping. There exist various ongoing suggestions for improvements to the methods of producing LCZ maps and refining their accuracy. Kaloustian et al. [161] recommended transferability of TAs from one city to another. Tuia et al. [162] proposed the development of a robust, generalized classification model. Xu et al. [160], while analysing the Hong Kong urban area, proposed a co-training-based approach, without the need for TAs, and obtained 10% more OA compared with conventional approaches. Using online processing platforms that contain a range of Earth observations could help improve LCZ mapping, and Google Earth Engine has been of value in a number of studies [66,125,163]. It may be concluded that implementation of deep-learning technologies could contribute to extracting high-level image features in order to improve classification accuracy, and this issue will certainly be the focus of further studies [52].
- Application in urban climate modelling. LCZ mapping data is considered a useful input parameter (urban canopy parameter–UCP) for the urban modelling process, so the WUDAPT method could potentially contribute to urban climate models. Hammeberg et al. [132] highlighted that WUDAPT L0 data has advantages in providing the necessary surface parameters for urban climate models and assists the intra-urban classification of surface characteristics and thermal analysis. Thus, the first studies demonstrated that clear signals of surface heterogeneity may be obtained from LCZ mapping, using the WRF model [120,132]. Also, Ching et al. [103] drew attention to portal tools such as WUDAPT to WRF (W2W) and SCALER as having great potential for future research. However, in the light of the studies analysed herein, there still exist uncertainties about the utility of LCZs for fine-scale modelling in urban areas.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovats, R.S.; Valentini, R.; Bouwer, L.M.; Georgopoulou, E.; Jacob, D.; Martin, E.; Rounsevell, M.; Soussana, J.-F. Europe. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1267–1326. [Google Scholar]
- Fischer, E.M.; Schar, C.R. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Jacob, D.; Kotova, L.; Teichmann, C.; Sobolowski, S.P.; Vautard, R.; Donnelly, C.; Koutroulis, A.G.; Grillakis, M.G.; Tsanis, I.K.; Damm, A.; et al. Climate impacts in Europe Under +1.5 °C global warming. Earths Future 2018, 6, 264–285. [Google Scholar] [CrossRef] [Green Version]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C, An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci. Total Environ. 2018, 624, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Gál, T.; Mahó, S.I.; Skarbit, N.; Unger, J. Numerical modelling for analysis of the effect of different urban green spaces on urban heat load patterns in the present and in the future. Comput. Environ. Urban Syst. 2021, 87, 101600. [Google Scholar] [CrossRef]
- Voogt, J.; Oke, T. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- WMO. 2019 Concludes a Decade of Exceptional Global Heat and High-Impact Weather; WMO: Geneva, Switzerland, 2019; Available online: https://public.wmo.int/en/media/press-release/2019-concludes-decade-of-exceptional-global-heat-and-high-impact-weather (accessed on 10 October 2020).
- Eckstein, D.; Künzel, V.; Schäfer, L.; Winges, M. Global Climate Risk Index 2020: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2018 and 1999 to 2018; Germanwatch e.V.: Bonn, Germany, 2019; p. 44. Available online: https://www.germanwatch.org/en/cri (accessed on 11 October 2020).
- UN. World Urbanization Prospects—The 2014 Revision; UN Department of Economic and Social Affairs: New York, NY, USA, 2014. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Muller, C.L.; Chapman, L.; Grimmond, C.S.B.; Young, D.T.; Cai, X. Sensors and the city: A review of urban meteorological networks. Int. J. Clim. 2013, 33, 1585–1600. [Google Scholar] [CrossRef]
- Baccini, M.; Biggeri, A.; Accetta, G.; Kosatsky, T.; Katsouyanni, K.; Analitis, A.; Anderson, H.R.; Bisanti, L.D.; Ippoliti, D.; Danova, J.; et al. Heat effects on mortality in 15 European Cities. Epidemiology 2008, 19, 711–719. [Google Scholar] [CrossRef]
- Wilhelmi, O.V.; Hayden, M.H. Connecting people and place: A new framework for reducing urban vulnerability to extreme heat. Environ. Res. Lett. 2010, 5, 014021. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Gehrels, H.; van der Meulen, S.; Schasfoort, F.; Bosch, P.; Brolsma, R.; van Dinther, D.; Geerling, G.; Goossen, M.; Jacobs, C.; de Jong, M.; et al. Designing Green and Blue Infrastructure to Support Healthy Urban Living; TO2 Federatie: Uthrecht, The Netherlands, 2016; p. 109. [Google Scholar]
- Arsenović, D.; Savić, S.; Lužanin, Z.; Radić, I.; Milošević, D.; Arsić, M. Heat-related mortality as an indicator of population vulnerability in a mid-sized Central European city (Novi Sad, Serbia, summer 2015). Geogr. Pannonica 2019, 23, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Wouters, H.; De Ridder, K.; Poelmans, L.; Willems, P.; Brouwers, J.; Hosseinzadehtalaei, P.; Tabari, H.; Broucke, S.V.; Van Lipzig, N.P.M.; Demuzere, M. Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region. Geophys. Res. Lett. 2017, 44, 8997–9007. [Google Scholar] [CrossRef] [Green Version]
- EU. Human Health Impacts of Climate Change in Europe—JRC Technical Reports; European Commission, Joint Research Centre, Institute for Prospective Technological Studies: Seville, Spain, 2014; p. 32. [Google Scholar]
- Kamal-Chaoui, L.; Robert, A. Competitive Cities and climate change. OECD Reg. Dev. Work. Pap. 2009. [Google Scholar] [CrossRef]
- Oke, T.; Mills, G.; Christen, A.; Voogt, J. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Unger, J. Heat island intensity with different meteorological conditions in a medium-sized town: Szeged, Hungary. Theor. Appl. Clim. 1996, 54, 147–151. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2011, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, M.; Geletič, J.; Husák, J.; Vysoudil, M. Urban field classification by “local climate zones” in a medium-sized Central European city: The case of Olomouc (Czech Republic). Theor. Appl. Clim. 2015, 122, 531–541. [Google Scholar] [CrossRef]
- Lelovics, E.; Unger, J.; Savić, S.; Gál, T.; Milošević, D.; Gulyás, Á.; Marković, V.; Arsenović, D.; Gál, C.V. Intra-urban temperature observations in two Central European cities: A summer study. Időjárás 2016, 120, 283–300. [Google Scholar]
- Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef]
- Hutcheon, R.J.; Johnson, R.H.; Lowry, W.P.; Black, C.H.; Hadley, D. Observations of the urban heat island in a small city. Bull. Am. Meteorol. Soc. 1967, 48, 7–9. [Google Scholar] [CrossRef]
- Kopec, R.J. Further observations of the urban heat island in a small city. Bull. Am. Meteorol. Soc. 1970, 51, 602–606. [Google Scholar] [CrossRef] [Green Version]
- Blazejczyk, K.; Bakowska, M.; Wieclaw, M. Urban heat island in large and small cities. In Proceedings of the 6th International Conference on Urban Climate, Göteborg, Sweden, 12–16 June 2006; pp. 794–797. [Google Scholar]
- Ellena, M.; Breil, M.; Soriani, S. The heat-health nexus in the urban context: A systematic literature review exploring the socio-economic vulnerabilities and built environment characteristics. Urban Clim. 2020, 34, 100676. [Google Scholar] [CrossRef]
- Bokwa, A.; Hajto, M.J.; Walawender, J.P.; Szymanowski, M. Influence of diversified relief on the urban heat island in the city of Kraków, Poland. Theor. Appl. Clim. 2015, 122, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Ellefsen, R. Mapping and measuring buildings in the canopy boundary layer in ten U.S. cities. Energy Build. 1991, 16, 1025–1049. [Google Scholar] [CrossRef]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; IOM Rep. WMO/TD-No. 1250; WMO: Geneva, Switzerland, 2004; p. 47. Available online: www.wmo.int/pages/prog/www/IMOP/publications/IOM-81/IOM-81-UrbanMetObs.pdf (accessed on 12 October 2020).
- Oke, T.R. Urban Observations. Guide to Meteorological Instruments and Methods of Observation, Part II of Observing Systems, 7th ed.; II-11-1–II-11-25; WMO: Geneva, Switzerland, 2008. [Google Scholar]
- Oke, T.R. Guide to Instruments and Methods of Observation; WMO: Geneva, Switzerland, 2018; Volume III—Observing Systems, p. 426. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A land use and land cover classification system for use with remote sensor data. Prof. Pap. 1976, 964, 28. [Google Scholar] [CrossRef] [Green Version]
- Auer, A.H. Correlation of land use and cover with meteorological anomalies. J. Appl. Meteor. 1978, 17, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Häubi, F.; Roth, U. Wechselwirkung zwischen der Siedlungsstruktur und Wärmeversorgungssystemen [Interaction between settlement structure and heating supply systems]. Forschungsprojekt 1980, 270. [Google Scholar] [CrossRef]
- Brunn, S.D.; Williams, J.F. Cities of the World: World Regional Urban Development; Harper and Row: New York, NY, USA, 1983; p. 506. [Google Scholar]
- Hoyle, B.S.; O’Connor, A. The African city. Geogr. J. 1984, 150, 253. [Google Scholar] [CrossRef]
- Vance, J.E., Jr. The Continuous City: Urban Morphology in Western Civilization; John Hopkins University Press: Baltimore, MD, USA, 1990; p. 552. [Google Scholar]
- Kostof, S. The City Shaped: Urban Patterns and Meanings through History; Thames and Hudson: London, UK, 1991; p. 352. [Google Scholar]
- Wieringa, J. Representative roughness parameters for homogeneous terrain. Bound. Layer Meteorol. 1993, 63, 323–363. [Google Scholar] [CrossRef]
- Potter, R.B.; Lloyd-Evans, S. The City in the Developing World; Longman: London, UK, 1998; p. 244. [Google Scholar]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Theurer, W. Typical building arrangements for urban air pollution modelling. Atmos. Environ. 1999, 33, 4057–4066. [Google Scholar] [CrossRef]
- Emmanuel, R.; Loconsole, A. Green infrastructure as an adaptation approach to tackling urban overheating in the Glasgow Clyde Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int. J. Clim. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Lelovics, E.; Unger, J.; Gál, T.; Gál, C. Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modelling. Clim. Res. 2014, 60, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; Alexander, P.J.; Beck, C.; Böhner, J.; Brousse, O.; Ching, J.; Demuzere, M.; Fonte, C.; Gál, T.; Hidalgo, J.; et al. Generating WUDAPT Level 0 data—Current status of production and evaluation. Urban Clim. 2019, 27, 24–45. [Google Scholar] [CrossRef] [Green Version]
- Feranec, J.; Kopecká, M.; Szatmári, D.; Holec, J.; Šťastný, P.; Pazúr, R.; Bobáľová, H. A review of studies involving the effect of land cover and land use on the urban heat island phenomenon, assessed by means of the MUKLIMO model. Geografie 2019, 124, 83–101. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Pullin, A.S.; Stewart, G.B. Guidelines for systematic review in conservation and environmental management. Conserv. Biol. 2006, 20, 1647–1656. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.-M.; Huang, Z.-L.; Guo, J.; Li, H.; Guo, X.-R.; Nkeli, M.J. Bibliometric analysis on smart cities research. Sustainability 2019, 11, 3606. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Liu, D.; Lu, Z.; Crittenden, J.; Mao, G.; Wang, S.; Zou, H. Research Development on Sustainable Urban Infrastructure From 1991 to 2017: A Bibliometric Analysis to Inform Future Innovations. Earths Future 2019, 7, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Xu, Z.; Wang, X. Bibliometric analysis of support vector machines research trend: A case study in China. Int. J. Mach. Learn. Cybern. 2020, 11, 715–728. [Google Scholar] [CrossRef]
- Tornay, N.; Schoetter, R.; Bonhomme, M.; Faraut, S.; Masson, V. GENIUS: A methodology to define a detailed description of buildings for urban climate and building energy consumption simulations. Urban Clim. 2017, 20, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Bocher, E.; Petit, G.; Bernard, J.; Palominos, S. A geoprocessing framework to compute urban indicators: The MApUCE tools chain. Urban Clim. 2018, 24, 153–174. [Google Scholar] [CrossRef] [Green Version]
- Gardes, T.; Schoetter, R.; Hidalgo, J.; Long, N.; Marquès, E.; Masson, V. Statistical prediction of the nocturnal urban heat island intensity based on urban morphology and geographical factors—An investigation based on numerical model results for a large ensemble of French cities. Sci. Total Environ. 2020, 737, 139253. [Google Scholar] [CrossRef] [PubMed]
- Nedkov, S.; Zhiyanski, M.; Dimitrov, S.; Borisova, B.; Popov, A.; Ihtimanski, I.; Yaneva, R.; Nikolov, P.; Bratanova-Doncheva, S. Mapping and assessment of urban ecosystem condition and services using integrated index of spatial structure. One Ecosyst. 2017, 2, e14499. [Google Scholar] [CrossRef]
- Hu, J.; Ghamisi, P.; Zhu, X.X. Feature extraction and selection of Sentinel-1 dual-pol data for global-scale local climate zone classification. ISPRS Int. J. Geoinf. 2018, 7, 379. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI analysis using local climate zones—A comparison of 50 cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into local climate zones. PLoS ONE 2019, 14, e0214474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, J.; Savic, S.; Gál, T. Modelling of the annual mean urban heat island pattern for planning of representative urban climate station network. Adv. Meteorol. 2011, 2011, 398613. [Google Scholar] [CrossRef]
- Bechtel, B.; Daneke, C. Classification of local climate zones based on multiple earth observation data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1191–1202. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Newly developed “thermal climate zones” for defining and measuring urban heat island magnitude in the canopy layer. In Proceedings of the 8th Symposium on the Urban Environment, Phoenix, AZ, USA, 11–15 January 2009. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Thermal differentiation of local climate zones using temperature observations from urban and rural field sites. In Proceedings of the 9th Symposium on the Urban Environment, Keystone, CO, USA, 2–6 August 2010. [Google Scholar]
- Davenport, A.G.; Grimmond, S.B.; Oke, T.R.; Wieringa, J. Estimating the roughness of cities and sheltered country. In Proceedings of the 12th Conference on Applied Climatology, Asheville, NC, USA, 8 May 2000; Volume 96, p. 99. [Google Scholar]
- Savić, S.; Milošević, D.; Lazić, L.; Marković, V.; Arsenović, D.; Pavić, D. Classifying urban meteorological stations sites by ’local climate zones’: Preliminary results for the city of Novi Sad (Serbia). Geogr. Pannonica 2013, 17, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Wiesner, S.; Eschenbach, A.; Ament, F. Urban air temperature anomalies and their relation to soil moisture observed in the city of Hamburg. Meteorol. Z. 2014, 23, 143–157. [Google Scholar] [CrossRef]
- Müller, N.; Kuttler, W.; Barlag, A.-B. Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theor. Appl. Climatol. 2013, 115, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Herbel, I.; Croitoru, A.-E.; Rus, I.; Harpa, G.V.; Ciupertea, A.-F. Detection of atmospheric urban heat island through direct measurements in Cluj-Napoca city, Romania. Hung. Geogr. Bull. 2016, 65, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Pour, T.; Miřijovský, J.; Purket, T. Airborne thermal remote sensing: The case of the city of Olomouc, Czech Republic. Eur. J. Remote Sens. 2019, 52, 209–218. [Google Scholar] [CrossRef]
- Pour, T.; Voženílek, V. Thermal data analysis for urban climate research: A case study of Olomouc, Czechia. Geogr. Cassoviensis 2020, 14, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Theeuwes, N.E.; Steeneveld, G.-J.; Ronda, R.J.; Rotach, M.W.; Holtslag, A.A.M. Cool city mornings by urban heat. Environ. Res. Lett. 2015, 10, 114022. [Google Scholar] [CrossRef]
- Droste, A.M.; Steeneveld, G.J.; Holtslag, A.A.M. Introducing the urban wind island effect. Environ. Res. Lett. 2018, 13, 094007. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M. GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Morav. Geogr. Rep. 2016, 24, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Unger, J.; Lelovics, E.; Gál, T. Local Climate Zone mapping using GIS methods in Szeged. Hung. Geogr. Bull. 2014, 63, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Šećerov, I.; Savić, S.; Milošević, D.; Marković, V.; Bajšanski, I. Development of an automated urban climate monitoring system in Novi Sad (Serbia). Geogr. Pannonica 2015, 19, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Šećerov, I.B.; Savić, S.M.; Milošević, D.D.; Arsenović, D.M.; Dolinaj, D.M.; Popov, S.B. Progressing urban climate research using a high-density monitoring network system. Environ. Monit. Assess. 2019, 191, 89. [Google Scholar] [CrossRef] [PubMed]
- Skarbit, N.; Gal, T.; Unger, J. Airborne surface temperature differences of the different Local Climate Zones in the urban area of a medium sized city. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Unger, J.; Gál, T.M.; Csépe, Z.; Lelovics, E.; Gulyás, Á. Development, data processing and preliminary results of an urban human comfort monitoring and information system. Időjárás 2015, 119, 337–354. [Google Scholar]
- Gál, T.; Skarbit, N.; Unger, J. Urban heat island patterns and their dynamics based on an urban climate measurement network. Hung. Geogr. Bull. 2016, 65, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Milošević, D.D.; Savić, S.M.; Marković, V.; Arsenović, D.; Šećerov, I. Outdoor human thermal comfort in local climate zones of Novi Sad (Serbia) during heat wave period. Hung. Geogr. Bull. 2016, 65, 129–137. [Google Scholar] [CrossRef]
- Gémes, O.; Tobak, Z.; Van Leeuwen, B. Satellite based analysis of surface urban heat island intensity. J. Environ. Geogr. 2016, 9, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Skarbit, N.; Stewart, I.D.; Unger, J.; Gál, T. Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. Int. J. Clim. 2017, 37, 582–596. [Google Scholar] [CrossRef]
- Unger, J.; Skarbit, N.; Gál, T. Evaluation of outdoor human thermal sensation of local climate zones based on long-term database. Int. J. Biometeorol. 2017, 62, 183–193. [Google Scholar] [CrossRef]
- Unger, J.; Skarbit, N.; Kovács, A.; Gál, T. Comparison of regional and urban outdoor thermal stress conditions in heatwave and normal summer periods: A case study. Urban Clim. 2020, 32, 100619. [Google Scholar] [CrossRef]
- Savić, S.; Marković, V.; Šećerov, I.; Pavić, D.; Arsenović, D.; Milosevic, D.; Dolinaj, D.; Nagy, I.; Pantelić, M. Heat wave risk assessment and mapping in urban areas: Case study for a midsized Central European city, Novi Sad (Serbia). Nat. Hazards 2018, 91, 891–911. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Build. Environ. 2019, 156, 21–32. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Dobrovolný, P. Modelled spatio-temporal variability of air temperature in an urban climate and its validation: A case study of Brno, Czech Republic. Hung. Geogr. Bull. 2016, 65, 169–180. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Dobrovolný, P. Land surface temperature differences within local climate zones, based on two central European cities. Remote Sens. 2016, 8, 788. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, M.; Geletič, J.; Dobrovolný, P.; Jurek, M. Temperature differences among local climate zones established by mobile measurements in two central European cities. Clim. Res. 2018, 75, 53–64. [Google Scholar] [CrossRef]
- Lehnerta, M.; Kubeček, J.; Geletič, J.; Jurek, M.; Frajer, J. Identifying hot and cool spots in the city centre based on bicycle measurements: The case of Olomouc, Czech Republic. Geogr. Pannonica 2018, 22, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Geletič, J.; Lehnert, M.; Dobrovolný, P.; Žuvela-Aloise, M. Spatial modelling of summer climate indices based on local climate zones: Expected changes in the future climate of Brno, Czech Republic. Clim. Chang. 2019, 152, 487–502. [Google Scholar] [CrossRef]
- Rodler, A.; Leduc, T. Local climate zone approach on local and micro scales: Dividing the urban open space. Urban Clim. 2019, 28, 100457. [Google Scholar] [CrossRef]
- Oliveira, A.; Lopes, A.; Niza, S. Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data. Urban Clim. 2020, 33, 100631. [Google Scholar] [CrossRef]
- WUDAPT. World Urban Database and Access Portal Tools. Available online: http://www.wudapt.org/ (accessed on 15 December 2020).
- Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS Int. J. Geoinf. 2015, 4, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Ching, J.; Mills, G.; Bechtel, B.; See, L.; Feddema, J.; Wang, X.; Ren, C.; Brousse, O.; Martilli, A.; Neophytou, M.; et al. WUDAPT: An Urban Weather, Climate, and Environmental Modeling Infrastructure for the Anthropocene. Bull. Am. Meteorol. Soc. 2018, 99, 1907–1924. [Google Scholar] [CrossRef] [Green Version]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Verdonck, M.-L.; Okujeni, A.; van der Linden, S.; Demuzere, M.; De Wulf, R.; Van Coillie, F. Influence of neighbourhood information on ‘Local Climate Zone’ mapping in heterogeneous cities. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 102–113. [Google Scholar] [CrossRef]
- Verdonck, M.-L.; Demuzere, M.; Hooyberghs, H.; Beck, C.; Cyrys, J.; Schneider, A.; Dewulf, R.; Van Coillie, F. The potential of local climate zones maps as a heat stress assessment tool, supported by simulated air temperature data. Landsc. Urban Plan. 2018, 178, 183–197. [Google Scholar] [CrossRef]
- Verdonck, M.-L.; Demuzere, M.; Hooyberghs, H.; Priem, F.; Van Coillie, F. Heat risk assessment for the Brussels capital region under different urban planning and greenhouse gas emission scenarios. J. Environ. Manag. 2019, 249, 109210. [Google Scholar] [CrossRef] [Green Version]
- Richard, Y.; Emery, J.; Dudek, J.; Pergaud, J.; Chateau-Smith, C.; Zito, S.; Rega, M.; Vairet, T.; Castel, T.; Thévenin, T.; et al. How relevant are local climate zones and urban climate zones for urban climate research? Dijon (France) as a case study. Urban Clim. 2018, 26, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Schmitt, M.; Mou, L.; Ghamisi, P.; Zhu, X.X. Feature importance analysis for local climate zone classification using a residual convolutional neural network with multi-source datasets. Remote Sens. 2018, 10, 1572. [Google Scholar] [CrossRef] [Green Version]
- Droste, A.M.; Heusinkveld, B.G.; Fenner, D.; Steeneveld, G. Assessing the potential and application of crowdsourced urban wind data. Q. J. R. Meteorol. Soc. 2020, 146, 2671–2688. [Google Scholar] [CrossRef]
- Skarbit, N.; Gál, T. Projection of intra-urban modification of night-time climate indices during the 21st century. Hung. Geogr. Bull. 2016, 65, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Fenner, D.; Meier, F.; Bechtel, B.; Otto, M.; Scherer, D. Intra and inter ‘local climate zone’ variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany. Meteorol. Z. 2017, 26, 525–547. [Google Scholar] [CrossRef]
- Fenner, D.; Holtmann, A.; Meier, F.; Langer, I.; Scherer, D. Contrasting changes of urban heat island intensity during hot weather episodes. Environ. Res. Lett. 2019, 14, 124013. [Google Scholar] [CrossRef]
- Beck, C.; Straub, A.; Breitner, S.; Cyrys, J.; Philipp, A.; Rathmann, J.; Schneider, A.; Wolf, K.; Jacobeit, J. Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions. Urban Clim. 2018, 25, 152–166. [Google Scholar] [CrossRef]
- Bokwa, A.; Geletič, J.; Lehnert, M.; Žuvela-Aloise, M.; Hollósi, B.; Gál, T.; Skarbit, N.; Dobrovolný, P.; Hajto, M.J.; Kielar, R.; et al. Heat load assessment in Central European cities using an urban climate model and observational monitoring data. Energy Build. 2019, 201, 53–69. [Google Scholar] [CrossRef]
- Dian, C.; Pongrácz, R.; Dezső, Z.; Bartholy, J. Annual and monthly analysis of surface urban heat island intensity with respect to the local climate zones in Budapest. Urban Clim. 2020, 31, 100573. [Google Scholar] [CrossRef]
- Fricke, C.; Pongrácz, R.; Gál, T.; Savić, S.; Unger, J. Using local climate zones to compare remotely sensed surface temperatures in temperate cities and hot desert cities. Morav. Geogr. Rep. 2020, 28, 48–60. [Google Scholar] [CrossRef]
- Rathmann, J.; Beck, C.; Flutura, S.; Seiderer, A.; Aslan, I.; André, E. Towards quantifying forest recreation: Exploring outdoor thermal physiology and human well-being along exemplary pathways in a central European urban forest (Augsburg, SE-Germany). Urban For. Urban Green. 2020, 49, 126622. [Google Scholar] [CrossRef]
- Vuckovic, M.; Hammerberg, K.; Mahdavi, A. Urban weather modeling applications: A Vienna case study. Build. Simul. 2019, 13, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Brousse, O.; Martilli, A.; Foley, M.; Mills, G.; Bechtel, B. WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Clim. 2016, 17, 116–134. [Google Scholar] [CrossRef]
- Yoo, C.; Han, D.; Im, J.; Bechtel, B. Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images. ISPRS J. Photogramm. 2019, 157, 155–170. [Google Scholar] [CrossRef]
- Zonato, A.; Martilli, A.; Di Sabatino, S.; Zardi, D.; Giovannini, L. Evaluating the performance of a novel WUDAPT averaging technique to define urban morphology with mesoscale models. Urban Clim. 2020, 31, 100584. [Google Scholar] [CrossRef]
- Danylo, O.; See, L.; Bechtel, B.; Schepaschenko, D.; Fritz, S. Contributing to WUDAPT: A local climate zone classification of two cities in Ukraine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1841–1853. [Google Scholar] [CrossRef] [Green Version]
- Gholami, R.M.; Beck, C. Towards the determination of driving factors of varying LST-LCZ relationships: A case study over 25 cities. Geogr. Pannonica 2019, 23, 289–307. [Google Scholar] [CrossRef] [Green Version]
- Demuzere, M.; Bechtel, B.; Mills, G. Global transferability of local climate zone models. Urban Clim. 2019, 27, 46–63. [Google Scholar] [CrossRef]
- Fonte, C.C.; Lopes, P.; See, L.; Bechtel, B. Using OpenStreetMap (OSM) to enhance the classification of local climate zones in the framework of WUDAPT. Urban Clim. 2019, 28, 100456. [Google Scholar] [CrossRef]
- Oxoli, D.; Ronchetti, G.; Minghini, M.; Molinari, M.E.; Lotfian, M.; Sona, G.; Brovelli, M.A. Measuring urban land cover influence on air temperature through multiple Geo-Data—The case of Milan, Italy. ISPRS Int. J. Geoinf. 2018, 7, 421. [Google Scholar] [CrossRef] [Green Version]
- Geis, C.; Leichtle, T.; Wurm, M.; Pelizari, P.A.; Standfus, I.; Zhu, X.X.; So, E.; Siedentop, S.; Esch, T.; Taubenbock, H. Large-area characterization of urban morphology—Mapping of built-up height and density using TanDEM-X and Sentinel-2 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2912–2927. [Google Scholar] [CrossRef]
- Qiu, C.; Mou, L.; Schmitt, M.; Zhu, X.X. Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network. ISPRS J. Photogramm. Remote Sens. 2019, 154, 151–162. [Google Scholar] [CrossRef]
- Rosentreter, J.; Hagensieker, R.; Waske, B. Towards large-scale mapping of local climate zones using multitemporal Sentinel 2 data and convolutional neural networks. Remote Sens. Environ. 2020, 237, 111472. [Google Scholar] [CrossRef]
- Venter, Z.S.; Brousse, O.; Esau, I.; Meier, F. Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sens. Environ. 2020, 242, 111791. [Google Scholar] [CrossRef]
- Hammerberg, K.; Brousse, O.; Martilli, A.; Mahdavi, A. Implications of employing detailed urban canopy parameters for mesoscale climate modelling: A comparison between WUDAPT and GIS databases over Vienna, Austria. Int. J. Clim. 2018, 38, e1241–e1257. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, J.; Dumas, G.; Masson, V.; Petit, G.; Bechtel, B.; Bocher, E.; Foley, M.; Schoetter, R.; Mills, G. Comparison between local climate zones maps derived from administrative datasets and satellite observations. Urban Clim. 2019, 27, 64–89. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.J.; Mills, G. Local climate classification and Dublin’s urban heat Island. Atmosphere 2014, 5, 755–774. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.J.; Mills, G.; Fealy, R. Using LCZ data to run an urban energy balance model. Urban Clim. 2015, 13, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.; Fealy, R.; Mills, G. Simulating the impact of urban development pathways on the local climate: A scenario-based analysis in the greater Dublin region, Ireland. Landsc. Urban Plan. 2016, 152, 72–89. [Google Scholar] [CrossRef] [Green Version]
- Wicki, A.; Parlow, E. Attribution of local climate zones using a multitemporal land use/land cover classification scheme. J. Appl. Remote Sens. 2017, 11, 026001. [Google Scholar] [CrossRef] [Green Version]
- Wicki, A.; Parlow, E.; Feigenwinter, C. Evaluation and modeling of urban heat island intensity in Basel, Switzerland. Climate 2018, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Molnár, G.; Gyöngyösi, A.Z.; Gál, T. Integration of an LCZ-based classification into WRF to assess the intra-urban temperature pattern under a heatwave period in Szeged, Hungary. Theor. Appl. Clim. 2019, 138, 1139–1158. [Google Scholar] [CrossRef] [Green Version]
- Straub, A.; Berger, K.; Breitner, S.; Cyrys, J.; Geruschkat, U.; Jacobeit, J.; Kühlbach, B.; Kusch, T.; Philipp, A.; Schneider, A.; et al. Statistical modelling of spatial patterns of the urban heat island intensity in the urban environment of Augsburg, Germany. Urban Clim. 2019, 29, 100491. [Google Scholar] [CrossRef]
- Fenner, D.; Meier, F.; Scherer, D.; Polze, A. Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Clim. 2014, 10, 308–331. [Google Scholar] [CrossRef]
- Maharoof, N.; Emmanuel, R.; Thomson, C. Compatibility of local climate zone parameters for climate sensitive street design: Influence of openness and surface properties on local climate. Urban Clim. 2020, 33, 100642. [Google Scholar] [CrossRef]
- Quanz, J.A.; Ulrich, S.; Fenner, D.; Holtmann, A.; Eimermacher, J. Micro-scale variability of air temperature within a local climate zone in Berlin, Germany, during summer. Climate 2018, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Bassett, R.; Cai, X.; Chapman, L.; Heaviside, C.; Thornes, J.E.; Muller, C.L.; Young, D.T.; Warren, E.L. Observations of urban heat island advection from a high-density monitoring network. Q. J. R. Meteorol. Soc. 2016, 142, 2434–2441. [Google Scholar] [CrossRef]
- Feng, J.; Cai, X.; Chapman, L. Impact of atmospheric conditions and levels of urbanization on the relationship between nocturnal surface and urban canopy heat islands. Q. J. R. Meteorol. Soc. 2019, 145, 3284–3299. [Google Scholar] [CrossRef]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using local climate zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator. Theor. Appl. Clim. 2016, 130, 365–376. [Google Scholar] [CrossRef]
- Leconte, F.; Bouyer, J.; Claverie, R. Nocturnal cooling in Local Climate Zone: Statistical approach using mobile measurements. Urban Clim. 2020, 33, 100629. [Google Scholar] [CrossRef]
- Wouters, H.; Demuzere, M.; Blahak, U.; Fortuniak, K.; Maiheu, B.; Camps, J.; Tielemans, D.; Van Lipzig, N.P.M. The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: Description and application with the COSMO-CLM model for a Belgian summer. Geosci. Model Dev. 2016, 9, 3027–3054. [Google Scholar] [CrossRef] [Green Version]
- Arnds, D.; Böhner, J.; Bechtel, B. Spatio-temporal variance and meteorological drivers of the urban heat island in a European city. Theor. Appl. Clim. 2017, 128, 43–61. [Google Scholar] [CrossRef]
- Gonçalves, A.; Ornellas, G.; Ribeiro, A.C.; Maia, F.; Rocha, A.; Feliciano, M. Urban cold and heat island in the city of Bragança (Portugal). Climate 2018, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- McRae, I.; Freedman, F.R.; Rivera, A.; Li, X.; Dou, J.; Cruz, I.; Ren, C.; Dronova, I.; Fraker, H.; Bornstein, R. Integration of the WUDAPT, WRF, and ENVI-met models to simulate extreme daytime temperature mitigation strategies in San Jose, California. Build. Environ. 2020, 184, 107180. [Google Scholar] [CrossRef]
- Vázquez-Jiménez, R.; Romero-Calcerrada, R.; Ramos-Bernal, R.N.; Arrogante-Funes, P.; Novillo, C.J. Topographic correction to landsat imagery through slope classification by applying the SCS + C method in mountainous forest areas. ISPRS Int. J. Geoinf. 2017, 6, 287. [Google Scholar] [CrossRef]
- Bechtel, B.; Demuzere, M.; Sismanidis, P.; Fenner, D.; Brousse, O.; Beck, C.; Van Coillie, F.; Conrad, O.; Keramitsoglou, I.; Middel, A.; et al. Quality of crowdsourced data on urban morphology—The Human Influence Experiment (HUMINEX). Urban Sci. 2017, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Kaloustian, N.; Bechtel, B. Local climatic zoning and urban heat island in Beirut. Procedia Eng. 2016, 169, 216–223. [Google Scholar] [CrossRef]
- Bechtel, B.; See, L.; Mills, G.; Foley, M. Classification of local climate zones using SAR and multispectral data in an arid environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3097–3105. [Google Scholar] [CrossRef]
- Mills, G.; Bechtel, B.; Ching, J.; See, L.; Feddema, J.; Foley, M.; Alexander, P.; O’Connor, M. An Introduction to the WUDAPT Project. In Proceedings of the 9th International Conference on Urban Climate ICUC, Toulouse, France, 20–24 July 2015. [Google Scholar]
- Middel, A.; Lukasczyk, J.; Maciejewski, R.; Demuzere, M.; Roth, M. Sky View Factor footprints for urban climate modeling. Urban Clim. 2018, 25, 120–134. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban form and composition of street canyons: A human-centric big data and deep learning approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, C.; Ma, P.; Ho, J.; Wang, W.; Lau, K.K.-L.; Lin, H.; Ng, E. Urban morphology detection and computation for urban climate research. Landsc. Urban Plan. 2017, 167, 212–224. [Google Scholar] [CrossRef]
- Kaloustian, N.; Tamminga, M.; Bechtel, B. Local climate zones and annual surface thermal response in a Mediterranean city. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4. [Google Scholar]
- Tuia, D.; Moser, G.; Le Saux, B.; Bechtel, B.; See, L. 2017 IEEE GRSS data fusion contest: Open data for global multimodal land use classification [technical committees]. IEEE Geosci. Remote Sens. 2017, 5, 70–73. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, P.; Wang, G.; Wang, D. Urban extent enhances extreme precipitation over the Pearl River Delta, China. Atmos. Sci. Lett. 2015, 16, 310–317. [Google Scholar] [CrossRef]
- Burić, D.; Doderović, M. Precipitation, humidity and cloudiness in Podgorica (Montenegro) during the period 1951–2018. Geogr. Pannonica 2019, 23, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Milošević, D.; Kresoja, M.; Savić, S.; Lužanin, Z. Intra-urban analysis of relative humidity and its cross-correlation with air temperature in Centra-european city. In Proceedings of the 10th International Conference on Urban Climate (ICUC10) with the 14th Symposium on the Urban Environment (SUE), New York, NY, USA, 6–10 August 2018; p. 5. [Google Scholar]
- Schnell, I.; Cohen, P.; Mandelmilch, M.; Potchter, O. Portable—trackable methodologies for measuring personal and place exposure to nuisances in urban environments: Towards a people oriented paradigm. Comput. Environ. Urban Syst. 2021, 86, 101589. [Google Scholar] [CrossRef]
- Middel, A.; Krayenhoff, E.S. Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Sci. Total Environ. 2019, 687, 137–151. [Google Scholar] [CrossRef]
- Hidalgo, J.; Lemonsu, A.; Masson, V. Between progress and obstacles in urban climate interdisciplinary studies and knowledge transfer to society. Ann. N. Y. Acad. Sci. 2019, 1436, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Baklanov, A.; Grimmond, C.; Carlson, D.; Terblanche, D.; Tang, X.; Bouchet, V.; Lee, B.; Langendijk, G.; Kolli, R.; Hovsepyan, A. From urban meteorology, climate and environment research to integrated city services. Urban Clim. 2018, 23, 330–341. [Google Scholar] [CrossRef]
Method Used | Study | City/Region Analysed | LCZ Classes Detected |
---|---|---|---|
Expert assessment for UMN | [72] | Novi Sad (Serbia) | 2, 3, 5, 6, 8, 9, 10, A, D |
[25] | Olomouc (Czech Republic) | 2CC, 2BOC, 4, 42, 5, 56, 6, 65, 95, BD, BDW | |
[73] | Hamburg (Germany) | 2, 6, D | |
[74] | Oberhausen (Germany) | 2, 5, 6, 8, 9, A, D | |
Expert assessment for UMN/mobile measurements | [75] | Cluj-Napoca (Romania) | 1, 2, 3, 6, 8, 9, B |
Expert assessment of sites on mobile measurements route | [50] | Uppsala (Sweden) | 2, 5, 9, D |
Expert assessment plus Urban Atlas classes | [76] | Olomouc (Czech Republic) | 2, 4, 5, 6, 8, A, G |
[77] | |||
Expert assessment plus urban parameters | [78] | Basel (Switzerland) | 1–10 |
[79] | |||
GENIUS typology | [60] | French cities | 1–10 |
Method Used | Study | City/Region Analysed | LCZ Classes Detected |
---|---|---|---|
GIS-based (Lelovics-Gál) | [51] | Szeged (Hungary) | 2, 3, 5, 6, 8, 9, 10, A, B, C, D, G |
[81] | |||
[84] | |||
[85] | |||
[86] | |||
[88] | |||
[89] | |||
[90] | |||
[91] | |||
[26] | Szeged (Hungary); Novi Sad (Serbia) | ||
[82] | Novi Sad (Serbia) | 2, 3, 5, 6, 8, 9, 10, A, D, G | |
[87] | |||
[92] | |||
[83] | |||
GIS-based (Geletič-Lehnert) | [80] | Brno; Prague; Olomouc; Hradec Králové (Czech Republic) | 1, 2, 3, 4, 5, 6, 8, 9, 10, A, B, C, D, E, F, G (Brno) 2, 3, 4, 5, 6, 8, 9, 10, A, B, C, D, E, F, G (Prague) 1, 2, 3, 4, 5, 6, 8, 9, 10, A, B, C, D, E, F, G (Olomouc) 2, 3, 4, 5, 6, 8, 9, 10, A, B, D, E, G (Hradec Králové) 2, 3, 4, 5, 6, 7, 8, 9, 10, A, B, C, D, E, F, G (Novi Sad) |
[94] | |||
[5] | |||
[98] | |||
[95] | |||
[96] | |||
[97] | |||
[93] | Prague; Brno (Czech Republic); Novi Sad (Serbia) | ||
Open geoprocessing framework | [61] | French cities | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
GIS-Delaunay triangulation/Skeleton-ization | [99] | Nantes (France) | All 17 LCZs |
Alternative GIS-based method | [100] | Athens (Greece); Barcelona (Spain); Lisbon (Portugal); Marseille (France), Naples (Italy) | All 17 LCZs |
Method Used | Study | City/Region Analysed | LCZs Classes Detected |
---|---|---|---|
WUDAPT L0 method development | [102] | Hamburg (Germany); Dublin (Eire) | All 17 LCZs |
[52] | Globally, including Europe | All 17 LCZs | |
WUDAPT L0 method | [123] | Kyiv; Lviv (Ukraine) | 2, 4, 5, 6, 8, 9, A, B, C, D, E, F, G |
[111] | Szeged (Hungary) | 2, 3, 5, 6, 8, 9, A, B, D, G | |
[112] | Berlin (Germany) | 2, 4, 5, 6, 8, 9, A, B, C, D, F, G | |
[113] | |||
[105] | Antwerp; Brussels; Ghent (Belgium) | 1, 2, 3, 6, 8, 9, 10, A, B, D, E, G | |
[106] | |||
[107] | Brussels (Belgium) | ||
[114] | Augsburg (Germany) | 2, 5, 6, 8, A, B, D, F, G | |
[118] | |||
[108] | Dijon (France) | 2, 3, 4, 5, 6, 7, 8, 9, 10, A, B, C, D, E, G | |
[65] | Globally, including Europe | All 17 LCZs | |
[116] | Budapest (Hungary) | 2, 5, 6, 8, A, D, G | |
[117] | Szeged (Hungary); Novi Sad (Serbia) | 2, 3, 5, 6, 8, 9, 10, A, B, C, D, E, F, G | |
[110] | Amsterdam (The Netherlands) | All 17 LCZs | |
[124] | Globally, including Europe | All 17 LCZs | |
WUDAPT L0 + OSM | [126] | Hamburg (Germany) | 1, 2, 4, 5, 6, 8, 10, A, B, D, G |
WUDAPT L0 + EE | [66] | European continent | All 17 LCZs |
[125] | Globally, including Europe | All 17 LCZs | |
WUDAPT + CNN | [109] | Amsterdam (The Netherlands); Zurich (Switzerland); Rome (Italy); Paris (France); Munich (Germany); Milan (Italy); London (UK); Cologne; Berlin (Germany) | All 17 LCZs (except LCZ 7) |
WUDAPT + CNN/RF | [121] | Rome (Italy); Madrid (Spain) | 2, 3, 4, 5, 6, 8, 9, 10; A, B, C, D, E, F, G |
WUDAPT to WRF | [120] | Madrid (Spain) | 1–10 |
[119] | Vienna (Austria) | 2, 6, DE | |
[122] | Bologna (Italy) | 2, 5, 6, 8, A, B, D, E, G | |
Sentinel-2 + TDM | [128] | Germany, The Netherlands; UK cities | Nine density/height classes based on LCZ concept |
Sentinel-2 + Re-ResNet | [129] | Amsterdam (The Netherlands); Paris (France); Munich (Germany); Milan (Italy); London (UK); Cologne; Berlin (Germany) | All 17 LCZs (except LCZ 7) |
Sentinel-2 + CNN | [130] | German cities | 1, 2, 4, 5, 6, 8, 9, 10, A, B, C, D, E, F, G |
Sentinel-1 | [64] | Globally, including Europe | All 17 LCZs |
GEE | [131] | Oslo (Norway) | 2, 3, 4, 5, 6, 8, 9, A, B, D, E |
RF | [127] | Milan (Italy) | 2, 3, 5, 6, 8, B, D, G |
WUDAPT/MApUCE | [133] | Paris; Toulouse; Nantes (France) | All 17 LCZs |
WUDAPT/Vienna GIS | [132] | Vienna | All 17 LCZs |
WUDAPT/GIS method (Geletič and Lehnert 2016) | [115] | Bratislava (Slovak Republic); Brno (Czech Republic); Kraków (Poland); Szeged (Hungary); Vienna (Austria) | All 17 LCZs |
Method(s) Used | Study | City/Region Analysed | LCZ Classes Detected |
---|---|---|---|
LULC + GE/BM | [134] | Dublin (Eire) | 2, 3, 5, 6, 8, 9, 10, A, D, E, F, G |
[135] | |||
LULC + MOLAND | [136] | Dublin (Eire) | 2, 3, 5, 6, 8, 9, 10, A, D, E, F, G |
LULC + GIS/models | [137] | Basel (Switzerland) | 2, 23, 210, 2A, 3, 5E, 6, 9, 10, 102, A, AE, C, D, D9, E10, G, GA |
[138] | |||
WRF-SLUCM-LCZ model | [139] | Szeged (Hungary) | 2, 3, 5, 6, 8, 9, D, G |
OSM + UA + field work | [140] | Augsburg (Germany) | 2, 5, 6, 8, A, B, D |
Admin. data + SOLWEIG | [141] | Berlin (Germany) | 5, 6, A, B |
OS + LiDAR | [49] | Glasgow (Scotland) | 2, 5, 6, 9 |
Admin. data + LiDAR | [142] | Glasgow (Scotland) | LCZ 2 |
WUDAPT + field work | [143] | Berlin (Germany) | 2B |
Admin. data + UA | [144] | Birmingham (UK) | 1, 2, 5, 6, 10, B |
[145] | |||
MAES model + GIS | [63] | Bulgarian cities | All 17 LCZs (except LCZ 1) |
Multi-admin. data | [62] | French cities | 1, 2, 3, 4, 5, 6, 7, 8, 9, D, E, G |
GIS + DSM | [146] | Nancy (France) | 2, 5, 8, 6/9, A, B, D, E, G |
[147] | |||
[148] | |||
SURY model + WUDAPT | [149] | Belgian cities | All 17 LCZs |
Field work + WUDAPT | [150] | Hamburg (Germany) | 2, 4, 5, 6, 8, 10, A, B, D, E, G |
GIS + field work | [151] | Braganca (Portugal) | 2, 3, 5, 8, 9, A/B, C/D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehnert, M.; Savić, S.; Milošević, D.; Dunjić, J.; Geletič, J. Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS Int. J. Geo-Inf. 2021, 10, 260. https://doi.org/10.3390/ijgi10040260
Lehnert M, Savić S, Milošević D, Dunjić J, Geletič J. Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS International Journal of Geo-Information. 2021; 10(4):260. https://doi.org/10.3390/ijgi10040260
Chicago/Turabian StyleLehnert, Michal, Stevan Savić, Dragan Milošević, Jelena Dunjić, and Jan Geletič. 2021. "Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends" ISPRS International Journal of Geo-Information 10, no. 4: 260. https://doi.org/10.3390/ijgi10040260
APA StyleLehnert, M., Savić, S., Milošević, D., Dunjić, J., & Geletič, J. (2021). Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS International Journal of Geo-Information, 10(4), 260. https://doi.org/10.3390/ijgi10040260