Examining the Effect of Squatter Settlements in the Evolution of Spatial Fragmentation in the Housing Market of the City of Buenos Aires by Using Geographical Weighted Regression
Abstract
:1. Introduction
2. Literature Review
3. Study Area
4. Method and Data
4.1. Hedonic Prices
4.2. Geographical Weighted Regression
4.3. Data: Autonomous City of Buenos Aires Time Series Real Estate Price and Hedonic Data
5. Results
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steel, G.; Van Noorloos, F.; Klaufus, C. The urban land debate in the global south: New avenues for research. Geoforum 2017, 83, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Hackworth, J. The Neoliberal City: Governance, Ideology and Development in American Urbanism; Cornell University Press: Ithaca, NY, USA, 2006. [Google Scholar]
- Swyngedouw, E.; Moulaert, F.; Rodriguez, A. Neoliberal Urbanization in Europe: Large–Scale Urban Development Projects and the New Urban Policy. Antipode 2002, 34, 542–577. [Google Scholar] [CrossRef]
- Gilbert, A. The Latin American City; LAB: London, UK, 1998. [Google Scholar]
- Lindenmayer, D.B.; Fisher, J. Habitat Fragmentation and Landscape Change; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Krellenberg, K.; Weltz, J.; Link, F.; Barth, K. Urban vulnerability and the contribution of socio-environmental fragmentation: Theoretical and methodological pathways. Prog. Human Geogr. 2017, 41, 408–431. [Google Scholar] [CrossRef]
- Kuethe, T.H. Spatial Fragmentation and the Value of Residential Housing. Land Econ. 2012, 88, 16–27. [Google Scholar] [CrossRef]
- Congdon, P.D. A Model for Spatially Varying Crime Rates in English Districts: The Effects of Social Capital, Fragmentation, Deprivation and Urbanicity. Int. J. Criminol. Soc. 2013, 2, 138–152. [Google Scholar] [CrossRef]
- Corburn, J.; Vlahov, D.; Mberu, B.; Riley, L.; Caiaffa, W.T.; Rashid, S.F.; Ko, A.; Patel, S.; Jukur, S.; Martínez-Herrera, E.; et al. Slum Health: Arresting COVID-19 and Improving Well-Being in Urban Informal Settlements. J. Urban Health 2020, 97, 348–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, T.; Abbas, J.; Wei, Z.; Nurunnabi, M. The Effect of Sustainable Urban Planning and Slum Disamenity on The Value of Neighboring Residential Property: Application of The Hedonic Pricing Modeling Rent Price Appraisal. Sustainability 2019, 11, 1144. [Google Scholar] [CrossRef] [Green Version]
- United Nations-Habitat. World Cities Report; United Nations: Nairobi, Kenya, 2016. [Google Scholar]
- Harrison, P.; Huchzermeyer, M.; Mayekiso, M. Confronting Fragmentation: Housing and Urban Development in a Democratising Society; University of Cape Town Press: Cape Town, South Africa, 2003. [Google Scholar]
- Landman, K. Urban fragmentation: Different views on its causes and consequences. Int. Handb. Urban Policy 2011, 3, 39–61. [Google Scholar]
- Madrazo, B.; van Keppen, R. Explaining divided cities in China. Geoforum 2012, 43, 158–168. [Google Scholar] [CrossRef]
- Mollenkopf, J.H.; Castells, M. Dual City: Restructuring New York; Russel Sage Foundation: New York, NY, USA, 1992. [Google Scholar]
- Piketty, T. Capital in the 21st Century; Harvard University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Forrest, R.; Hirayama, Y. The financialisation of the social project: Embedded liberalism, neoliberalism and home ownership. Urban Stud. 2015, 52, 233–244. [Google Scholar] [CrossRef]
- Link, F. Fragmentación urbana y consecuencias sociales. Rev. Ciudad. 2008, 77, 28–37. [Google Scholar]
- Taubenböck, H.; Staab, J.; Zhu, X.X.; Geiß, C.; Dech, S.; Wurm, M. Are the poor digitally left behind? Indications of urban divides based on remote sensing and Twitter data. ISPRS Int. J. Geo Inf. 2018, 7, 304. [Google Scholar] [CrossRef] [Green Version]
- Janoschka, M. El nuevo modelo de la ciudad latinoamericana: Fragmentación y privatización. Rev. Latinoam. Estud. Urbano Reg. 2002, 28, 11–20. [Google Scholar] [CrossRef]
- Caldeira, T.P.R. Fortified enclaves: The new urban segregation. Public Cult. 1996, 8, 303–328. [Google Scholar] [CrossRef]
- Musterd, S.; Ostendorf, W. Segregation, Polarisation and Social Exclusion in Metropolitan Areas. In Urban Segregation and the Welfare State: Inequality and Exclusion in Western Cities; Routledge: London, UK, 1998; pp. 1–14. [Google Scholar]
- Viard, J. La Société D.Archipel ou Les Territoires du Village Global; De L.Aube: La Tour-d’Aigues, France, 1994. [Google Scholar]
- Sabatini, F.; Caceres, G.; Cerda, J. Segregación residencial en las principales ciudades chilenas: Tendencias de las tres últimas décadas y posibles cursos de acción. EURE 2001, 27, 21–42. [Google Scholar] [CrossRef]
- Hardoy, J.E.; Satterthwaite, D. The Legal and the Illegal City; Rodwin: London, UK, 1975. [Google Scholar]
- Hardoy, J.E.; Satterthwaite, D. Squatter Citizen. In Life in the Urban Third World; Routledge: London, UK, 2014. [Google Scholar]
- Cohen, M.A. A note on the cost of crime to victims. Urban Stud. 1990, 27, 139–144. [Google Scholar] [CrossRef]
- Buonanno, P.; Montolio, D.; Raya-Vílchez, J.M. Housing prices and crime perception. Empir. Econ. 2013, 45, 305–321. [Google Scholar] [CrossRef]
- Geoghegan, J.; Wainger, L.A.; Bockstael, N.E. Spatial landscape indices in a hedonic framework: An ecological economics analysis using GIS. Ecol. Econ. 1997, 23, 251–264. [Google Scholar] [CrossRef]
- Joseph, M.L. Promoting Poverty Deconcentration and Racial Desegregation through Mixed-Income Development. In Facing Segregation; Oxford University Press: New York, NY, USA, 2018; Chapter 8; pp. 146–172. [Google Scholar]
- Bulger, M.; Joseph, M.; McKinney, S.; Bilimoria, D. Social inclusion through mixed-income development: Design and practice in the Choice Neighborhoods Initiative. J. Urban Aff. 2021, 1–23. [Google Scholar] [CrossRef]
- Thurber, A.; Riehle, C.; Bohmann, C.; Heflinger, A. Spatially integrated and socially segregated: The effects of mixed-income neighbourhoods on social well-being. Urban Stud. 2017, 55, 1859–1874. [Google Scholar] [CrossRef]
- Coy, M. Gated communities and urban fragmentation in Latin America: The Brazilian experience. GeoJournal 2006, 66, 121–132. [Google Scholar] [CrossRef]
- Song, Y.; Zenou, Y. Urban villages and housing values in China. Reg. Sci. Urban Econ. 2012, 42, 495–505. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jim, C.Y. Amenities and disamenities: A hedonic analysis of the heterogeneous urban landscape in Shenzhen (China). Geogr. J. 2010, 176, 227–240. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, P. The determinants of informal housing price in Beijing: Village power, informal institutions, and property security. Cities 2018, 77, 117–129. [Google Scholar] [CrossRef]
- Vernon Henderson, J.; Regan, T.; Venables, A.J. Building the City: From Slums to a Modern Metropolis. Rev. Econ. Stud. 2020, 1–36. [Google Scholar] [CrossRef]
- Woo, A.; Joh, K.; Yu, C.Y. Who believes and why they believe: Individual perception of public housing and housing price depreciation. Cities 2021, 109, 103019. [Google Scholar] [CrossRef]
- Thanos, S.; Bristow, A.L.; Wardman, M.R. Residential sorting and environmental externalities: The case of nonlinearities and stigma in aviation noise values. J. Reg. Sci. 2015, 55, 468–490. [Google Scholar] [CrossRef] [Green Version]
- McMillen, D.P.; Thorsnes, P. The Aroma of Tacoma: Time-Varying Average Derivatives and the Effect of a Superfund Site on House Prices. J. Bus. Econ. Stat. 2003, 21, 237–246. [Google Scholar] [CrossRef]
- Ratier, H. Villeros y Villas Miseria; Centro Editor de América Latina: Buenos Aires, Argentina, 1985. [Google Scholar]
- Rofman, A. Argentina: A mature urbanization pattern. Cities 1985, 2, 47–54. [Google Scholar] [CrossRef]
- Blaustein, E. Prohibido Vivir Aquí: La Erradicacion de las Villas Durante la Dictadura; Cuadernos de Causa Popular: Buenos Aires, Argentina, 2006. [Google Scholar]
- INDEC. National Institute of Statistics and Census, National Census Data Year 1990, 2001 and 2010. Available online: https://www.indec.gob.ar/ (accessed on 12 October 2019).
- INDEC. National Institute of Statistics and Census, Estimated Population in the City of Buenos Aires from 2010 to 2040. 2016. Available online: https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-24-119 (accessed on 24 November 2019).
- DGEyC. General Directorate for Statistics and Censuses, City of Buenos Aires Statistical Yearbook, Years 2004, 2010, 2018 and 2019. Available online: https://www.estadisticaciudad.gob.ar/eyc/?cat=2031 (accessed on 7 October 2019).
- TECHO. National Survey of Squatter Settlements 2018. Available online: http://datos.techo.org/dataset?organization=techo-argentina (accessed on 27 September 2020).
- Auyero, J. This is a lot like the Bronx, isn’t it? Lived experiences of marginality in an Argentine slum. Int. J. Urban Reg. Res. 1999, 23, 45–69. [Google Scholar] [CrossRef]
- García Pérez, E. Urbanismo inmobiliario, una década de carencia habitacional en Buenos Aires (2001–2011). In Desafíos Metropolitanos. Un Diálogo Entre Europa y América Latina; Michelini, J.J., Ed.; Catarata: Madrid, Germany, 2014; pp. 146–168. [Google Scholar]
- Baer, L. Crecimiento económico, mercado inmobiliario y ausencia de política de suelo. Un análisis de la expansión del espacio residencial de la Ciudad de Buenos Aires en los 2000. Proyección 2008, 2, 1–31. [Google Scholar]
- Herzer, H.; de Alosno, L.G. Barrios al Sur. Renovación y Pobreza en la Ciudad de Buenos Aires; Café de las Ciudades: Buenos Aires, Argentina, 2012. [Google Scholar]
- Rosen, S. Hedonic prices and implicit markets: Product differentiation in pure competition. J. Political Econ. 1974, 82, 666–677. [Google Scholar] [CrossRef]
- Lieske, S.N.; van den Nouwelant, R.; Han, J.H.; Pettit, C. A novel hedonic price modelling approach for estimating the impact of transportation infrastructure on property prices. Urban Stud. 2019, 58, 182–202. [Google Scholar] [CrossRef]
- Nepal, M.; Rai, R.K.; Khadayat, M.S.; Somanathan, E. Value of cleaner neighborhoods: Application of hedonic price model in low income context. World Dev. 2020, 131, 137–156. [Google Scholar] [CrossRef]
- Lu, J. The value of a south-facing orientation: A hedonic pricing analysis of the Shanghai housing market. Habitat Int. 2018, 81, 24–32. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Dordrecht, The Netherland; Boston, MA, USA, 1998. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M. Geographically weighted regression: A method for exploring spatial non-stationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: Chichester, UK, 2002. [Google Scholar]
- Cellmer, R.; Bełej, M.; Konowalczuk, J. Impact of a vicinity of airport on the prices of single-family houses with the use of geospatial analysis. ISPRS Int. J. Geo Inf. 2019, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Dziauddin, M.F. Estimating land value uplift around light rail transit stations in Greater Kuala Lumpur: An empirical study based on geographically weighted regression (GWR). Res. Transp. Econ. 2019, 74, 10–20. [Google Scholar] [CrossRef]
- Soltani, A.; Pettit, C.J.; Heydari, M.; Aghaei, F. Housing price variations using spatio-temporal data mining techniques. J. Hous. Built Environ. 2021. Available online: https://link.springer.com/article/10.1007/s10901-020-09811-y#citeas (accessed on 7 October 2019). [CrossRef]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and temporal weighted regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Ye, X.; Ren, F.; Du, Q. Check-in behavior and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China. Cities 2018, 77, 104–116. [Google Scholar] [CrossRef]
- Bo, H.; Bo, W.; Michael, B. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar]
- Yao, J.; Fotheringham, A.S. Local spatiotemporal modeling of house prices: A mixed model approach. Prof. Geogr. 2016, 68, 189–201. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 64, 234–240. [Google Scholar] [CrossRef]
- Nakaya, T.; Charlton, M.; Lewis, P.; Brunsdon, C.; Yao, J.; Fotheringham, S. GWR4.09 Windows Application for Geographically Weighted Regression Modeling; Geoda Center, Arizona State University: Tempe, AZ, USA, 2014. [Google Scholar]
- ESRI Arc GIS, 10.8; Environmental Systems Research Institute: Redlands, CA, USA, 2019.
- DGEyC. General Directorate for Statistics and Censuses, Buenos Aires Data. Available online: https://data.buenosaires.gob.ar/ (accessed on 17 September 2020).
- Nakaya, T. Geographically weighted generalized linear modeling. In Geocomputation, a Practical Primer; Brunsdon, C.S.A., Ed.; SAGE: London, UK, 2015; pp. 200–220. [Google Scholar]
- Goicoechea, M.A. Urban renewal in the south of Buenos Aires and the “success” of the Technological District: Some keys to understanding the real estate dynamism. Quid 2017, 16, 30–61. [Google Scholar]
Year | Squatter Settlement (Persons) | Growth Rate (%) | CBA (Persons) | Share of Squatter Settlement Population to the Total Population in CBA (%) |
---|---|---|---|---|
1960 | 34,430 | - | 2,966,634 | 1.2 |
1970 | 101,000 | 193.3 | 2,972,453 | 3.4 |
1980 | 37,010 | −66.2 | 2,922,829 | 0.9 |
1991 | 52,608 | 42.4 | 2,965,403 | 1.8 |
2001 | 107,422 | 104.1 | 2,776,138 | 3.9 |
2010 | 170,054 | 58.3 | 2,890,151 | 5.9 |
2018 | 292,732 * | 72.1 | 3,068,043 * | 9.5 |
Year | U$S/M2 | Annual Change Rate % | Index to the Price 2001 % |
---|---|---|---|
2001 | 891 | - | 100.0 |
2002 | 505 | −43.3 | −43.3 |
2003 | 602 | 19.2 | −32.4 |
2004 | 813 | 35 | −8.8 |
2005 | 915 | 12.5 | 2.7 |
2006 | 1117.0 | 22.1 | 25.4 |
2007 | 1300.0 | 16.4 | 45.9 |
2008 | 1599.1 | 23 | 79.5 |
2009 | 1692.4 | 5.8 | 89.9 |
2010 | 1783.8 | 5.4 | 100.2 |
2011 | 2168.2 | 21.5 | 143.3 |
2012 | 2322.4 | 7.1 | 160.7 |
2013 | 2213.5 | −4.7 | 148.4 |
2014 | 2320.5 | 4.8 | 160.4 |
2015 | 2234.5 | −3.7 | 150.8 |
2016 | 2487.7 | 11.5 | 179.2 |
2017 | 2795.3 | 12.3 | 213.7 |
2018 | 2560.7 | −8.3 | 187.4 |
Year | Number of Observations | House Price Average (US$) | Average Salary (US$) |
---|---|---|---|
2001 | 3654 | 52,945.97 | 1504.23 |
2010 | 1887 | 145,252.27 | 1250.50 |
2018 | 4334 | 234,511.34 | 1079.05 |
Variable Names | Description | Units |
---|---|---|
Intrinsic Characteristics | ||
Area_NL | The total area of the property | M2 In a natural log |
Multi_Bathrooms | 0 = 1 bathroom; 1 = more than 1 bathroom | Dummy |
Parking | 0 = none; 1 = one or more | Dummy |
Extrinsic Characteristics | ||
NL_CBD | Distance to the CBD | Meters in natural log |
NL_Subway | Distance to the closest train station | Meters in natural log |
NL_Police | Distance to the closest subway station | Meters in natural log |
NL_Green | Distance to the closest green area | Meters in natural log |
NL_Squatter | Distance to the closest squatter settlement | Meters in natural log |
ACC_Squatter_A | Area-weighted accessibility to squatter settlements | See the text |
ACC_Squatter_Pop | Population-weighted accessibility to squatter settlements | See the text |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
GLM (global) | |||||||||
2001 | 2010 | 2018 | 2001 | 2010 | 2018 | 2001 | 2010 | 2018 | |
N | 3654 | 1887 | 4334 | 3654 | 1887 | 4334 | 3654 | 1887 | 4334 |
AIC | −1111.0 | 806.5 | 1468.2 | −1164.3 | 859.9 | 1447.0 | −1150.5 | 861.9 | 1429.3 |
AICc | −1111.0 | 806.8 | 1468.3 | −1164.2 | 860.2 | 1447.1 | −1153.4 | 862.2 | 1429.4 |
CV | 0.042 | 0.099 | 0.080 | 0.043 | 0.098 | 1012.870 | 0.043 | 1.998 | 0.311 |
R-squared | 0.224 | 0.664 | 0.609 | 0.224 | 0.675 | 0.610 | 0.043 | 0.672 | 0.609 |
Adj. R-squared | 0.222 | 0.661 | 0.608 | 0.223 | 0.672 | 0.609 | 0.224 | 0.621 | 0.608 |
GWR (local) | |||||||||
2001 | 2010 | 2018 | 2001 | 2010 | 2018 | 2001 | 2010 | 2018 | |
N | 3654 | 1887 | 4334 | 3654 | 1887 | 4334 | 3654 | 1887 | 4334 |
AIC | −2106.9 | −248.8 | −1473.4 | −2150.6 | −257.5 | −1492.6 | −2009.6 | −255.7 | −1130.3 |
AICc | −2103.47 | −231.5 | −1462.3 | −2147.2 | −231.4 | −1482.4 | −2095.9 | −229.0 | −1180.0 |
CV | 0.033 | 0.084 | 0.040 | 0.033 | 0.083 | 64.399 | 0.033 | 0.232 | 0.140 |
R-squared | 0.428 | 0.840 | 0.812 | 0.429 | 0.844 | 0.814 | 0.406 | 0.826 | 0.812 |
Adj. R-squared | 0.412 | 0.823 | 0.803 | 0.412 | 0.825 | 0.805 | 0.406 | 0.756 | 0.802 |
Bandwidth (Fixed) | 1500 m |
2001 | 2010 | 2018 | ||||
---|---|---|---|---|---|---|
Variable | Estimate | T-Value | Estimate | T-Value | Estimate | T-Value |
Intercept | 8.224 ** | 60.114 | 8.789 ** | 74.533 | 10.061 ** | 100.542 |
Intrinsic Characteristics | ||||||
Area_NL | 0.689 ** | 21.855 | 0.739 ** | 40.068 | 0.696 ** | 45.423 |
Multi_Bathroom | 0.139 ** | 9.826 | 0.214 ** | 14.877 | 0.252 ** | 25.949 |
Parking | 0.211 ** | 15.310 | 0.264 ** | 14.414 | 0.263 ** | 18.292 |
Extrinsic Characteristics | ||||||
NL_CBD | 0.013 ** | 3.800 | −0.034 ** | −6.379 | −0.051 ** | −14.869 |
NL_Subway | −0.024 ** | −6.534 | −0.042 ** | −5.208 | −0.013 ** | −2.660 |
NL_Green | −0.014 ** | −4.067 | 0.001 | 0.102 | −0.013 ** | −2.707 |
NL_Police | −0.014 * | −2.434 | −0.013 | −1.116 | 0.003 | 0.421 |
ACC_Squatter_A | −0.008 * | −2.004 | −0.066 ** | −4.709 | −0.003 ** | −3.252 |
Variables | 2001 | 2010 | 2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | Min | Max | Diff | Median | Min | Max | Diff | Median | Min | Max | Diff | |
Intercept | 8.166 | 4.663 | 30.070 | −3014.3 | 9.443 | −8.102 | 28.08 | −1339.9 | 9.963 | −6.857 | 25.022 | −6711.3 |
Intrinsic Characteristics | ||||||||||||
Area_NL | 0.706 | −1.414 | 0.863 | −7848.7 | 0.693 | 0.470 | 1.042 | −62.8 | 0.711 | 0.326 | 0.973 | −2122.7 |
Multi_Bathroom | 0.184 | −0.004 | 0.261 | 3.7 | 0.217 | 0.023 | 0.280 | 7.3 | 0.194 | −0.102 | 0.347 | −35.6 |
Parking | 0.124 | −0.150 | 0.205 | 2.1 | 0.126 | −0.698 | 0.224 | −6.3 | 0.185 | 0.114 | 0.332 | −37.9 |
Extrinsic Characteristics | ||||||||||||
NL_CBD | −0.001 | −1.530 | 0.504 | −524.5 | −0.106 | −2.813 | 2.761 | −32.4 | −0.092 | −1.874 | 2.137 | −2295.9 |
NL_Subway | −0.015 | −0.266 | 0.245 | −1901.0 | 0.016 | −1.123 | 0.914 | −1116.6 | 0.036 | −0.336 | 0.412 | −266.2 |
NL_Green | −0.008 | −0.070 | 0.035 | −141.7 | 0.002 | −0.067 | 0.037 | −13.6 | −0.023 | −0.073 | 0.078 | −62.3 |
NL_Police | −0.018 | −0.159 | 0.076 | −942.8 | −0.026 | −0.139 | 0.106 | −301.2 | 0.009 | −0.343 | 0.086 | −1430.5 |
ACC_Squatter_A | −0.010 | −1.507 | 0.222 | −43.6 | −0.026 | −2.710 | 0.030 | −19.6 | 0.000 | −15.768 | 0.080 | −21.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogas-Mendez, A.F.; Isoda, Y. Examining the Effect of Squatter Settlements in the Evolution of Spatial Fragmentation in the Housing Market of the City of Buenos Aires by Using Geographical Weighted Regression. ISPRS Int. J. Geo-Inf. 2021, 10, 359. https://doi.org/10.3390/ijgi10060359
Ogas-Mendez AF, Isoda Y. Examining the Effect of Squatter Settlements in the Evolution of Spatial Fragmentation in the Housing Market of the City of Buenos Aires by Using Geographical Weighted Regression. ISPRS International Journal of Geo-Information. 2021; 10(6):359. https://doi.org/10.3390/ijgi10060359
Chicago/Turabian StyleOgas-Mendez, A. Federico, and Yuzuru Isoda. 2021. "Examining the Effect of Squatter Settlements in the Evolution of Spatial Fragmentation in the Housing Market of the City of Buenos Aires by Using Geographical Weighted Regression" ISPRS International Journal of Geo-Information 10, no. 6: 359. https://doi.org/10.3390/ijgi10060359
APA StyleOgas-Mendez, A. F., & Isoda, Y. (2021). Examining the Effect of Squatter Settlements in the Evolution of Spatial Fragmentation in the Housing Market of the City of Buenos Aires by Using Geographical Weighted Regression. ISPRS International Journal of Geo-Information, 10(6), 359. https://doi.org/10.3390/ijgi10060359