Seismic Damage Semantics on Post-Earthquake LOD3 Building Models Generated by UAS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. UAS Data Acquisition
2.2.2. Photogrammetric Processing for 3D Point Cloud Generation
2.2.3. Three-Dimensional Model Generation
2.2.4. CityGML Model
- FME Workbench module;
- CityEditor plug-in for immediate conversion at LOD3.
Semantic Enrichment of Seismic Building Damage
- Wall Damage Grade 1: Negligible to slight damage on walls with the following subclasses:
- 1.1 Hair-line cracks in very few walls.
- 1.2 Fall of small pieces of plaster only.
- 1.3 Fall of loose stones from upper parts of buildings in very few cases.
- Wall Damage Grade 2: Moderate damage on walls with the following subclasses:
- 2.1 Cracks in many walls.
- 2.2 Diagonal cracks in many walls.
- 2.3 Fall of fairly large pieces of plaster.
- Wall Damage Grade 3: Substantial to heavy damage on with the following subclasses:
- 3.1 Large and extensive cracks in most walls.
- 3.2 Diagonal large and extensive cracks in most walls.
- 3.3 Failure of individual non-structural elements (partitions, gable walls).
- Wall Damage Grade 4: Very heavy damage on walls with the following subclasses:
- 4.1 Serious failure of walls.
- 4.2 Loss of connection between external walls.
- Wall Damage Grade 5: Destruction of walls with the following subclasses:
- 5.1 Total collapse.
- 5.2 Near-total collapse.
- Roof Damage Grade 1: Negligible to slight damage on roofs with one subclass:
- 1.4 Fall of roof tiles.
- Roof Damage Grade 2: Moderate damage on roofs with one subclass:
- 2.4 Partial collapse of chimneys.
- Roof Damage Grade 3: Substantial to heavy damage on roofs with the following subclasses:
- 3.4 Roof tiles detach.
- 3.5 Chimneys fracture at the roofline.
- Roof Damage Grade 4: Very heavy damage on roofs with one subclass:
- 4.3 Partial structural failure of roofs.
- Roof Damage Grade 5: Destruction of roofs with the following subclasses:
- 5.1 Total collapse.
- 5.2 Near-total collapse.
2.2.5. Three-Dimensional City Database Storage
3. Results
3.1. Three-Dimensional Building Point Clouds by Using UAS Images
3.2. LOD3 CityGML Models with the Semantic Enrichment of Seismic Damage
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stadler, A.; Kolbe, T.H. Spatio-semantic coherence in the integration of 3D city models. In Proceedings of the 5th International ISPRS Symposium on Spatial Data Quality (ISSDQ), Enschede, The Netherlands, 13–15 June 2007. [Google Scholar]
- Gröger, G.; Kolbe, T.; Nagel, C.; Häfele, K.-H. OGC City Geography Markup Language (CityGML) En-coding Standard; Open Geospatial Constrium: Wayland, MA, USA, 2012. [Google Scholar]
- Biljecki, F.; Stoter, J.; Ledoux, H.; Zlatanova, S.; Çöltekin, A. Applications of 3D City Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842–2889. [Google Scholar] [CrossRef] [Green Version]
- Biljecki, F.; Ledoux, H.; Stoter, J. An improved LOD specification for 3D building models. Comput. Environ. Urban Syst. 2016, 59, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Gerhard, G.; Kolbe, T.H.; Nagel, C.; Häfel, K.-H. OGC City Geography Markup Language (CityGML) Encoding Standard, Version 2.0, OGC. Available online: https://portal.opengeospatial.org/files/?artifact_id=47842 (accessed on 19 November 2020).
- Dimopoulou, E.; Tsiliakoua, E.; Kosti, V.; Floros, G.; Labropoulos, T. Investigating integration possibilities between 3D modeling techniques. In Proceedings of the 9th 3DGeoInfo Conference 2014-Proceedings, Dubai, United Arab Emerites, 11–13 November 2014. [Google Scholar]
- Kolbe, T.H.; Gröger, G.; Plümer, L. CityGML: Interoperable Access to 3D City Models. In Geo-Information for Disaster Management; Oosterom, P., Zlatanova, S., Fendel, E.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 883–899. [Google Scholar]
- Kolbe, T.H. Representing and exchanging 3D city models with CityGML. In Lecture Notes in Geoinformation and Cartography; Lee, J., Zlatanova, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 15–31. ISBN 9783540873945. [Google Scholar]
- Gröger, G.; Plümer, L. CityGML-Interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens. 2012, 71, 12–33. [Google Scholar] [CrossRef]
- Biljecki, F.; Ledoux, H.; Stoter, J.; Zhao, J. Formalisation of the level of detail in 3D city modelling. Comput. Environ. Urban Syst. 2014, 48, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Ying, S.; Li, L.; Biljecki, F.; Zhu, H.; Zhu, Y.; Yang, F.; Su, F. An application-driven LOD modeling paradigm for 3D building models. ISPRS J. Photogramm. Remote Sens. 2020, 161, 194–207. [Google Scholar] [CrossRef]
- Khan, H.; Vasilescu, L.G.; Khan, A. Disaster Management Cycle–a Theoretical Approach. Manag. Mark. J. 2008, 6, 43–50. [Google Scholar]
- Kim, W.; Kerle, N.; Gerke, M. Mobile augmented reality in support of building damage and safety assessment. Nat. Hazards Earth Syst. Sci. 2016, 16, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Kerle, N. Remote Sensing Based Post-Disaster Damage Mapping with Collaborative Methods. In Intelligent Systems for Crisis Management; Zlatanova, S., Peters, R., Dilo, A., Scholten, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 121–133. ISBN 978-3-642-33217-3. [Google Scholar]
- Matsuoka, M.; Yamazaki, F. Use of satellite SAR intensity imagery for detecting building areas damaged due to earthquakes. Earthq. Spectra 2004, 20, 975–994. [Google Scholar] [CrossRef]
- Matsuoka, M.; Yamazaki, F. Building damage mapping of the 2003 Bam, Iran, earthquake using Envisat/ASAR intensity imagery. Earthq. Spectra 2005, 21, 1–5. [Google Scholar] [CrossRef]
- Brunner, D.; Lemoine, G.; Bruzzone, L. Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2403–2420. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- Plank, S. Rapid Damage Assessment by Means of Multi-Temporal SAR—A Comprehensive Review and Outlook to Sentinel-1. Remote Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef] [Green Version]
- Hajeb, M.; Karimzadeh, S.; Matsuoka, M. SAR and LIDAR datasets for building damage evaluation based on support vector machine and random forest algorithms—A case study of Kumamoto earthquake, Japan. Appl. Sci. 2020, 10, 8932. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Kerle, N.; Pasolli, E.; Arsanjani, J.J. Post-disaster building database updating using automated deep learning: An integration of pre-disaster OpenStreetMap and multi-temporal satellite data. Remote Sens. 2019, 11, 2427. [Google Scholar] [CrossRef] [Green Version]
- Tilon, S.; Nex, F.; Kerle, N.; Vosselman, G. Post-disaster building damage detection from earth observation imagery using unsupervised and transferable anomaly detecting generative adversarial networks. Remote Sens. 2020, 12, 4193. [Google Scholar] [CrossRef]
- Huang, H.; Long, J.; Yi, W.; Yi, Q.; Zhang, G.; Lei, B. Method and application of using unmanned aerial vehicle for emergency investigation of single geo-hazard. Nat. Hazards Earth Syst. Sci. Discuss. 2017, 1–28. [Google Scholar] [CrossRef]
- Dominici, D.; Alicandro, M.; Massimi, V. UAV photogrammetry in the post-earthquake scenario: Case studies in L’Aquila. Geomat. Nat. Hazards Risk 2017, 8, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.; Li, D.; Feng, W.; Han, Q.; Sui, H. Detecting damaged building regions based on semantic scene change from multi-Temporal high-resolution remote sensing images. ISPRS Int. J. Geo-Inf. 2017, 6, 131. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, F.; Kubo, K.; Tanabe, R.; Liu, W. Damage assessment and 3d modeling by UAV flights after the 2016 Kumamoto, Japan earthquake. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3182–3185. [Google Scholar]
- Calantropio, A.; Chiabrando, F.; Sammartano, G.; Spanò, A.; Teppati Losè, L. UAV strategies validation and remote sensing data for damage assessment in post-disaster scenarios. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2018, 42, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Soulakellis, N.; Vasilakos, C.; Chatzistamatis, S.; Kavroudakis, D.; Tataris, G.; Papadopoulou, E.-E.; Papakonstantinou, A.; Roussou, O.; Kontos, T. Post-Earthquake Recovery Phase Monitoring and Mapping Based on UAS Data. ISPRS Int. J. Geo Inf. 2020, 9, 447. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, J.; Peng, C.; Wu, Y.; Jiang, X.; Li, R.; Zheng, Y.; Gao, Y.; Liu, S.; Tian, B. Development of an UAS for post-earthquake disaster surveying and its application in Ms7.0 Lushan Earthquake, Sichuan, China. Comput. Geosci. 2014, 68, 22–30. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Kerle, N.; Nex, F.; Gerke, M.; Duarte, D.; Vetrivel, A. UAV-Based Structural Damage Mapping: A Review. ISPRS Int. J. Geo-Inf. 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Vosselman, G. Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images. ISPRS J. Photogramm. Remote Sens. 2015, 105, 61–78. [Google Scholar] [CrossRef]
- Grünthal, G. (Ed.) European Macroseismic Scale 1998; European Center for Geodynamics and Seismology: Walferdange, Luxembourg, 1998; Volume 15, ISBN 2879770084. [Google Scholar]
- Redweik, P.; Costa, P.T.; Boas, I.V.; Santos, T. Seismic Vulnerability Analysis in 3D City Models (3DCM). In Proceedings of the ICUR 2016-The International Conference on Urban Risks, Lisbon, Portugal, 30 June–2 July 2016; pp. 409–416. [Google Scholar]
- Shen, Y.; Wu, L.; Li, Z.; Li, X. 3D visualization of seismic buildings in Yushu earthquake for disaster management. In Proceedings of the 2010 International Conference on Multimedia Technology, ICMT 2010, Ningbo, China, 29–31 October 2010. [Google Scholar]
- Yamazaki, F.; Matsuda, T.; Denda, S.; Liu, W. Construction of 3D models of buildings damaged by earthquakes using UAV aerial images. In Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific, Sydney, Australia, 6–8 November 2015. [Google Scholar]
- Achille, C.; Adami, A.; Chiarini, S.; Cremonesi, S.; Fassi, F.; Fregonese, L.; Taffurelli, L. UAV-based photogrammetry and integrated technologies for architectural applications—methodological strategies for the after-quake survey of vertical structures in Mantua (Italy). Sensors 2015, 15, 15520–15539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiabrando, F.; Di Lolli, A.; Patrucco, G.; Spanò, A.; Sammartano, G.; Teppati Losè, L. Multitemporal 3D modelling for cultural heritage emergency during seismic events: Damage assesment of s. Agostino church in Amatrice (RI). In Proceedings of the ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Florence, Italy, 22–24 May 2017; Volume XLII-5/W1, pp. 69–76. [Google Scholar]
- Poli, D.; Moe, K.; Legat, K.; Toschi, I.; Lago, F.; Remondino, F. Use of vertical aerial images for semi-oblique mapping. In Proceedings of the ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Hannover, Germany, 6–9 June 2017; Volume XLII-1/W1, pp. 493–498. [Google Scholar]
- Redweik, P.; Teves-Costa, P.; Vilas-Boas, I.; Santos, T. 3D City Models as a Visual Support Tool for the Analysis of Buildings Seismic Vulnerability: The Case of Lisbon. Int. J. Disaster Risk Sci. 2017, 8, 308–325. [Google Scholar] [CrossRef] [Green Version]
- Colucci, E.; de Ruvo, V.; Lingua, A.; Matrone, F.; Rizzo, G. HBIM-GIS integration: From IFC to cityGML standard for damaged cultural heritage in a multiscale 3D GIS. Appl. Sci. 2020, 10, 1356. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Xie, H.; Liu, H.; Yan, L. Accurate Reconstruction of the LoD3 Building Model by Integrating Multi-Source Point Clouds and Oblique Remote Sensing Imagery. ISPRS Int. J. Geo-Inf. 2019, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Soon, K.H.; Khoo, V.H.S. CityGML modelling for Singapore 3D national mapping. In Proceedings of the ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 26–27 October 2017; Volume XLII-4/W7, pp. 37–42. [Google Scholar]
- Akmalia, R.; Setan, H.; Majid, Z.; Suwardhi, D.; Chong, A. TLS for Generating Multi-LOD of 3D Building Model; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014; Volume 18. [Google Scholar]
- Prieto, I.; Izkara, J.L.; Delgado, F.J. From point cloud to web 3D through CityGML. In Proceedings of the 2012 18th International Conference on Virtual Systems and Multimedia, Milan, Italy, 2–5 September 2012; IEEE: Milan, Italy, 2012; pp. 405–412. [Google Scholar]
- Gruen, A.; Schubiger, S.; Qin, R.; Schrotter, G.; Xiong, B.; Li, J.; Ling, X.; Xiao, C.; Yao, S.; Nuesch, F. Semantically enriched high resolution LoD 3 building model generation. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, Singapore, 24–27 September 2019; Volume 42, pp. 11–18. [Google Scholar]
- Malihi, S.; Valadan Zoej, M.J.; Hahn, M.; Mokhtarzade, M.; Arefi, H. 3D Building Reconstruction Using Dense Photogrammetric Point Cloud. In Proceedings of the ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; Volume XLI-B3, pp. 71–74. [Google Scholar]
- Saran, S.; Wate, P.; Srivastav, S.K.; Krishna Murthy, Y.V.N. CityGML at semantic level for urban energy conservation strategies. Ann. GIS 2015, 21, 27–41. [Google Scholar] [CrossRef]
- Chaidas, K.; Tataris, G.; Soulakellis, N. Post-earthquake 3D building model (LOD2) generation from UAS imagery: The case of Vrisa traditional settlement, Lesvos, Greece. In Proceedings of the ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Safranbolu, Turkey, 7–8 October 2020; Volume XLIV-4/W3-, pp. 165–172. [Google Scholar]
- Tataris, G.; Soulakellis, N.; Chaidas, K. Multitemporal 3D mapping of post-earthquake recovery phase with UAS: Case study Vrisa, lesvos, Greece. In Proceedings of the ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Sydney, Australia, 30 November–3 December 2020; Volume VI-3/W1-20, pp. 123–130. [Google Scholar]
- Post Earthquake Damage and Usability Assessment of Buildings: Further Development and Applications. Final report. European Commission—D.G. Environment, Civil Protection—EPPO. Available online: http://ec.europa.eu/echo/files/civil_protection/civil/act_prog_rep/peadab.pdf (accessed on 21 March 2021).
- Agisoft Agisoft Metashape User Manual. Available online: https://www.agisoft.com/ (accessed on 4 February 2021).
- Google SketchUp 3D Design Software 3D Modeling on the Web SketchUp. Available online: https://www.sketchup.com (accessed on 19 January 2021).
- Safe Software|FME|Data Integration Platform. Available online: https://www.safe.com/ (accessed on 24 January 2021).
- Van den Brink, L.; Stoter, J.; Zlatanova, S. UML-based approach to developing a citygml application domain extension. Trans. GIS 2013, 17, 920–942. [Google Scholar] [CrossRef]
- Yao, Z.; Nagel, C.; Kunde, F.; Hudra, G.; Willkomm, P.; Donaubauer, A.; Adolphi, T.; Kolbe, T.H. 3DCityDB-a 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open Geospat. Data Softw. Stand. 2018, 3, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Soulakellis, N.; Chatzistamatis, S.; Vasilakos, C.; Tataris, G.; Papakonstantinou, A.; Kavroudakis, D.; Topouzelis, K.; Roussou, O.; Kalloniatis, C.; Papadopoulou, E.E.; et al. Synergistic exploitation of geoinformation methods for post-earthquake 3D mapping of Vrisa traditional settlement, Lesvos island, Greece. In Proceedings of the GeoInformation for Disaster Management (Gi4DM), Istanbul, Turkey, 18–21 March 2018; Volume XLII-3/W4, pp. 491–498. [Google Scholar]
- Chatzistamatis, S.; Kalaitzis, P.; Chaidas, K.; Chatzitheodorou, C.; Papadopoulou, E.E.; Tataris, G.; Soulakellis, N. Fusion of TLS and UAV photogrammetry data for post-earthquake 3D modeling of a cultural heritage church. In Proceedings of the ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Turkey, 18–21 March 2018; Volume XLII-3/W4, pp. 143–150. [Google Scholar]
Buildings | Building-A | Building-B | |
---|---|---|---|
Flight | Date | 7 October 2020 | 7 October 2020 |
Duration | 10 min | 12 min | |
Height | 30 m | 30 m | |
Camera angle | Nadir/oblique | Nadir/oblique | |
GSD | 0.9 cm/pix | 0.9 cm/pix | |
Number of nadir images | 20 | 35 | |
Number of oblique images | 70 | 60 | |
Total area | 272 m2 | 152 m2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaidas, K.; Tataris, G.; Soulakellis, N. Seismic Damage Semantics on Post-Earthquake LOD3 Building Models Generated by UAS. ISPRS Int. J. Geo-Inf. 2021, 10, 345. https://doi.org/10.3390/ijgi10050345
Chaidas K, Tataris G, Soulakellis N. Seismic Damage Semantics on Post-Earthquake LOD3 Building Models Generated by UAS. ISPRS International Journal of Geo-Information. 2021; 10(5):345. https://doi.org/10.3390/ijgi10050345
Chicago/Turabian StyleChaidas, Konstantinos, George Tataris, and Nikolaos Soulakellis. 2021. "Seismic Damage Semantics on Post-Earthquake LOD3 Building Models Generated by UAS" ISPRS International Journal of Geo-Information 10, no. 5: 345. https://doi.org/10.3390/ijgi10050345
APA StyleChaidas, K., Tataris, G., & Soulakellis, N. (2021). Seismic Damage Semantics on Post-Earthquake LOD3 Building Models Generated by UAS. ISPRS International Journal of Geo-Information, 10(5), 345. https://doi.org/10.3390/ijgi10050345