Modelling Sediment Retention Services and Soil Erosion Changes in Portugal: A Spatio-Temporal Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sediment Delivery Ratio Model
2.3. SDR Variation
2.4. Methodology
2.5. Model Validation
3. Results and Discussion
3.1. Main Results and Statitical Analysis
3.2. Model Validation
3.3. Limitations and Future Developments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panagos, P.; Meusburger, K.; Van Liedekerke, M.; Alewell, C.; Hiederer, R.; Montanarella, L. Assessing soil erosion in Europe based on data collected through a European network. Soil Sci. Plant Nutr. 2014. [Google Scholar] [CrossRef] [Green Version]
- Webster, R.; Morgan, R.P.C. Soil Erosion and Conservation, 3rd edition. Blackwell Publishing, Oxford, 2005. x + 304 pp. f29.95, paperback. ISBN 1-4051-1781-8. Eur. J. Soil Sci. 2005, 56, 686. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Cui, Z.; Liu, Y.; Shi, Z.; Yin, R.; Kardol, P. Trade-off between vegetation type, soil erosion control and surface water in global semi-arid regions: A meta-analysis. J. Appl. Ecol. 2020, 57, 875–885. [Google Scholar] [CrossRef]
- Navarro-Hevia, J.; Lima-Farias, T.R.; de Araújo, J.C.; Osorio-Peláez, C.; Pando, V. Soil Erosion in Steep Road Cut Slopes in Palencia (Spain). Land Degrad. Dev. 2016, 27, 190–199. [Google Scholar] [CrossRef]
- Teng, H.; Liang, Z.; Chen, S.; Liu, Y.; Viscarra Rossel, R.A.; Chappell, A.; Yu, W.; Shi, Z. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci. Total Environ. 2018, 635, 673–686. [Google Scholar] [CrossRef]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [Google Scholar] [CrossRef]
- Bathurst, J.C.; Moretti, G.; El-Hames, A.; Beguería, S.; García-Ruiz, J.M. Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez river catchment, Spanish Pyrenees. Hydrol. Earth Syst. Sci. 2007, 11, 569–583. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Burylo, M.; Rey, F.; Mathys, N.; Dutoit, T. Plant root traits affecting the resistance of soils to concentrated flow erosion. Earth Surf. Process. Landforms 2012, 37, 1463–1470. [Google Scholar] [CrossRef]
- Zhang, Z.; Sheng, L.; Yang, J.; Chen, X.-A.; Kong, L.; Wagan, B. Effects of Land Use and Slope Gradient on Soil Erosion in a Red Soil Hilly Watershed of Southern China. Sustainability 2015, 7, 14309–14325. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landforms 1998, 23, 527–544. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Van Der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Elias, E.; Soromessa, T.; Feyisa, G.L. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Sci. Total Environ. 2020, 728, 138776. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Bai, Z.; Rong, L.; Li, Y.; Ding, J.; Tao, Y.; Li, J.; Li, J.; Wang, W. Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China. CATENA 2020, 184, 104237. [Google Scholar] [CrossRef]
- Da Silva, J.F.; Duck, R.W.; Catarino, J.B. Nutrient retention in the sediments and the submerged aquatic vegetation of the coastal lagoon of the Ria de Aveiro, Portugal. J. Sea Res. 2009, 62, 276–285. [Google Scholar] [CrossRef]
- Nunes, A.N.; Coelho, C.O.A.; de Almeida, A.C.; Figueiredo, A. Soil erosion and hydrological response to land abandonment in a central inland area of Portugal. Land Degrad. Dev. 2010, 21, 260–273. [Google Scholar] [CrossRef]
- Martins, B.; Meira Castro, A.C.; Ferreira, C.; Lourenço, L.; Nunes, A. Gullies mitigation and control measures: A case study of the Seirós gullies (North of Portugal). Phys. Chem. Earth Parts A/B/C 2019, 109, 26–30. [Google Scholar] [CrossRef]
- Eurostat-Nomenclature of Territorial Units for Statistics (NUTS). Available online: https://ec.europa.eu/eurostat/web/nuts/nuts-maps (accessed on 12 March 2019).
- Governo de Portugal Diplomatic Portal, Foreign Affairs. Available online: https://www.portaldiplomatico.mne.gov.pt/en/about-portugal (accessed on 21 June 2020).
- IPMA Climate Normals, Instituto Português do Mar e da Atmosfera. Available online: https://www.ipma.pt/en/oclima/normais.clima/ (accessed on 1 July 2020).
- IPMA Clima de Portugal Continental. Available online: https://www.ipma.pt/pt/educativa/tempo.clima/ (accessed on 7 April 2021).
- Portela, M.M.; Espinosa, L.A.; Zelenakova, M. Long-Term Rainfall Trends and Their Variability in Mainland Portugal in the Last 106 Years. Climate 2020, 8, 146. [Google Scholar] [CrossRef]
- Sharp, E.R.; Chaplin-kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T.; Authors, C.; Nelson, E.; Ennaanay, D.; Wolny, S.; et al. Sediment Delivery Ratio. In InVEST User’s Guide; The Natural Capital Project; Stanford University; University of Minnesota; The Nature Conservancy; World Wildlife Fund: Stanford, CA, USA, 2018; pp. 137–153. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agric. Handb. 1997, 703, 404. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; U.S. Department of Agriculture: Washington, DC, USA, 1978.
- Teng, H.; Viscarra Rossel, R.A.; Shi, Z.; Behrens, T.; Chappell, A.; Bui, E. Assimilating satellite imagery and visible–near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environ. Model. Softw. 2016, 77, 156–167. [Google Scholar] [CrossRef]
- Winchell, M.F.; Jackson, S.H.; Wadley, A.M.; Srinivasan, R. Extension and validation of a geographic information system-based method for calculating the Revised Universal Soil Loss Equation length-slope factor for erosion risk assessments in large watersheds. J. Soil Water Conserv. 2008, 63, 105–111. [Google Scholar] [CrossRef]
- ESRI ArcGIS 2017. Available online: https://www.esri.com/en-us/home (accessed on 16 December 2019).
- USGS United States Geological Survey EarthExplorer Portal. Available online: https://earthexplorer.usgs.gov (accessed on 20 June 2019).
- Joint Research Centre-European Soil Data Centre (JRC-ESDAC). Global Rainfall Erosivity. Available online: https://esdac.jrc.ec.europa.eu/content/global-rainfall-erosivity (accessed on 25 March 2019).
- Joint Research Centre-European Soil Data Centre (JRC-ESDAC). Soil Erodibility (K-Factor) High Resolution dataset for Europe. Available online: https://esdac.jrc.ec.europa.eu/content/soil-erodibility-k-factor-high-resolution-dataset-europe (accessed on 25 March 2019).
- Direção Geral do Território (DGT). CLC Open Data. Available online: http://www.dgterritorio.pt/dados_abertos/clc/ (accessed on 12 March 2019).
- Copernicus, E. Copernicus Program-CORINE Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 12 March 2019).
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Land Use Policy Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- SNIG Sistema Nacional de Informação Geográfica. Available online: http://snig.dgterritorio.pt/ (accessed on 17 December 2019).
- National Aeronautics and Space Administration (NASA). Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Available online: https://terra.nasa.gov/about/terra-instruments/aster (accessed on 20 June 2019).
- European Environmental Agency (EEA). Rainfall Erosivity Database at European Scale (REDES). Available online: https://www.eea.europa.eu/data-and-maps/data/external/rainfall-erosivity-database-at-european (accessed on 25 March 2019).
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Lim, K.J.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Meusburger, K.; Alewell, C.; Montanarella, L. Soil erodibility estimation using LUCAS point survey data of Europe. Environ. Model. Softw. 2012, 30, 143–145. [Google Scholar] [CrossRef]
- Eurostat. Eurostat-Land Use and Coverage Area Frame Survey (LUCAS). Available online: https://ec.europa.eu/eurostat/web/lucas (accessed on 12 March 2019).
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef] [Green Version]
- Vigiak, O.; Borselli, L.; Newham, L.T.H.; McInnes, J.; Roberts, A.M. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 2012, 138, 74–88. [Google Scholar] [CrossRef]
- JRC-European Soil Data Centre (ESDAC). Available online: http://esdac.jrc.ec.europa.eu/ (accessed on 25 March 2019).
- Ferreira, V.; Panagopoulos, T. Seasonality of Soil Erosion Under Mediterranean Conditions at the Alqueva Dam Watershed. Environ. Manag. 2014, 54, 67–83. [Google Scholar] [CrossRef]
- EEA. Mapping the Impacts of Natural Hazards and Technological Accidents in Europe. An Overview of the Last Decade; European Environment Agency: København, Denmark, 2010. [Google Scholar] [CrossRef]
- USDA Agricultural Research Service (USDA-ARS). Texas AgriLife Research Soil & Water Assessment Tool (SWAT). Available online: https://swat.tamu.edu/ (accessed on 9 April 2021).
- US Army Corps of Engineers HEC-RAS. Available online: https://www.hec.usace.army.mil/software/hec-ras/ (accessed on 9 April 2021).
- Kinnell, P.I.A. Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- United Nations Sustainable Development Goals (SDGs). Available online: https://sdgs.un.org/goals (accessed on 9 April 2021).
Data | Source |
---|---|
Digital Elevation Model (DEM) | [29] |
Rainfall Erosivity Index (R) | [30] |
Soil Erodibility (K) | [31] |
Land Use/Land Cover | [32,33] |
P a and C b coefficients | [12,34] |
Watersheds | [35] |
Biophysical table | Created by authors of this study |
LU-Code | Label | USLE-c | USLE-p |
---|---|---|---|
111 | Continuous urban fabric | 0.1 | 0.9178 |
112 | Discontinuous urban fabric | 0.06 | 0.9178 |
121 | Industrial or commercial units | 1 | 0.9178 |
122 | Road and rail networks and associated land | 1 | 0.9178 |
123 | Port areas | 0.25 | 0.9178 |
124 | Airports | 0.25 | 0.9178 |
131 | Mineral extraction sites | 1 | 0.9178 |
132 | Dump sites | 0.9 | 0.9178 |
133 | Construction sites | 0.2 | 0.9178 |
141 | Green urban areas | 0.003 | 0.9178 |
142 | Sport and leisure facilities | 0.06 | 0.9178 |
211 | Non-irrigated arable land | 0.46 | 0.9178 |
212 | Permanently irrigated land | 0.36 | 0.9178 |
213 | Rice fields | 0.15 | 0.9178 |
221 | Vineyards | 0.4 | 0.9178 |
222 | Fruit trees and berry plantations | 0.3 | 0.9178 |
223 | Olive groves | 0.3 | 0.9178 |
231 | Pastures | 0.15 | 0.9178 |
241 | Annual crops associated with permanent crops | 0.35 | 0.9178 |
242 | Complex cultivation patterns | 0.2 | 0.9178 |
243 | Land principally occupied by agriculture, with significant areas of natural vegetation | 0.2 | 0.9178 |
244 | Agro-forestry areas | 0.13 | 0.9178 |
311 | Broad-leaved forest | 0.003 | 0.9178 |
312 | Coniferous forest | 0.003 | 0.9178 |
313 | Mixed forest | 0.003 | 0.9178 |
321 | Natural grasslands | 0.08 | 0.9178 |
322 | Moors and heathland | 0.1 | 0.9178 |
323 | Sclerophyllous vegetation | 0.1 | 0.9178 |
324 | Transitional woodland-shrub | 0.05 | 0.9178 |
331 | Beaches, dunes, sands | 0 | 0.9178 |
332 | Bare rocks | 0 | 0.9178 |
333 | Sparsely vegetated areas | 0.45 | 0.9178 |
334 | Burnt areas | 0.55 | 0.9178 |
411 | Inland marshes | 0 | 0.9178 |
421 | Salt marshes | 0 | 0.9178 |
422 | Salines | 0 | 0.9178 |
423 | Intertidal flats | 0 | 0.9178 |
511 | Water courses | 0 | 0.9178 |
512 | Water bodies | 0 | 0.9178 |
521 | Coastal lagoons | 0 | 0.9178 |
522 | Estuaries | 0 | 0.9178 |
523 | Sea and ocean | 0 | 0.9178 |
Parameters | Values |
---|---|
Threshold Flow Accumulation (TFA) | 1000 |
kb | 2 |
IC0 | 0.5 |
SDRmax | 0.8 |
Class | Area per Class (km2) | Territory Occupation (%) |
---|---|---|
<−50 | 1314.95 | 1.21 |
−25–−15 | 1088.94 | 1.33 |
−15–−5 | 3972.48 | 4.85 |
−5–5 | 63,449.31 | 77.52 |
5–15 | 5557.27 | 6.79 |
15–25 | 2501.10 | 3.06 |
25–50 | 3726.13 | 4.55 |
>50 | 242.10 | 0.30 |
Total | 81,852.28 | 100 |
NUTS III | USLE | ESDAC (Reference) |
---|---|---|
Cávado | 7.281 | 6.090 |
Ave | 6.593 | 5.455 |
Área Metropolitana do Porto | 4.351 | 4.455 |
Viseu Dão Lafões | 3.593 | 3.256 |
Beira Baixa | 2.186 | 0.980 |
Alto Tâmega | 5.775 | 3.474 |
Tâmega e Sousa | 8.742 | 7.643 |
Douro | 11.859 | 6.039 |
Médio Tejo | 1.996 | 0.866 |
Beiras e Serra da Estrela | 4.165 | 2.761 |
Terras de Trás-os-Montes | 4.910 | 2.716 |
Área Metropolitana de Lisboa | 1.847 | 1.773 |
Alentejo Central | 1.149 | 1.067 |
Algarve | 2.206 | 1.871 |
Oeste | 3.231 | 3.226 |
Região de Aveiro | 1.476 | 1.320 |
Alto Minho | 7.975 | 7.703 |
Alentejo Litoral | 0.837 | 0.729 |
Baixo Alentejo | 1.468 | 1.556 |
Região de Coimbra | 3.689 | 1.312 |
Região de Leiria | 3.984 | 1.013 |
Lezíria do Tejo | 0.723 | 0.758 |
Alto Alentejo | 1.305 | 1.052 |
Total (ton/ha) | 67.117 | 91.340 |
Mean (ton/ha) | 3.971 | 2.918 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, S.M.; Campos, F.S.; David, J.; Cabral, P. Modelling Sediment Retention Services and Soil Erosion Changes in Portugal: A Spatio-Temporal Approach. ISPRS Int. J. Geo-Inf. 2021, 10, 262. https://doi.org/10.3390/ijgi10040262
Marques SM, Campos FS, David J, Cabral P. Modelling Sediment Retention Services and Soil Erosion Changes in Portugal: A Spatio-Temporal Approach. ISPRS International Journal of Geo-Information. 2021; 10(4):262. https://doi.org/10.3390/ijgi10040262
Chicago/Turabian StyleMarques, Susana M., Felipe S. Campos, João David, and Pedro Cabral. 2021. "Modelling Sediment Retention Services and Soil Erosion Changes in Portugal: A Spatio-Temporal Approach" ISPRS International Journal of Geo-Information 10, no. 4: 262. https://doi.org/10.3390/ijgi10040262
APA StyleMarques, S. M., Campos, F. S., David, J., & Cabral, P. (2021). Modelling Sediment Retention Services and Soil Erosion Changes in Portugal: A Spatio-Temporal Approach. ISPRS International Journal of Geo-Information, 10(4), 262. https://doi.org/10.3390/ijgi10040262