Subsurface Topographic Modeling Using Geospatial and Data Driven Algorithm
Abstract
:1. Introduction
2. Principle of GEP
3. Study Area and Geospatial Database
4. DTB Modelling Using GEP
5. Comparison, Validation, and Discussion
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kotsev, A.; Minghini, M.; Tomas, R.; Cetl, V.; Lutz, M. From Spatial Data Infrastructures to Data Spaces- A Technological Perspective on the Evolution of European SDIs. ISPRS Int. J. Geo Inf. 2020, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, S.; Yuan, H.; Li, D. Software and Applications of Spatial Data Mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2016, 6, 84–114. [Google Scholar] [CrossRef]
- Ristoski, P.; Paulheim, H. Semantic Web in Data Mining and Knowledge Discovery: A Comprehensive Survey. J. Web Semant. 2016, 36, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Gervone, G.; Lin, J.; Waters, N. Data Mining for Geoinformatics: Methods and Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Omidipoor, M.; Toomanian, A.; Samany, N.N.; Mansourian, A. Knowledge Discovery Web Service for Spatial Data Infrastructures. ISPRS Int. J. Geo Inf. 2021, 10, 12. [Google Scholar] [CrossRef]
- Sikder, S.K.; Behnisch, M.; Herold, H.; Koetter, T. Geospatial Analysis of Building Structures in Megacity Dhaka: The Use of Spatial Statistics for Promoting Data-driven Decision-making. J. Geovis. Spat. Anal. 2019, 3, 7. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat. Deep Learning and Process Understanding for Data-driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Darabi, H.; Haghighi, A.T.; Mohamadi, M.A.; Rashidpour, M.; Ziegler, A.D.; Hekmatzadeh, A.A.; Kløve, B. Urban Flood Risk Mapping Using Data-driven Geospatial Techniques for a Flood-prone Case Area in Iran. Hydrol. Res. 2020, 51, 127–142. [Google Scholar] [CrossRef] [Green Version]
- Senanayake, S.; Pradhan, B.; Huete, A.; Brennan, J. A Review on Assessing and Mapping Soil Erosion Hazard Using Geo-informatics Technology for Farming System Management. Remote Sens. 2020, 12, 4063. [Google Scholar] [CrossRef]
- Ma, Z.; Ren, Y. Integrated Application of BIM and GIS: An Overview. Procedia Eng. 2017, 96, 1072–1079. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Tan, Y.; Wu, P.; Sutrisna, M.; Cheng, J.C.P.; Hampson, K. Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-temporal Statistical Perspective. ISPRS Int. J. Geo Inf. 2017, 6, 397. [Google Scholar] [CrossRef] [Green Version]
- Abbaszadeh Shahri, A.; Spross, J.; Johansson, F.; Larsson, S. Landslide Susceptibility Hazard Map in Southwest Sweden Using an Artificial Neural Network. Catena 2019, 183, 104225. [Google Scholar] [CrossRef]
- De Roo, A.P.J. Soil Erosion Assessment Using G.I.S. In Geographical Information Systems in Hydrology; Singh, V.P., Fiorentino, M., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 339–356. [Google Scholar]
- Zhou, K.; Xie, Y.; Gao, Z.; Miao, F.; Zhang, L. FuNet: A Novel Road Extraction Network with Fusion of Location Data and Remote Sensing Imagery. ISPRS Int. J. Geo Inf. 2021, 10, 39. [Google Scholar] [CrossRef]
- Bai, J.; Zhou, Z.; Zou, Y.; Pulatov, B.; Siddique, K.H.M. Watershed Drought and Ecosystem Services: Spatiotemporal Characteristics and Gray Relational Analysis. ISPRS Int. J. Geo Inf. 2021, 10, 43. [Google Scholar] [CrossRef]
- Abbaszadeh Shahri, A.; Maghsoudi Moud, F. Landslide Susceptibility Mapping Using Hybridized Block Modular Intelligence Model. Bull. Eng. Geol. Environ. 2021, 80, 267–284. [Google Scholar] [CrossRef]
- Abbaszadeh Shahri, A.; Larsson, S.; Renkel, C. Artificial Intelligence Models to Generate Visualized Bedrock Level: A Case Study in Sweden. Model. Earth Syst. Environ. 2020, 6, 1509–1528. [Google Scholar] [CrossRef]
- Nath, R.R.; Kumar, G.; Sharma, M.L.; Gupta, S.C. Estimation of Bedrock Depth for a Part of Garhwal Himalayas Using Two Different Geophysical Techniques. Geosci. Lett. 2018, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, W.; Ge, W. Weight Analysis of Influencing Factors of Dam Break Risk Consequences. Nat. Hazards Earth Syst. Sci. 2018, 18, 3355–3362. [Google Scholar] [CrossRef] [Green Version]
- Ge, W.; Li, Z.; Liang, R.Y.; Li, W.; Cai, Y. Methodology for Establishing Risk Criteria for Dams in Developing Countries, Case Study of China. Water Resour. Manag. 2017, 31, 4063–4074. [Google Scholar] [CrossRef]
- Jozaghi, A.; Alizadeh, B.; Hatami, M.; Flood, I.; Khorrami, M.; Khodaei, N.; Ghasemi Tousi, E. A Comparative Study of the AHP and TOPSIS Techniques for Dam Site Selection Using GIS: A Case Study of Sistan and Baluchestan Province, Iran. Geosciences 2018, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Pourghasemi, H.R.; Yusefi, S.; Nitheshnirmal, S.; Eskandari, S. Assessing, Mapping, and Optimizing the Locations of Sediment Control Check Dams Construction. Sci. Total Environ. 2020, 739, 139954. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Shanableh, A.; Yilmaz, A.G.; Idris, A.; Mukherjee, S.; Khalil, M.A.; Gibril, M.B.A. Dam Site Suitability Mapping and Analysis Using an Integrated GIS and Machine Learning Approach. Water 2019, 11, 1880. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Chung, C.K.; Kim, H.K. Geo-spatial Data Integration for Subsurface Stratification of Dam Site with Outlier Analyses. Environ. Earth Sci. 2016, 75, 168. [Google Scholar] [CrossRef]
- Sissakian, V.K.; Adamo, N.; Al-Ansari, N. The Role of Geological Investigations for Dam Siting: Mosul Dam a Case Study. Geotech. Geol. Eng. 2020, 38, 2085–2096. [Google Scholar] [CrossRef] [Green Version]
- Malczewski, J. GIS-based Land-use Suitability Analysis: A Critical Overview. Prog. Plan. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- Li, S.; Dragicevic, S.; Castroc, F.A.; Sester, M.; Winter, S.; Coltekin, A.; Pettitg, C.; Jiang, B.; Haworth, J.; Stein, A.; et al. Geospatial Big Data Handling Theory and Methods: A Review and Research Challenges. ISPRS J. Photogramm. Remote Sens. 2016, 115, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.K. Geoscientific Modeling: Past, Present, and Future. In AAPG Computer Application in Geology, No. 4: Geographic Information Systems in Petroleum Exploration and Development; Coburn, T.C., Yarus, J.M., Eds.; The American Association of Petroleum Geologists: Tulsa, OK, USA, 2000; pp. 27–36. [Google Scholar]
- Zhang, C.; Chai, J.; Cao, J.; Xu, Z.; Qin, Y.; Lv, Z. Numerical Simulation of Seepage and Stability of Tailings Dams: A Case Study in Lixi, China. Water 2020, 12, 742. [Google Scholar] [CrossRef] [Green Version]
- Jardine, P.M.; Sanford, W.E.; Gwo, J.P.; Reedy, C.; Hicks, D.S.; Riggs, J.S.; Bailey, W.B. Quantifying Diffusive Mass Transfer in Fractured Shale Bedrock. Water Resour. Res. 1999, 35, 2015–2030. [Google Scholar] [CrossRef]
- Bondu, R.; Cloutier, V.; Rosa, E. Occurrence of Geogenic Contaminants in Private Wells from a Crystalline Bedrock Aquifer in Western Quebec, Canada: Geochemical Sources and Health Risks. J. Hydrol. 2018, 559, 627–637. [Google Scholar] [CrossRef]
- Ghaderi, A.; Abbaszadeh Shahri, A.; Larsson, S. An Artificial Neural Network Based Model to Predict Spatial Soil Type Distribution Using Piezocone Penetration Test Data (CPTu). Bull. Eng. Geol. Environ. 2019, 78, 4579–4588. [Google Scholar] [CrossRef] [Green Version]
- Salih, S.A.; Al-Tarif, A.M. Using of GIS Spatial Analyses to Study the Selected Location for Dam Reservoir on Wadi Al-Jirnaf, West of Shirqat Area, Iraq. J. Geogr. Inf. Syst. 2012, 4, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Kavoura, K.; Konstantopoulou, M.; Kyriou, A.; Nikolakopoulos, K.G.; Sabatakakis, N.; Depountis, N. 3D Subsurface Geological Modeling Using GIS, Remote Sensing, and Boreholes Data. In Proceedings of the Fourth International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, 4–8 April 2016. [Google Scholar] [CrossRef]
- Balasubramani, D.P.; Dodagoudar, G.R. An Integrated Geotechnical Database and GIS for 3D Subsurface Modelling: Application to Chennai City, India. Appl. Geomat. 2018, 10, 47–64. [Google Scholar] [CrossRef]
- Yan, F.; Shangguan, W.; Zhang, J.; Hu, B. Depth-to-bedrock Map of China at a Spatial Resolution of 100 Meters. Sci. Data 2020, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, C. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Syst. 2001, 13, 87–129. [Google Scholar]
- Samui, P.; Kumari, S.; Makarov, V.; Kurup, P. Modeling in Geotechnical Engineering; Elsevier: Cambridge, MA, USA, 2020. [Google Scholar]
- Chang, J.R.; Chao, S.J. Applying Group Method of Data Handling (GMDH) Method to Predict Depth to Bedrock. Comput. Civ. Eng. 2009. [Google Scholar] [CrossRef]
- Tempa, K.; Sarkar, R.; Dikshit, A.; Pradhan, B.; Simonelli, A.L.; Acharya, S.; Alamri, A.M. Parametric Study of Local Site Response for Bedrock Ground Motion to Earthquake in Phuentsholing, Bhutan. Sustainability 2020, 12, 5273. [Google Scholar] [CrossRef]
- Manandhar, S.; Cho, H.I.; Kim, D.S. Effect of Bedrock Stiffness and Thickness of Weathered Rock on Response Spectrum in Korea. KSCE J. Civ. Eng. 2016, 20, 2677–2691. [Google Scholar] [CrossRef]
- Gomes, G.J.C.; Vrugt, J.A.; Vargas, E.A., Jr.; Camargo, J.T.; Velloso, R.Q.; van Genuchten, M.T. The Role of Uncertainty in Bedrock Depth and Hydraulic Properties on the Stability of a Variably-saturated Slope. Comput. Geotech. 2017, 88, 222–241. [Google Scholar] [CrossRef] [Green Version]
- Boore, D.M. Estimating Vs(30) (or NEHRP Site Classes) from Shallow Velocity Models (Depths < 30 m). Bull. Seismol. Soc. Am. 2004, 94, 591–597. [Google Scholar] [CrossRef]
- Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Camridge, MA, USA, 1992. [Google Scholar]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Ferreira, C. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, 2nd ed.; Springer: Berlin, Germany, 2006. [Google Scholar]
- Asheghi, R.; Abbaszadeh Shahri, A.; Khorsand Zak, M. Prediction of Strength Index Parameters of Different Rock Types Using Hybrid Multi Output Intelligence Model. Arab. J. Sci. Eng. 2019, 44, 8645–8659. [Google Scholar] [CrossRef]
- Jiang, Z. A Survey on Spatial Prediction Methods. IEEE Trans. Knowl. Data Eng. 2019, 31, 1645–1664. [Google Scholar] [CrossRef]
- Frank, R.; Ester, M.; Knobbe, A. A Multi-rational Approach to Spatial Classification. In Proceedings of the KDD09: The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 309–318. [Google Scholar] [CrossRef] [Green Version]
- Bamisaiye, O.A. Subsurface Mapping: Selection of Best Interpolation Method for Borehole Data Analysis. Spat. Inf. Res. 2018, 26, 261–269. [Google Scholar] [CrossRef]
- Krige, D.G. A Statistical Approach to some Basic Mine Valuation Problems on the Witwatersrand. J. Chem. Metal. Mining Soc. S. Afr. 1951, 52, 119–139. [Google Scholar]
- Wackernagel, H. Ordinary Kriging. In Multivariate Geostatistics; Springer: Berlin/Heidelberg, Germany, 1999; pp. 74–81. [Google Scholar]
- Saveliev, A.A.; Mukharamova, S.S.; Chizhikova, N.A.; Budgey, R.; Zuur, A.F. Spatially Continuous Data Analysis and Modelling. In Analysing Ecological Data. Statistics for Biology and Health; Springer: New York, NY, USA, 2007. [Google Scholar]
- Stehman, S.V. Selecting and Interpreting Measures of Thematic Classification Accuracy. Remote Sens. Environ. 1999, 62, 77–89. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
chromosome | [5,40] | link function | + |
head size | [3,20] | mutation rate | 0.02, 0.04 |
number of genes | 3, 5, 6, 8, 10 | inversion | 0.1, 0.3 |
generation | [500,2000] | population size | [1,100] |
IS | 0.1, 0.3 | RIS | 0.1, 0.3 |
recombination rate | 0.3 | gene recombination rate | 0.1 |
gene transposition rate | 0.1 | one/two-point recombination rate | 0.027 |
used function | +, −, *, /, sqrt(x), exp(x), pow10, log(x), 1/x, −x, x2, x3, x1/3, sin(x), cos(x), actan(x),1−x |
Predicted Output | Results | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Target | [<128.7] | [128.7–143.57] | [143.57–158.44] | [158.44–173.31] | [173.31–188.18] | [188.18–203.05] | [203.05–217.92] | [217.92–232.79] | [232.79–247.66] | [247.66–262.53] | [262.53–277.4] | [>277.4] | Total | True | False |
<128.7 | 0 | 0,0 | 0,0 | ||||||||||||
[128.7–143.57] | 0,1 | 1,0 | 1,1 | 2 | 1,0 | 1,2 | |||||||||
[143.57–158.44] | 1,1 | 6,6 | 1,1 | 8 | 6,6 | 2,2 | |||||||||
[158.44–173.31] | 1,1 | 1,1 | 2 | 1,1 | 1,1 | ||||||||||
[173.31–188.18] | 1,0 | 5,5 | 1,0 | 0,1 | 0,1 | 7 | 5,5 | 2,2 | |||||||
[188.18–203.05] | 8,7 | 1,1 | 0,1 | 9 | 8,7 | 1,2 | |||||||||
[203.05–217.92] | 0,1 | 9,7 | 0,1 | 9 | 9,7 | 0,2 | |||||||||
[217.92–232.79] | 2,3 | 1,0 | 3 | 2,3 | 1,0 | ||||||||||
[232.79–247.66] | 0,1 | 1,0 | 5,4 | 0,1 | 6 | 5,4 | 1,2 | ||||||||
[247.66–262.53] | 1,0 | 4,4 | 0,1 | 5 | 4,4 | 1,1 | |||||||||
[262.53–277.4] | 1,2 | 11,10 | 0,1 | 12 | 11,10 | 1,2 | |||||||||
[>277.4] | 0 | 0,0 | 0,0 | ||||||||||||
Bold values: GEP | 52,47 | 11,16 | |||||||||||||
Accurate labeled data (%) 82.53%,74.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbaszadeh Shahri, A.; Kheiri, A.; Hamzeh, A. Subsurface Topographic Modeling Using Geospatial and Data Driven Algorithm. ISPRS Int. J. Geo-Inf. 2021, 10, 341. https://doi.org/10.3390/ijgi10050341
Abbaszadeh Shahri A, Kheiri A, Hamzeh A. Subsurface Topographic Modeling Using Geospatial and Data Driven Algorithm. ISPRS International Journal of Geo-Information. 2021; 10(5):341. https://doi.org/10.3390/ijgi10050341
Chicago/Turabian StyleAbbaszadeh Shahri, Abbas, Ali Kheiri, and Aliakbar Hamzeh. 2021. "Subsurface Topographic Modeling Using Geospatial and Data Driven Algorithm" ISPRS International Journal of Geo-Information 10, no. 5: 341. https://doi.org/10.3390/ijgi10050341
APA StyleAbbaszadeh Shahri, A., Kheiri, A., & Hamzeh, A. (2021). Subsurface Topographic Modeling Using Geospatial and Data Driven Algorithm. ISPRS International Journal of Geo-Information, 10(5), 341. https://doi.org/10.3390/ijgi10050341