Automatic Delineation of Urban Growth Boundaries Based on Topographic Data Using Germany as a Case Study
Abstract
:1. Introduction
1.1. Urban Growth Boundaries
1.2. Automatic Delineation of Settlements
- Remote-sensing data. Many approaches are based on classification methods using spectral information from satellite data of Landsat, Sentinel-1, Sentinel-2 or SPOT5/SPOT6 [59,60,61]. The Global Human Settlement Layer (GHSL) provides a global dataset for the analysis of built-up areas for the years 1990, 2000 and 2014. This was created by applying supervised data classification algorithms to Landsat images [62]. The High-Resolution Settlement Layer (HRSL) combines image classification and convolutional neural networks [63]. Recent approaches have attempted combine of deep learning (DeepVGI) with crowdsourcing (MapSwipe) [64]. Esch et al. made use of TanDEM-X and TerraSAR-X radar images and a fully automated processing framework to create the Global Urban Footprint (GUF) raster map [65]. However, the low-resolution datasets still show great variation between different regions and geographic settings [66]. They are also unable to identify the finer details needed to investigate urban dynamics. A less common approach is to make use of nightlight data. These data strongly correlate with economic activity and population density. Due to overglow and saturation, it is only partly suitable for delineation of boundaries of settlements [67,68].
- Road network data. In contrast to raster-based methods, various studies have proposed using spatial vector data from official topographic or cadastral databases or VGI platforms such as OpenStreetMap. Walter et al. investigated the density and layout of road networks to define settlement boundaries [69,70]. A mathematical model based on the clustering of vertices and the edges of a street network was applied by Zhou et al. [71], and Masucci et al. [72] evaluated density-, intersection- and street block-based approaches to delineate built-up areas using road networks. Jiang and Jia derived ’natural cities’ by clustering street nodes [73].
- Settlement and building data. Only a few studies have attempted to utilise building footprints. Most of them utilise vector datasets from National Mapping Agencies from digital landscape models or cadaster data. For instance, Li et al. merged and generalised these footprints via Thiessen polygons and the rules of Gestalt theory until they were reduced to an outline of the settlement [74]. Chaudhry and Mackaness created settlement boundaries with a multi-stage approach directly derived from building footprints [29]. Arribas-Bel et al. created city boundaries based on a machine learning algorithm that groups buildings by means of an adopted DBSCAN algorithm [75]. Tannier and Thomas used a fractal-based method to generate boundaries from building footprints [76]. Muhs et al. extracted building data from topographic maps to delineate the extent of built-up land using digital image processing [77]. De Bellefon et al. calculated a raster from building footprint densities, from which they derived urban areas [78]. Harig et al. presented a method that used a supervised parameter optimisation along with a buffer-based method to assess the quality of the delineation [79]. This approach was developed and evaluated in terms of its potential use in the spatial sciences to monitor built-up areas at a very fine-grained level. Schumacher follows a similar approach by aggregating buildings into a so-called ’urban mask’ [80].
1.3. Institutional Framework in Germany and Urban Growth Boundaries
1.4. Aim and Research Questions
2. Method
2.1. Partitioning
2.2. Creating Street Blocks and City Blocks
2.3. Calculation of Building Coverage Threshold
2.4. Semantic and Spatial Filtering
2.5. Identification of Densely Developed Blocks
2.6. Minimum Spanning Tree Based Aggregation
Algorithm 1. Minimum bounding rectangle algorithm |
Algorithm 2. MST-based aggregation algorithm |
2.7. Refinement
2.8. Exemplary Comparison of Expert Delineations and Urban Growth Boundaries
3. Study Areas and Data
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATKIS® | Authoritative topographic-cartographic information system |
BC | Building coverage |
DLM | Digital landscape model |
ED | Expert delineation |
UGB | Urban growth boundary |
MBR | Minimum bounding rectangle |
MST | Minimum spanning tree |
References
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- World Bank. Urban Development—Overview. 2021. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 2 May 2021).
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Colsaet, A.; Laurans, Y.; Levrel, H. What drives land take and urban land expansion? A systematic review. Land Use Policy 2018, 79, 339–349. [Google Scholar] [CrossRef]
- Siedentop, S. Urban Sprawl—Verstehen, messen, steuern: Ansatzpunkte für ein empirisches Mess- und Evaluationskonzept der urbanen Siedlungsentwicklung. DisP Plan. Rev. 2005, 41, 23–35. [Google Scholar] [CrossRef]
- Siedentop, S.; Fina, S. Monitoring urban sprawl in Germany: Towards a GIS-based measurement and assessment approach. J. Land Use Sci. 2010, 5, 73–104. [Google Scholar] [CrossRef]
- Kretschmer, O.; Ultsch, A.; Behnisch, M. Towards an understanding of land consumption in Germany—Outline of influential factors as a basis for multidimensional analyses. Erdkunde 2015, 69, 267–279. [Google Scholar] [CrossRef]
- Haines-Young, R. Land Use and Biodiversity Relationships. Land Use Policy 2009, 26, 178–186. [Google Scholar] [CrossRef]
- European Environment Agency. Urban Adaptation to Climate Change in Europe: Challenges and Opportunities for Cities Together with Supportive National and European Policies; Technical Report 2/2012; Office for Official Publications of the European Union: Copenhagen, Denmark, 2012; Available online: https://data.europa.eu/doi/10.2800/41895 (accessed on 15 March 2021).
- Eko, J.; Ayama, O.R. Urban Sprawl Effects on Biodiversity in Peripheral Agricultural Lands in Calabar, Nigeria. J. Environ. Earth Sci. 2013, 3, 14. [Google Scholar]
- Scalenghe, R.; Marsan, F.A. The Anthropogenic Sealing of Soils in Urban Areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Carlson, T.N. Analysis and Prediction of Surface Runoff in an Urbanizing Watershed Using Satellite Imagery. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 1087–1098. [Google Scholar] [CrossRef]
- Ministère de L’agriculture, de L’alimentation, de la Pêche; de la Ruralité et de L’aménagement du Territoire. Circulaire DGPAAT/SDB/C2012-3008; Technical Report; Ministère de L’agriculture, de L’alimentation, de la PêChe, de la Ruralité et de L’aménagement du Territoire: Paris, France, 2012. Available online: http://www.haute-loire.gouv.fr/IMG/pdf/circulaire_CDCEADGPAATC20123008I.pdf (accessed on 15 March 2021).
- Hoornweg, D.; Sugar, L.; Trejos Gómez, C.L. Cities and Greenhouse Gas Emissions: Moving Forward. Environ. Urban. 2011, 23, 207–227. [Google Scholar] [CrossRef]
- Sullivan, W.C.; Lovell, S.T. Improving the Visual Quality of Commercial Development at the Rural–Urban Fringe. Landsc. Urban Plan. 2006, 77, 152–166. [Google Scholar] [CrossRef]
- Camagni, R.; Gibelli, M.C.; Rigamonti, P. Urban Mobility and Urban Form: The Social and Environmental Costs of Different Patterns of Urban Expansion. Ecol. Econ. 2002, 40, 199–216. [Google Scholar] [CrossRef]
- Le Goix, R. Gated Communities: Sprawl and Social Segregation in Southern California. Hous. Stud. 2005, 20, 323–343. [Google Scholar] [CrossRef] [Green Version]
- Brueckner, J.K. Urban Sprawl: Diagnosis and Remedies. Int. Reg. Sci. Rev. 2000, 23, 160–171. [Google Scholar] [CrossRef]
- World Bank. Reshaping Economic Geography; Number 2009 in World Development Report; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 15 March 2021).
- European Commission. Next Steps for a Sustainable European Future European Action for Sustainability; COM(2016) 739 Final; European Commission: Strasbourg, France, 2016; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2016:739:FIN (accessed on 15 March 2021).
- Federal Government of Germany. Perspectives for Germany—Our Strategy for Sustainable Development. 2003, p. 269. Available online: https://www.bundesregierung.de/resource/blob/998220/354630/3c4a42c0e125a732407d16b5420d7c6e/perspektives-for-germany-langfassung-data.pdf?download=1 (accessed on 15 March 2021).
- Decoville, A.; Schneider, M. Can the 2050 Zero Land Take Objective of the EU be Reliably Monitored? A Comparative Study. J. Land Use Sci. 2015, 1–19. [Google Scholar] [CrossRef]
- Die Bundesregierung. Deutsche Nachhaltigkeitsstrategie—Aktualisierung 2018; Technical Report; Presse- und Informationsamt der Bundesregierung: Berlin, Germany, 2018; Available online: https://www.bundesregierung.de/resource/blob/975292/1559082/a9795692a667605f652981aa9b6cab51/deutsche-nachhaltigkeitsstrategie-aktualisierung-2018-download-bpa-data.pdf?download=1 (accessed on 15 March 2021).
- The Department for Communities and Local Government (DCLG). Planning Policy Statement 3 (PPS3); Technical Report; Department for Communities and Local Government: London, UK, 2011; Available online: https://www.housinglin.org.uk/_assets/Resources/Housing/Policy_documents/PPS3.pdf (accessed on 15 March 2021).
- Hecht, R.; Behnisch, M.; Herold, H. Innovative Approaches, Tools and Visualization Techniques for Analysing Land Use Structures and Dynamics of Cities and Regions (Editorial). J. Geovisualization Spat. Anal. 2020, 4, 19. [Google Scholar] [CrossRef]
- Moreno, E.L. Concepts, Definitions and Data Sources for the Study of Urbanization: The 2030 Agenda for Sustainable Development. Un Expert Group Meeting on Cities, Human Mobility and International Migration. 2017. Available online: https://www.un.org/en/development/desa/population/events/pdf/expert/27/papers/II/paper-Moreno-final.pdf (accessed on 15 March 2021).
- Rosa, W. Goal 11. Make Cities and Human Settlements Inclusive, Safe, Resilient, and Sustainable. In A New Era in Global Health: Nursing and the United Nations 2030 Agenda for Sustainable Development; Springer Publishing Company: New York, NY, USA, 2017; p. 339. [Google Scholar]
- Chaudhry, O.; Mackaness, W.A. Automatic Identification of Urban Settlement Boundaries for Multiple Representation Databases. Comput. Environ. Urban Syst. 2008, 32, 95–109. [Google Scholar] [CrossRef]
- Fujita, M.; Krugman, P.; Mori, T. On the Evolution of Hierarchical Urban Systems. Eur. Econ. Rev. 1999, 43, 209–251. [Google Scholar] [CrossRef]
- Esnard, A.M.; Yang, Y. Descriptive and Comparative Studies of the 1990 Urban Extent Data for the New York Metropolitan Region. URISA J. 2002, 14, 57–62. [Google Scholar]
- van Rensburg, J.D.J.; Campbell, M.M. The Management of Urban Sprawl by Applying an Urban Edge Strategy. Urban Forum 2012, 23, 61–72. [Google Scholar] [CrossRef]
- Nelson, A.C.; Peterman, D.R. Does Growth Management Matter? The Effect of Growth Management on Economic Performance. J. Plan. Educ. Res. 2000, 19, 277–285. [Google Scholar] [CrossRef]
- Calthorpe, P.; Fulton, W. The Regional City; Island Press: Washington, DC, USA, 2001. [Google Scholar]
- Knaap, G.J.; Hopkins, L.D. The Inventory Approach to Urban Growth Boundaries. J. Am. Plan. Assoc. 2001, 67, 314–326. [Google Scholar] [CrossRef]
- Schiller, G.; Blum, A.; Hecht, R.; Oertel, H.; Ferber, U.; Meinel, G. Urban Infill Development Potential in Germany: Comparing Survey and Gis Data. Build. Cities 2021, 2, 36–54. [Google Scholar] [CrossRef]
- Han, H.Y.; Lai, S.K.; Dang, A.R.; Tan, Z.b.; Wu, C.f. Effectiveness of Urban Construction Boundaries in Beijing: An Assessment. J. Zhejiang Univ. Sci. A 2009, 10, 1285–1295. [Google Scholar] [CrossRef]
- Siedentop, S.; Fina, S.; Krehl, A. Greenbelts in Germany’s Regional Plans—An Effective Growth Management Policy? Landsc. Urban Plan. 2016, 145, 71–82. [Google Scholar] [CrossRef]
- Long, Y.; Han, H.; Tu, Y.; Shu, X. Evaluating the Effectiveness of Urban Growth Boundaries Using Human Mobility and Activity Records. Cities 2015, 46, 76–84. [Google Scholar] [CrossRef]
- Ding, C.; Knaap, G.J.; Hopkins, L.D. Managing Urban Growth with Urban Growth Boundaries: A Theoretical Analysis. J. Urban Econ. 1999, 46, 53–68. [Google Scholar] [CrossRef]
- Phillips, J.; Goodstein, E. Growth Management and Housing Prices: The Case of Portland, Oregon. Contemp. Econ. Policy 2000, 18, 334–344. [Google Scholar] [CrossRef]
- Abbott, C.; Margheim, J. Imagining Portland’s Urban Growth Boundary: Planning Regulation as Cultural Icon. J. Am. Plan. Assoc. 2008, 74, 196–208. [Google Scholar] [CrossRef]
- Hepinstall-Cymerman, J.; Coe, S.; Hutyra, L.R. Urban Growth Patterns and Growth Management Boundaries in the Central Puget Sound, Washington, 1986–2007. Urban Ecosyst. 2013, 16, 109–129. [Google Scholar] [CrossRef]
- Gunn, S.C. Green Belts: A Review of the Regions’ Responses to a Changing Housing Agenda. J. Environ. Plan. Manag. 2007, 50, 595–616. [Google Scholar] [CrossRef]
- Mubarak, F.A. Urban Growth Boundary Policy and Residential Suburbanization: Riyadh, Saudi Arabia. Habitat Int. 2004, 28, 567–591. [Google Scholar] [CrossRef]
- Gordon, D.; Vipond, S. Gross Density and New Urbanism: Comparing Conventional and New Urbanist Suburbs in Markham, Ontario. Am. Plan. Assoc. J. Am. Plan. Assoc. 2005, 71, 41. [Google Scholar] [CrossRef]
- Coiacetto, E. Residential Sub-Market Targeting by Developers in Brisbane. Urban Policy Res. 2007, 25, 257–274. [Google Scholar] [CrossRef]
- Bengston, D.N.; Youn, Y.C. Urban Containment Policies and the Protection of Natural Areas: The Case of Seoul’s Greenbelt. Ecol. Soc. 2006, 11, art3. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Lv, L.N. A Woe Method for Urban Growth Boundary Delineation and Its Applications to Land Use Planning. Int. J. Geogr. Inf. Sci. 2016, 30, 691–707. [Google Scholar] [CrossRef]
- He, Q.; Tan, R.; Gao, Y.; Zhang, M.; Xie, P.; Liu, Y. Modeling Urban Growth Boundary Based on the Evaluation of the Extension Potential: A Case Study of Wuhan City in China. Habitat Int. 2016, 72, 57–65. [Google Scholar] [CrossRef]
- Yang, J.; Gong, J.; Tang, W.; Shen, Y.; Liu, C.; Gao, J. Delineation of Urban Growth Boundaries Using a Patch-Based Cellular Automata Model under Multiple Spatial and Socio-Economic Scenarios. Sustainability 2019, 11, 6159. [Google Scholar] [CrossRef] [Green Version]
- Dawkins, C.J.; Nelson, A.C. Urban containment policies and housing prices: An international comparison with implications for future research. Land Use Policy 2002, 19, 1–12. [Google Scholar] [CrossRef]
- Pendall, R. Do land-use controls cause sprawl? Environ. Plan. B Plan. Des. 1999, 26, 555–571. [Google Scholar] [CrossRef]
- Bhatta, B. Modelling of Urban Growth Boundary using Geoinformatics. Int. J. Digital Earth 2009, 2, 359–381. [Google Scholar] [CrossRef]
- Tayyebi, A.; Pijanowski, B.C.; Tayyebi, A.H. An Urban Growth Boundary Model Using Neural Networks, Gis and Radial Parameterization: An Application to Tehran, Iran. Landsc. Urban Plan. 2011, 100, 35–44. [Google Scholar] [CrossRef]
- Tayyebi, A.; Perry, P.C.; Tayyebi, A.H. Predicting the Expansion of an Urban Boundary Using Spatial Logistic Regression and Hybrid Raster–Vector Routines with Remote Sensing and Gis. Int. J. Geogr. Inf. Sci. 2014, 28, 639–659. [Google Scholar] [CrossRef]
- Long, Y.; Han, H.; Lai, S.K.; Mao, Q. Urban Growth Boundaries of the Beijing Metropolitan Area: Comparison of Simulation and Artwork. Cities 2013, 31, 337–348. [Google Scholar] [CrossRef]
- Ma, S.; Li, X.; Cai, Y. Delimiting the Urban Growth Boundaries with a Modified Ant Colony Optimization Model. Comput. Environ. Urban Syst. 2017, 62, 146–155. [Google Scholar] [CrossRef]
- Sabo, F.; Corbane, C.; Florczyk, A.J.; Ferri, S.; Pesaresi, M.; Kemper, T. Comparison of Built-up Area Maps Produced Within the Global Human Settlement Framework. Trans. GIS 2018, 22, 1406–1436. [Google Scholar] [CrossRef]
- Hu, S.; Tong, L.; Frazier, A.E.; Liu, Y. Urban Boundary Extraction and Sprawl Analysis Using Landsat Images: A Case Study in Wuhan, China. Habitat Int. 2015, 47, 183–195. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Wang, J. Urban Built-Up Area Extraction from Landsat TM/ETM+ Images Using Spectral Information and Multivariate Texture. Remote Sens. 2014, 6, 7339–7359. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.J.; Freire, S.; Halkia, M.; Julea, A.; Kemper, T.; Soille, P.; Syrris, V. Operating Procedure for the Production of the Global Human Settlement Layer from Landsat Data of the Epochs 1975, 1990, 2000, and 2014; Technical Report; Publications Office: Luxembourg, 2016. [Google Scholar]
- Tiecke, T.G.; Liu, X.; Zhang, A.; Gros, A.; Li, N.; Yetman, G.; Kilic, T.; Murray, S.; Blankespoor, B.; Prydz, E.B.; et al. Mapping the World Population One Building at a Time. CoRR 2017. [Google Scholar] [CrossRef]
- Herfort, B.; Li, H.; Fendrich, S.; Lautenbach, S.; Zipf, A. Mapping Human Settlements with Higher Accuracy and Less Volunteer Efforts by Combining Crowdsourcing and Deep Learning. Remote. Sens. 2019, 17, 1799. [Google Scholar] [CrossRef] [Green Version]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking New Ground in Mapping Human Settlements from Space—The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Klotz, M.; Kemper, T.; Geiß, C.; Esch, T.; Taubenböck, H. How Good Is the Map? A Multi-Scale Cross-Comparison Framework for Global Settlement Layers: Evidence from Central Europe. Remote Sens. Environ. 2016, 178, 191–212. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A Cluster-Based Method to Map Urban Area from Dmsp/Ols Nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Zhang, J.; Wu, L. Allometric Scaling, Size Distribution and Pattern Formation of Natural Cities. Palgrave Commun. 2015, 1, 1–11. [Google Scholar] [CrossRef]
- Walter, V. Automatic Interpretation of Vector Databases with a Raster-Based Algorithm. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part B2, Commission 2. In Proceedings of the ISPRS Congress 2008, Beijing, China, 3–11 July 2008; pp. 175–180. [Google Scholar]
- Borruso, G. Network Density and the Delimitation of Urban Areas. Trans. GIS 2003, 7, 177–191. [Google Scholar] [CrossRef]
- Zhou, Q. Comparative Study of Approaches to Delineating Built-up Areas Using Road Network Data. Trans. GIS 2015, 19, 848–876. [Google Scholar] [CrossRef]
- Masucci, A.P.; Arcaute, E.; Hatna, E.; Stanilov, K.; Batty, M. On the Problem of Boundaries and Scaling for Urban Street Networks. J. R. Soc. Interface 2015, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Jia, T. Zipf’s Law for All the Natural Cities in the United States: A Geospatial Perspective. Int. J. Geogr. Inf. Sci. 2011, 25, 1269–1281. [Google Scholar] [CrossRef]
- Li, Z.; Yan, H.; Ai, T.; Chen, J. Automated Building Generalization Based on Urban Morphology and Gestalt Theory. Int. J. Geogr. Inf. Sci. 2004, 18, 513–534. [Google Scholar] [CrossRef]
- Arribas-Bel, D.; Garcia-Lopez, M.A.; Viladecans-Marsal, E. Building(s and) Cities: Delineating Urban Areas with a Machine Learning Algorithm. J. Urban Econ. 2019, 103217. [Google Scholar] [CrossRef] [Green Version]
- Tannier, C.; Thomas, I. Defining and Characterizing Urban Boundaries: A Fractal Analysis of Theoretical Cities and Belgian Cities. Comput. Environ. Urban Syst. 2013, 41, 234–248. [Google Scholar] [CrossRef]
- Muhs, S.; Herold, H.; Meinel, G.; Burghardt, D.; Kretschmer, O. Automatic Delineation of Built-up Area at Urban Block Level from Topographic Maps. Comput. Environ. Urban Syst. 2016, 58, 71–84. [Google Scholar] [CrossRef]
- De Bellefon, M.P.; Combes, P.P.; Duranton, G.; Gobillon, L.; Gorin, C. Delineating urban areas using building density. J. Urban Econ. 2019, 103226. [Google Scholar] [CrossRef] [Green Version]
- Harig, O.; Burghardt, D.; Hecht, R. A Supervised Approach to Delineate Built-Up Areas for Monitoring and Analysis of Settlements. ISPRS Int. J. Geo-Inf. 2016, 5, 137. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, U. The Urban Mask Layer as Reference Geometry for Spatial Planning: Moving from German to European Geodata. KN J. Cartogr. Geogr. Inf. 2021. [Google Scholar] [CrossRef]
- Rozenfeld, H.D.; Rybski, D.; Andrade, J.S.; Batty, M.; Stanley, H.E.; Makse, H.A. Laws of Population Growth. Proc. Natl. Acad. Sci. USA 2008, 105, 18702–18707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozenfeld, H.D.; Rybski, D.; Gabaix, X.; Makse, H.A. The Area and Population of Cities: New Insights from a Different Perspective on Cities. Am. Econ. Rev. 2011, 101, 2205–2225. [Google Scholar] [CrossRef] [Green Version]
- Ernst, W.; Bielenberg, W.; Krautzberger, M.; Blechschmidt, R.; Ernst, W.; Zinkahn, W.; Bielenberg, W.; Krautzberger, M.; Blechschmidt, R. Baugesetzbuch Kommentar; Version from: 1 August 2020 (139. Supplementary Sheets) ed.; C.H. Beck: München, Germany, 2020; BauGB § 34 Para. 7, 8b, 23, 25, 26, 91. [Google Scholar]
- Meinel, G.; Hecht, R.; Herold, H. Analyzing Building Stock Using Topographic Maps and GIS. Build. Res. Inf. 2009, 37, 468–482. [Google Scholar] [CrossRef]
- Schiller, G.; Oertel, H.; Blum, A. Innenentwicklungspotenziale in Deutschland—Ergebnisse einer Bundesweiten Befragung; Vol. Methodik, Analyseergebnisse, Flächenmanagement, Flächennutzungsmonitoring V; Rhombos-Verlag: Berlin, Germany, 2013. [Google Scholar]
- Elgendy, H.; Michels, S. Raum+ Rheinland-Pfalz 2010: Die Bewertung Von Flächenpotenzialen Für Eine Zukunftsfähige Siedlungsentwicklung; Ministerium für Wirtschaft, Energie, Klimaschutz und Landesplanung: Mainz, Germany, 2011. [Google Scholar]
- Henger, R.; Bizer, K. Tradable Planning Permits for Land-Use Control in Germany. Land Use Policy 2010, 27, 843–852. [Google Scholar] [CrossRef]
- Linke, H.J.; Dettweiler, M.; Vogt, J.; Spatz, L.; Klien, E.; Rix, J.; Franke, W.; Iovine, I.; Wenzel, A. Aktive und Gemeinsame Innenentwicklung durch Visualisierung und Beteiligung—Forschungsergebnisse des BMBF-Projektes AktVis; Technical Report; Technische Universität Darmstadt: Darmstadt, Germany, 2019. [Google Scholar]
- Bukies, K.; Meyer, H.; Rabe, E. Die Ermittlung der praktischen Grundlagen für die Festlegungen im Regionalen Raumordnungsprogramm 2005. In Steuerung der Eigenentwicklung in ländlichen Siedlungen; Number 123 in Beiträge zur regionalen Entwicklung, Region Hannover, Team Regionalplanung; Region Hannover: Hanover, Germany, 2009; pp. 29–43. [Google Scholar]
- Elend, A.; Köninger, S.; Müller, B. Die Plattform Innenentwicklung Wohnen—Erfahrungen des Regionalverbandes FrankfurtRheinMain. In Flächennutzungsmonitoring V: Methodik—Analyseergebnisse—Flächenmanagement; Meinel, G., Schumacher, U., Behnisch, M., Eds.; Leibniz-Institut für ökologische Raumentwicklung e.V.: Berlin, Germany, 2013; pp. 35–42. [Google Scholar]
- ESRI ArcGIS Resources. How Point Density Works. 2020. Available online: https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/how-point-density-works.htm (accessed on 15 July 2020).
- Deutscher Städtetag. Kleinräumige Gliederung: Räumliches Ordnungssystem Zensus 1981. DST-Beiträge zur Statistik und Stadtforschung. Reihe H 1979, 15, 1. [Google Scholar]
- Conzen, M.R.G. Alnwick, Northumberland: A study in town-plan analysis. In Transactions and Papers (Institute of British Geographers) No. 27; JSTOR: New York, NY, USA, 1960; pp. 3–122. [Google Scholar] [CrossRef]
- Luft, H.; Bender, G. Fachwörterbuch, Benennungen und Definitionen im Deutschen Vermessungswesen mit Englischen und FranzöSischen Äquivalenten; 15 Stadtplanung, Raumordnung = Urban Planning, Regional Policy 1998, ed.; Bundesamt für Kartographie und Geodäsie: Frankfurt am Main, Germany, 1998. [Google Scholar]
- Battis, U.; Mitschang, S.; Reidt, O.; Battis, U.; Krautzberger, M.; Löhr, R.P. Baugesetzbuch Kommentar; 14. Auflage ed.; C.H. Beck: München, Germany, 2019; BauGB § 34 Para. 7–10, 14, 16. [Google Scholar]
- Weber, C. Urban Agglomeration Delimitation using Remote Sensing Data. In Remote Sensing and Urban Analysis; Donnay, J.P., Barnsley, M.J., Longley, P., Eds.; Taylor & Francis: London, UK; New York, NY, USA, 2001; pp. 145–159. [Google Scholar] [CrossRef]
- Hecht, R. Automatische Klassifizierung von Gebäudegrundrissen ein Beitrag zur kleinräumigen Beschreibung der Siedlungsstruktur; Rhombos-Verl.: Berlin, Germany, 2014; p. 217. [Google Scholar]
- Spannowsky, W.; Uechtritz, M.; Birk; Hans-Jörg Spannowsky, W.; Uechtritz, M. BeckOK BauGB, 49th ed.; Version from: 01.05.2020 ed.; C.H. Beck: München, Germany, 2020; BauGB § 34 Para. 26. [Google Scholar]
- Kruskal, J.B. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proc. Am. Math. Soc. 1956, 7, 48–50. [Google Scholar] [CrossRef]
- Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy 2008), Pasadena, CA, USA, 19–24 August 2008; p. 5. [Google Scholar]
- McMaster, R.B. Automated Line Generalization. Cartogr. Int. J. Geogr. Inf. Geovisualization 1987, 24, 74–111. [Google Scholar] [CrossRef]
- Veregin, H. Quantifying Positional Error Induced by Line Simplificaton. Int. J. Geogr. Inf. Sci. 2000, 14, 113–130. [Google Scholar] [CrossRef]
- Regional Authority FrankfurtRheinMain. The Regional Authority FrankfurtRheinMain: Structure, Tasks and Services; Regional Authority FrankfurtRheinMain, The Regional Executive Board: Frankfurt am Main, Germany, 2013; Available online: https://www.region-frankfurt.de/media/custom/3255_59_1.PDF?1565008409 (accessed on 15 March 2021).
- Landesregierung Land Brandenburg. Daten und Fakten zur Hauptstadtregion. 2020. Available online: https://www.berlin-brandenburg.de/metropolregion/daten-und-fakten/ (accessed on 15 March 2021).
- Region Hannover (Ed.) Regional Planning in the Hannover Region; Number 109b in Beiträge zur regionalen Entwicklung, Der Regionspräsident; Region Hannover, Fachbereich Planung und Raumordnung: Hannover, Germany, 2009; p. 4. [Google Scholar]
- Regionalverband FrankfurtRheinMain. Regionales Monitoring 2019—Daten und Fakten—Regionalverband FrankfurtRheinMain; Technical Report; Regionalverband FrankfurtRheinMain: Frankfurt am Main, Germany, 2019; Available online: https://www.region-frankfurt.de/media/custom/3255_44_1.PDF?1565006922 (accessed on 15 March 2021).
- Zentrale Stelle Hauskoordinaten, Hausumringe und 3D-Gebäudemodelle (ZSHH). Data format description of Official Building Polygons of Germany (HU-DE, Version 2.5, 2019). 2019. Available online: http://www.adv-online.de/AdV-Produkte/Vertriebsstellen/ZSHH/binarywriterservlet?imgUid=5ce102a0-36fa-6b61-c2d2-1bf43b36c4c2&uBasVariant=11111111-1111-1111-1111-111111111111 (accessed on 15 March 2021).
- Zentrale Stelle Hauskoordinaten, Hausumringe und 3D-Gebäudemodelle (ZSHH). Data Format Specification of the Official 3D Building Model LoD1 of Germany (LoD1-DE). 2017. Available online: http://www.adv-online.de/AdV-Produkte/Vertriebsstellen/ZSHH/binarywriterservlet?imgUid=e65416e7-efa8-461e-336b-6951fa2e0c97&uBasVariant=11111111-1111-1111-1111-111111111111 (accessed on 15 March 2021).
- Working Committee of the Surveying Authorities of the Laender of the Federal Republic of Germany (AdV). Documentation on the Modelling of Geoinformation of Official Surveying and Mapping in Germany. 2006. Available online: http://www.adv-online.de/AdV-Produkte/Geotopographie/Digitale-Landschaftsmodelle/binarywriterservlet?imgUid=e3d708e0-1df5-ae01-3bbd-251ec0023010&uBasVariant=11111111-1111-1111-1111-111111111111&isDownload=true (accessed on 15 March 2021).
- Landesvermessung und Geobasisinformation Brandenburg (LGB). 3D Buildings Brandenburg State. 2021. Available online: https://geobroker.geobasis-bb.de/gbss.php?MODE=GetProductInformation&PRODUCTID=0414a37a-a749-4ee6-9f59-a41226919c58 (accessed on 6 May 2021).
- Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN). 3D Building Models (LoD1, LoD2)—Lower Saxony State. 2021. Available online: http://geoportal.geodaten.niedersachsen.de/harvest/srv/ger/catalog.search;jsessionid=E3D22DCD7016A88E569C47F8F01ACAA8#/metadata/09a36bd9-f89e-4604-bf88-c0ba15114ab6 (accessed on 6 May 2021).
- Hessische Verwaltung für Bodenmanagement und Geoinformation (HVBG). 3D Buildings Hesse State. 2021. Available online: https://hvbg.hessen.de/geoinformation/landesvermessung/geotopographie/3d-daten/3d-geb%C3%A4udemodelle (accessed on 6 May 2021).
- Landesvermessung und Geobasisinformation Brandenburg (LGB). Official Building Polygons (HU-DE) Brandenburg State. 2021. Available online: https://geobroker.geobasis-bb.de/gbss.php?MODE=GetProductInformation&PRODUCTID=a7b74fc5-b830-4fe8-ac4d-3c8e2f095af5 (accessed on 6 May 2021).
- Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN). Official Building Polygons (HU-DE) Lower Saxony. 2021. Available online: http://geoportal.geodaten.niedersachsen.de/harvest/srv/ger/catalog.search;jsessionid=E3D22DCD7016A88E569C47F8F01ACAA8#/metadata/bfcf62e4-f4f2-4f33-92cd-677f33263d3e (accessed on 6 May 2021).
- Hessische Verwaltung für Bodenmanagement und Geoinformation (HVBG). Official Building Polygons (HU-DE) Hesse State. 2021. Available online: https://hvbg.hessen.de/geoinformation/liegenschaftskataster/hausumringe (accessed on 6 May 2021).
- Landesvermessung und Geobasisinformation Brandenburg (LGB). Authoritative Topographic-Cartographic Information System (ATKIS Base DLM) Brandenburg State. 2021. Available online: https://geobroker.geobasis-bb.de/gbss.php?MODE=GetProductInformation&PRODUCTID=d2eaa212-f68d-4e2d-a7e7-8e8063d1b855 (accessed on 6 May 2021).
- Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN). ATKIS Base DLM for Lower Saxony and Bremen. 2021. Available online: http://geoportal.geodaten.niedersachsen.de/harvest/srv/ger/catalog.search;jsessionid=E3D22DCD7016A88E569C47F8F01ACAA8#/metadata/e497b656-2e79-46fa-b113-e6116d15635a (accessed on 6 May 2021).
- Hessisches Landesamt für Bodenmanagement und Geoinformation (HLBG). Authoritative Topographic-Cartographic Information System (ATKIS Base DLM) Hesse State. 2021. Available online: https://www.geoportal.hessen.de/mapbender/php/mod_exportIso19139.php?url=https%3A%2F%2Fwww.geoportal.hessen.de%2Fmapbender%2Fphp%2Fmod_inspireAtomFeedISOMetadata.php%3FoutputFormat%3Diso19139%26generateFrom%3Dwfs%26wfsid%3D437%26id%3Decac39c0-008b-41f5-be67-f8527e200720 (accessed on 6 May 2021).
- Jehling, M.; Schorcht, M.; Hartmann, T. Densification in suburban Germany: Approaching policy and space through concepts of justice. Town Plan. Rev. 2020, 91, 217–237. [Google Scholar] [CrossRef]
- Adrian, L.; Bock, D.S.; Bunzel, D.A.; Preuß, T.; Rakel, M. Instrumente zur Reduzierung der Flächeninanspruchnahme. Texte 2018, 2018, 195. [Google Scholar]
- Herold, H. Geoinformation from the Past; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2018. [Google Scholar]
- Hessisches Ministerium für Wirtschaft, Verkehr und Landesentwicklung (Ed.) Landesentwicklungsplan Hessen 2000: Festgestellt Durch Rechtsverordnung Vom 13. Dezember 2000; Number 2001, Nr. 1 in Gesetz- und Verordnungsblatt für das Land Hessen; Bernecker: Melsungen, Germany, 2001. [Google Scholar]
- Anlage zur Verordnung über den Landesentwicklungsplan Hauptstadtregion Berlin-Brandenburg (LEP HR). 2019. Available online: https://www.landesrecht.brandenburg.de/dislservice/disl/dokumente/8141/dokument/13662 (accessed on 15 March 2020).
- Harig, O.; Hecht, R.; Burghardt, D.; Meinel, G. IB-Tool (Version 1) [Computer Software]; Leibniz Institute of Ecological Urban and Regional Development: Dresden, Germany, 2021. [Google Scholar] [CrossRef]
Positive Filter List | |
---|---|
ATKIS® Feature Type, Code | Building Function |
31001 1000 | Residential building 1 |
31001 1010 | Residential building 1 |
31001 1100 | Mixed-use residential building 1 |
31001 1120 | Residential buildings with commerce and services 1 |
31001 1121 | Residential and administrative buildings 1 |
31001 1122 | Residential and office building 1 |
31001 1123 | Residential and commercial buildings 1 |
31001 2050 | Commercial building 1 |
31001 2010 | Buildings for trade and services 1 |
31001 2020 | Office building 1 |
31001 3000 | Public buildings 1 |
31001 3017 | District administration 1 |
31001 3018 | District government 1 |
Negative Filter List | |
ATKIS® Feature Type, Code | Building Function |
31001 1310 | Recreational buildings 2 |
31001 1312 | Weekend house 3 |
31001 2140 | Storage building 4 |
31001 2463 | Garage 4 |
31001 2523 | Electricity substation 6 |
31001 2600 | Building for waste disposal 6 |
31001 2720 | Agricultural and forestry building 6 |
31001 2721 | Barn 6 |
31001 2723 | Shed 6 |
31001 2724 | Stable 6 |
31001 2726 | Barn and stable 6 |
31001 2727 | Stable for large animal husbandry 6 |
31001 274X | Greenhouse 5, 6 |
31001 3200 | Buildings for recreational purposes 2 |
51003 1201 | Silo 6 |
31001 2143 | Warehouse 4 |
51002 1215 | Biogas plant 6 |
Classes | Description | Selection Criterion |
---|---|---|
Area-positive deviations | ||
Large industrial and commercial areas that are not included in the expert delineations | Intersect Ind. areas > 50%, A > 1 ha, BC > 15% | |
Large residential building sites that contain buildings or are under development | Intersect Resid. areas > 50%, A > 1 ha, BC > 15% | |
Areas with single buildings or groups of buildings with a high building coverage ratio | BC > 15% | |
Areas with single buildings or groups of buildings with a low building coverage ratio | 3% > BC ≥ 15% | |
Large areas that do not contain buildings | BC ≤ 3% , A > 1 ha | |
Small areas without buildings at the fringe of the settlement | BC ≤ 3% | |
Additional settlement bodies | UGB does not intersect with expert delineations | |
Areas not delineated as UGB within UGB (holes) | BC < 3% & completely enclosed | |
Area-negative deviations | ||
Large industrial and commercial areas that are not included in UGB | Intersect Ind. areas > 50%, A > 1 ha, BC > 15% | |
Residential building sites that are not included in UGB | Intersect Resid. areas > 50%, A > 1 ha, BC > 15%, | |
Areas with single buildings or groups of buildings with a high building coverage ratio | BC > 15% | |
Areas with single buildings or groups of buildings with a low building coverage ratio | 3% > BC ≥ 15% | |
Designated development areas that do not contain buildings | BC ≤ 3% , A > 1 ha | |
Areas without buildings at the fringe of the settlement | BC ≤ 3% | |
Entire UGB body missing | ED does not intersect with UGB data | |
Areas without buildings within the settlement (holes) | BC < 3% & completely enclosed |
Brandenburg | Hanover Region | Frankfurt/Main | |
---|---|---|---|
Urbanity | rural | suburban | urban |
Number of EDs | 618 | 164 | 48 |
Total extent of EDs | 9169 ha | 4691 ha | 5669 ha |
Average area of EDs | 9 ha | 20 ha | 118 ha |
Perimeter length of EDs | 1993 km | 654 km | 1081 km |
Size of study area | 2887 km2 | 47 km2 | 144 km2 |
Number of building polygons | 260,000 | 95,000 | 205,000 |
Topicality | Data Provider | Reference Scale | |
---|---|---|---|
Building footprints (LoD1) | 2016 | LGB [110], LGLN [111], HVBG [112] | 1:500 to 1:5000 |
Building footprints (HU-DE) | 2011–2017 | LGB [113], LGLN [114], HVBG [115] | 1:1000 |
ATKIS®-Traffic | 2011–2017 | LGB [116], LGLN [117], HVBG [118] | 1:10,000 to 1:25,000 |
ATKIS®-Vegetation | 2011–2017 | LGB [116], LGLN [117], HVBG [118] | 1:10,000 to 1:25,000 |
Expert delineations (EDs) | 2005–2017 | PDBB, RAHR, RAFRM | 1:1000 to 1:10,000 |
ATKIS®-Land use | 2011–2018 | LGB [116], LGLN [117], HVBG [118] | 1:10,000 to 1:25,000 |
Brandenburg | Hanover Region | Frankfurt/Main | |||||||
---|---|---|---|---|---|---|---|---|---|
Freq. | Area | Share | Freq. | Area | Share | Freq. | Area | Share | |
Expert delineation total | 618 | 9169 ha | 164 | 4691 ha | 48 | 5669 ha | |||
UGB total | 593 | 10,264 ha | 173 | 5383 ha | 43 | 6389 ha | |||
Intersection | 650 | 7412 ha | 61.0% | 167 | 4345 ha | 75.8% | 64 | 5201 ha | 75.8% |
110 | 485 ha | 4.0% | 3 | 269 ha | 4.7% | 31 | 654 ha | 9.5% | |
103 | 426 ha | 3.5% | 13 | 41 ha | 0.7% | 52 | 345 ha | 5.0% | |
646 | 164 ha | 1.4% | 176 | 142 ha | 2.5% | 92 | 52 ha | 0.8% | |
1746 | 1242 ha | 10.2% | 441 | 297 ha | 5.2% | 72 | 91 ha | 1.3% | |
96 | 169 ha | 1.4% | 35 | 51 ha | 0.9% | 9 | 15 ha | 0.2% | |
2005 | 333 ha | 2.7% | 972 | 178 ha | 3.1% | 163 | 27 ha | 0.4% | |
16 | 83 ha | 0.7% | 9 | 39 ha | 0.7% | 2 | 0 ha | 0.0% | |
30 | 25 ha | 0.2% | 9 | 12 ha | 0.2% | 1 | 1 ha | 0.0% | |
Total | 4752 | 2927 ha | 24.1% | 1658 | 1029 ha | 18.0% | 422 | 1185 ha | 17.2% |
12 | 19 ha | 0.2% | 0 | 0 ha | 0.0% | 0 | 0 ha | 0.0% | |
19 | 39 ha | 0.3% | 0 | 0 ha | 0.0% | 3 | 5 ha | 0.1% | |
212 | 44 ha | 0.4% | 37 | 13 ha | 0.2% | 10 | 2 ha | 0.0% | |
1200 | 749 ha | 6.2% | 264 | 68 ha | 1.2% | 99 | 73 ha | 1.1% | |
164 | 372 ha | 3.1% | 17 | 24 ha | 0.4% | 47 | 250 ha | 3.6% | |
2506 | 469 ha | 3.9% | 1319 | 215 ha | 3.8% | 365 | 72 ha | 1.1% | |
9 | 10 ha | 0.1% | 6 | 15 ha | 0.3% | 0 | 0 ha | 0% | |
22 | 56 ha | 0.5% | 2 | 3 ha | 0.1% | 22 | 62 ha | 0.9% | |
Total | 4144 | 1758 ha | 14.7% | 1645 | 338 ha | 6.0% | 546 | 464 ha | 6.8% |
unclassified area Total | 7472 | 44 ha | 0.2% | 2141 | 17 ha | 0.2% | 816 | 7 ha | 0.2% |
Base Value | Correction Positive Deviations | Correction Negative Deviations | Total | ||
---|---|---|---|---|---|
Intersection | |||||
Brandenburg | 61.0% | 4.0% | 3.5% | 3.1% | 74.6% |
Hanover region | 75.8% | 4.7% | 0.7% | 0.4% | 81.6% |
Frankfurt/Main | 75.8% | 9.5% | 5.0% | 3.6% | 93.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harig, O.; Hecht, R.; Burghardt, D.; Meinel, G. Automatic Delineation of Urban Growth Boundaries Based on Topographic Data Using Germany as a Case Study. ISPRS Int. J. Geo-Inf. 2021, 10, 353. https://doi.org/10.3390/ijgi10050353
Harig O, Hecht R, Burghardt D, Meinel G. Automatic Delineation of Urban Growth Boundaries Based on Topographic Data Using Germany as a Case Study. ISPRS International Journal of Geo-Information. 2021; 10(5):353. https://doi.org/10.3390/ijgi10050353
Chicago/Turabian StyleHarig, Oliver, Robert Hecht, Dirk Burghardt, and Gotthard Meinel. 2021. "Automatic Delineation of Urban Growth Boundaries Based on Topographic Data Using Germany as a Case Study" ISPRS International Journal of Geo-Information 10, no. 5: 353. https://doi.org/10.3390/ijgi10050353
APA StyleHarig, O., Hecht, R., Burghardt, D., & Meinel, G. (2021). Automatic Delineation of Urban Growth Boundaries Based on Topographic Data Using Germany as a Case Study. ISPRS International Journal of Geo-Information, 10(5), 353. https://doi.org/10.3390/ijgi10050353