Do Mobile Phone Data Provide a Better Denominator in Crime Rates and Improve Spatiotemporal Predictions of Crime?
Abstract
:1. Introduction
- To what extent do crime rates differ when calculated based on the ambient population compared to the residential population?
- From the two population-at-risk measures (ambient population and residential population), which one is a better predictor for the predictive analysis of crime events?
2. Background
2.1. Residential Versus Ambient Population: Related Challenges
2.1.1. Determining the Most Appropriate Population-at-Risk Measure
2.1.2. Determining the Most Appropriate Unit of Analysis
2.2. Developments in Measuring the Ambient Population
2.3. Previous Studies on Crime Concentrations Using Mobile Phone Data as a Proxy for Ambient Population
3. Materials and Methods
3.1. Description of the Study Area and Spatial Units of Analysis
3.2. Data Sources and Measurement of Key Constructs
3.3. Data Analysis Methods
4. Results
4.1. Correlation Analysis
4.2. Crime Rates Based on Residential Population Versus Ambient Population
4.3. Predictive Analysis Using Residential Population Versus Ambient Population
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ridgeway, G. Policing in the Era of Big Data. Annu. Rev. Criminol. 2018, 1, 401–419. [Google Scholar] [CrossRef]
- Snaphaan, T.; Hardyns, W. Environmental criminology in the big data era. Eur. J. Criminol. 2019. [Google Scholar] [CrossRef]
- Innes, M.; Sheptycki, J. From detection to disruption: Intelligence and the changing logic of police crime control in the United Kingdom. Int. Crim. Justice Rev. 2004, 14, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, J.H. Intelligence-Led Policing, 2nd ed.; Routledge: London, UK, 2016. [Google Scholar]
- Tompson, L.; Coupe, T. Time and opportunity. In The Oxford Handbook of Environmental Criminology; Bruinsma, G.J.N., Johnson, S.D., Eds.; Oxford University Press: New York, NY, USA, 2018; pp. 695–719. [Google Scholar]
- Weisburd, D.; Bruinsma, G.J.; Bernasco, W. Units of Analysis in Geographic Criminology: Historical Development, Critical Issues, and Open Questions. In Putting Crime in its Place; Weisburd, D., Bernasco, W., Bruinsma, G.J.N., Eds.; Springer: New York, NY, USA, 2009; pp. 3–31. [Google Scholar]
- Weisburd, D.; Groff, E.R.; Yang, S.-M. The Criminology of Place: Street Segments and Our Understanding of the Crime Problem; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Malleson, N.; Andresen, M.A. The impact of using social media data in crime rate calculations: Shifting hot spots and changing spatial patterns. Cartogr. Geogr. Inf. Sci. 2015, 42, 112–121. [Google Scholar] [CrossRef]
- Boggs, S.L. Urban Crime Patterns. Am. Sociol. Rev. 1965, 30, 899. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, L. De Ene Buurt is De Andere Niet: Exploratie van Mogelijkheden tot Contextualisering van Geregistreerde Criminaliteit op Buurtniveau; VUBpress: Brussel, Belgium, 2002. [Google Scholar]
- Stults, B.J.; Hasbrouck, M. The Effect of Commuting on City-Level Crime Rates. J. Quant. Criminol. 2015, 31, 331–350. [Google Scholar] [CrossRef]
- Brantingham, P.L.; Brantingham, P.J. Criminality of place. Crime generators and crime attractors. Eur. J. Crim. Policy Res. 1995, 3, 5–26. [Google Scholar] [CrossRef]
- Andresen, M.A. Crime Measures and the Spatial Analysis of Criminal Activity. Br. J. Criminol. 2006, 46, 258–285. [Google Scholar] [CrossRef]
- Felson, M.; Boivin, R. Daily crime flows within a city. Crime Sci. 2015, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Solymosi, R.; Bowers, K. The role of innovative data collection methods in advancing criminological understanding. In The Oxford Handbook of Environmental Criminology; Bruinsma, G.J.N., Johnson, S.D., Eds.; Oxford University Press: New York, NY, USA, 2018; pp. 210–237. [Google Scholar]
- Cohen, L.E.; Felson, M. Social Change and Crime Rate Trends: A Routine Activity Approach. Am. Sociol. Rev. 1979, 44, 588. [Google Scholar] [CrossRef]
- Harries, K.D. Alternative denominators in conventional crime rates. In Environmental Criminology; Brantingham, P.J., Bran-tingham, P.L., Eds.; Waveland Press: Prospect Heights, IL, USA, 1991; pp. 147–165. [Google Scholar]
- Lemieux, A.M.; Felson, M. Risk of Violent Crime Victimization During Major Daily Activities. Violence Vict. 2012, 27, 635–655. [Google Scholar] [CrossRef]
- Bernasco, W. A Sentimental Journey to Crime: Effects of Residential History on Crime Location Choice. Criminology 2010, 48, 389–416. [Google Scholar] [CrossRef]
- Groff, E.R.; McEwen, T. Integrating Distance into Mobility Triangle Typologies. Soc. Sci. Comput. Rev. 2007, 25, 210–238. [Google Scholar] [CrossRef] [Green Version]
- Wikström, P.-O. Urban Crime, Criminals and Victims: The Swedish Experience in an Anglo-American Comparative Perspective; Springer: New York, NY, USA, 1991. [Google Scholar]
- Dark, S.J.; Bram, D. The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr. Earth Environ. 2007, 31, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Openshaw, S. Ecological Fallacies and the Analysis of Areal Census Data. Environ. Plan. A Econ. Space 1984, 16, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Openshaw, S.; Taylor, P.J. The modifiable areal unit problem. In Quantitative Geography: A British View; Wrigley, N., Bennett, R.J., Eds.; Routledge and Kegan Paul: London, UK, 1981; pp. 60–70. [Google Scholar]
- Parker, R.N. Aggregation, ratio variables, and measurement problems in criminological research. J. Quant. Criminol. 1985, 1, 269–280. [Google Scholar] [CrossRef]
- Gerell, M. Smallest is Better? The Spatial Distribution of Arson and the Modifiable Areal Unit Problem. J. Quant. Criminol. 2017, 33, 293–318. [Google Scholar] [CrossRef]
- Groff, E.R.; Weisburd, D.; Yang, S.-M. Is it Important to Examine Crime Trends at a Local “Micro” Level?: A Longitudinal Analysis of Street to Street Variability in Crime Trajectories. J. Quant. Criminol. 2010, 26, 7–32. [Google Scholar] [CrossRef]
- Weisburd, D. The Law of Crime Concentration and the Criminology of Place. Criminology 2015, 53, 133–157. [Google Scholar] [CrossRef]
- Bernasco, W.; Steenbeek, W. More Places than Crimes: Implications for Evaluating the Law of Crime Concentration at Place. J. Quant. Criminol. 2017, 33, 451–467. [Google Scholar] [CrossRef] [Green Version]
- Hardyns, W.; Snaphaan, T.; Pauwels, L.J.R. Crime concentrations and micro places: An empirical test of the “law of crime concentration at places” in Belgium. Aust. N. Z. J. Criminol. 2018, 52, 390–410. [Google Scholar] [CrossRef]
- Weisburd, D.; Eck, J.E.; Braga, A.A.; Telep, C.W.; Cave, B.; Bowers, K.; Bruinsma, G.; Gill, C.; Groff, E.R.; Hibdon, J.; et al. Place Matters: Criminology for the Twenty-First Century; Cambridge University Press: New York, NY, USA, 2016. [Google Scholar]
- Kounadi, O.; Ristea, A.; Leitner, M.; Langford, C. Population at risk: Using areal interpolation and Twitter messages to create population models for burglaries and robberies. Cartogr. Geogr. Inf. Sci. 2018, 45, 205–220. [Google Scholar] [CrossRef]
- Cheng, T.; Adepeju, M. Modifiable Temporal Unit Problem (MTUP) and Its Effect on Space-Time Cluster Detection. PLoS ONE 2014, 9, e100465. [Google Scholar] [CrossRef] [Green Version]
- Cöltekin, A.; de Sabbata, S.; Willi, C.; Vontobel, I.; Pfister, S.; Kuhn, M.; Lacayo, M. Modifiable temporal unit problem. In Proceedings of the ISPRS/ICA Workshop on Persistent Problems in Geographic Visualization (ICC2011), Paris, France, 2 July 2011; Available online: http://geoanalytics.net/ica/icc2011/coltekin.pdf (accessed on 14 May 2021).
- van Sleeuwen, S.E.M.; Ruiter, S.; Steenbeek, W. Right place, right time? Making crime pattern theory time-specific. Crime Sci. 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Kitchin, R. Big data and human geography: Opportunities, challenges and risks. Dialogues Hum. Geogr. 2013, 3, 262–267. [Google Scholar] [CrossRef]
- Martin, D.; Cockings, S.; Leung, S. Developing a Flexible Framework for Spatiotemporal Population Modeling. Ann. Assoc. Am. Geogr. 2015, 105, 754–772. [Google Scholar] [CrossRef]
- Meentemeyer, V. Geographical perspectives of space, time, and scale. Landsc. Ecol. 1989, 3, 163–173. [Google Scholar] [CrossRef]
- Andresen, M.A.; Malleson, N. Intra-week spatial-temporal patterns of crime. Crime Sci. 2015, 4, 12. [Google Scholar] [CrossRef]
- Valente, R. Spatial and temporal patterns of violent crime in a Brazilian state capital: A quantitative analysis focusing on micro places and small units of time. Appl. Geogr. 2019, 103, 90–97. [Google Scholar] [CrossRef]
- Rummens, A.; Hardyns, W. The effect of spatiotemporal resolution on predictive policing model performance. Int. J. Forecast. 2021, 37, 125–133. [Google Scholar] [CrossRef]
- Curiel, R.P.; Bishop, S. A measure of the concentration of rare events. Sci. Rep. 2016, 6, 32369. [Google Scholar] [CrossRef]
- Mohler, G.; Brantingham, P.J.; Carter, J.; Short, M.B. Reducing Bias in Estimates for the Law of Crime Concentration. J. Quant. Criminol. 2019, 35, 747–765. [Google Scholar] [CrossRef] [Green Version]
- Oberwittler, D. Re-Balancing Routine Activity and Social Disorganization Theories in the Explanation of Urban Violence. A New Approach to the Analysis of Spatial Crime Patterns Based on Population at Risk; Max Planck Institute for Foreign and International Law: Freiburg, Germany, 2004; Available online: https://pure.mpg.de/rest/items/item_2501318/component/file_3021556/content (accessed on 14 May 2021).
- Andresen, M.A. Location Quotients, Ambient Populations, and the Spatial Analysis of Crime in Vancouver, Canada. Environ. Plan. A Econ. Space 2007, 39, 2423–2444. [Google Scholar] [CrossRef]
- Oak Ridge National Labaratory—Documentation. Available online: https://landscan.ornl.gov/documentation/#inputData (accessed on 14 May 2021).
- Malleson, N.; Andresen, M.A. Spatio-temporal crime hotspots and the ambient population. Crime Sci. 2015, 4, 258. [Google Scholar] [CrossRef] [Green Version]
- Malleson, N.; Andresen, M.A. Exploring the impact of ambient population measures on London crime hotspots. J. Crim. Justice 2016, 46, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Hipp, J.R.; Bates, C.; Lichman, M.; Smyth, P. Using Social Media to Measure Temporal Ambient Population: Does it Help Explain Local Crime Rates? Justice Q. 2019, 36, 718–748. [Google Scholar] [CrossRef] [Green Version]
- Kadar, C.; Brüngger, R.R.; Pletikosa, I. Measuring ambient population from location-based social networks to describe urban crime. In Social Informatics; Ciampaglia, G.L., Mashhadi, A., Yasseri, T., Eds.; Springer: Cham, Switzerland, 2017; pp. 521–535. [Google Scholar]
- Hsieh, Y.P.; Murphy, J. Total Twitter Error: Decomposing public opinion measurement on Twitter from a Total Survey Error perspective. In Total Survey Error in Practice; Biemer, P.P., de Leeuw, E., Eckman, S., Edwards, B., Kreuter, F., Lyberg, L.E., Tucker, N.C., West, B.T., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 23–46. [Google Scholar]
- Yu, L. Understanding information inequality: Making sense of the literature of the information and digital divides. J. Libr. Inf. Sci. 2006, 38, 229–252. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.; Andresen, M.A.; Malleson, N. Cell Towers and the Ambient Population: A Spatial Analysis of Disaggregated Property Crime. Eur. J. Crim. Policy Res. 2020, 1–21. [Google Scholar] [CrossRef]
- Bogomolov, A.; Lepri, B.; Staiano, J.; Oliver, N.; Pianesi, F.; Pentland, A.S. Once Upon a Crime: Towards Crime Prediction from Demographics and Mobile Data. In Proceedings of the 16th International Conference on Multimodal Interaction, Istanbul, Turkey, 12–16 November 2014; pp. 427–434. [Google Scholar] [CrossRef]
- Järv, O.; Tenkanen, H.; Toivonen, T. Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric in-terpolation. Int. J. Geogr. Inf. Sci. 2017, 31, 1630–1651. [Google Scholar] [CrossRef]
- Kitchin, R. The Data Revolution: Big Data, Open Data, Data Infrastructures & Their Consequences; SAGE Publications: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Statbel—ICT-gebruik in Huishoudens. Available online: https://statbel.fgov.be/sites/default/files/files/documents/Huishoudens/10.5%20ICT-gebruik%20in%20huishoudens/TabIn2018_Nl_2019-03-29.xlsx (accessed on 14 May 2021).
- Ahas, R.; Silm, S.; Järv, O.; Saluveer, E.; Tiru, M. Using Mobile Positioning Data to Model Locations Meaningful to Users of Mobile Phones. J. Urban. Technol. 2010, 17, 3–27. [Google Scholar] [CrossRef]
- Brantingham, P.J.; Brantingham, P.L. Crime pattern theory. In Environmental Criminology and Crime Analysis; Wortley, R., Mazarolle, L., Eds.; Willan: Portland, OR, USA, 2008; pp. 78–94. [Google Scholar]
- Song, G.; Bernasco, W.; Liu, L.; Xiao, L.; Zhou, S.; Liao, W. Crime Feeds on Legal Activities: Daily Mobility Flows Help to Explain Thieves’ Target Location Choices. J. Quant. Criminol. 2019, 35, 831–854. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Liu, L.; Bernasco, W.; Xiao, L.; Zhou, S.; Liao, W. Testing Indicators of Risk Populations for Theft from the Person across Space and Time: The Significance of Mobility and Outdoor Activity. Ann. Am. Assoc. Geogr. 2018, 108, 1370–1388. [Google Scholar] [CrossRef]
- He, L.; Páez, A.; Jiao, J.; An, P.; Lu, C.; Mao, W.; Long, D. Ambient Population and Larceny-Theft: A Spatial Analysis Using Mobile Phone Data. ISPRS Int. J. Geo-Inf. 2020, 9, 342. [Google Scholar] [CrossRef]
- Hanaoka, K. New insights on relationships between street crimes and ambient population: Use of hourly population data estimated from mobile phone users’ locations. Environ. Plan. B Urban. Anal. City Sci. 2016, 45, 295–311. [Google Scholar] [CrossRef]
- Bogomolov, A.; Lepri, B.; Staiano, J.; Letouzé, E.; Oliver, N.; Pianesi, F.; Pentland, A. Moves on the Street: Classifying Crime Hotspots Using Aggregated Anonymized Data on People Dynamics. Big Data 2015, 3, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Traunmueller, M.; Quattrone, G.; Capra, L. Mining mobile phone data to investigate urban crime theories at scale. In Social Informatics; Aiello, L.M., McFarland, D., Eds.; Springer: Cham, Switzerland, 2014; pp. 396–411. [Google Scholar]
- Haleem, M.S.; Lee, W.D.; Ellison, M.; Bannister, J. The ‘Exposed’ Population, Violent Crime in Public Space and the Night-time Economy in Manchester, UK. Eur. J. Crim. Policy Res. 2020, 1–18. [Google Scholar] [CrossRef]
- Lee, W.D.; Haleem, M.S.; Ellison, M.; Bannister, J. The Influence of Intra-Daily Activities and Settings upon Weekday Violent Crime in Public Spaces in Manchester, UK. Eur. J. Crim. Policy Res. 2020, 1–21. [Google Scholar] [CrossRef]
- Statbel—Statistische Sectoren. Available online: https://statbel.fgov.be/nl/over-statbel/methodologie/classificaties/statistische-sectoren (accessed on 14 May 2021).
- Hoeben, E.M.; Bernasco, W.; Weerman, F.M.; Pauwels, L.; van Halem, S. The space-time budget method in criminological research. Crime Sci. 2014, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Rummens, A.; Hardyns, W.; Pauwels, L. The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context. Appl. Geogr. 2017, 86, 255–261. [Google Scholar] [CrossRef]
- Federal Police—Criminaliteitsstatistieken. Available online: http://www.stat.policefederale.be/criminaliteitsstatistieken/interactief/ (accessed on 14 May 2021).
- Federal Police—Veiligheidsmonitor. 2018. Available online: http://www.moniteurdesecurite.policefederale.be/assets/pdf/2018/reports/Grote_tendensen_Analyses_VMS2018.pdf (accessed on 14 May 2021).
- Financiële resultaten van de Proximus Groep—Eerste kwartaal. 2018. Available online: https://www.proximus.com/nl/news/2018/financial-results-q1-2018.html# (accessed on 14 May 2021).
- Zou, G.Y. Toward using confidence intervals to compare correlations. Psychol. Methods 2007, 12, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Diedenhofen, B.; Musch, J. cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLoS ONE 2015, 10, e0121945. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef] [Green Version]
- Farrington, D.P. Age and crime. In Crime and Justice: An Annual Review of Research; Tonry, M., Morris, N., Eds.; University of Chicago Press: Chicago, IL, USA, 1986; Volume 7, pp. 189–250. [Google Scholar]
- Morgan, R.E.; Oudekerk, B.A. Criminal Victimizations, 2018; U.S. Department of Justice: Washington, DC, USA, 2019. Available online: https://www.bjs.gov/content/pub/pdf/cv18.pdf (accessed on 14 May 2021).
- Wikström, P.-O.; Treiber, K. Situational theory: The importance of interactions and action mechanisms in the explanation of crime. In Handbook of Criminological Theory; Piquero, A., Ed.; Wiley-Blackwell: Chichester, UK, 2016; pp. 414–444. [Google Scholar]
- Caplan, J.M.; Kennedy, L.W. Risk Terrain Modelling: Crime Prediction and Risk Reduction; University of California Press: Oakland, CA, USA, 2016. [Google Scholar]
- Wheeler, A.P.; Steenbeek, W. Mapping the Risk Terrain for Crime Using Machine Learning. J. Quant. Criminol. 2020, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Crols, T.; Malleson, N. Quantifying the ambient population using hourly population footfall data and an agent-based model of daily mobility. GeoInformatica 2019, 23, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Gebru, T.; Krause, J.; Wang, Y.; Chen, D.; Deng, J.; Aiden, E.L.; Fei-Fei, L. Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 13108–13113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. A survey on deep learning for big data. Inf. Fusion 2018, 42, 146–157. [Google Scholar] [CrossRef]
- Wikström, P.-O. Situational action theory. In Encyclopedia of Criminology and Criminal Justice; Bruinsma, G., Weisburd, D., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Wikström, P.-O.; Oberwittler, D.; Treiber, K.; Hardie, B. Breaking Rules: The Social and Situational Dynamics of Young People’s Urban Culture; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Burcher, M.; Whelan, C. Intelligence-Led Policing in Practice: Reflections from Intelligence Analysts. Police Q. 2018, 22, 139–160. [Google Scholar] [CrossRef]
- Darroch, S.; Mazerolle, L. Intelligence-Led Policing. Police Q. 2012, 16, 3–37. [Google Scholar] [CrossRef]
- Taylor, B.; Kowalyk, A.; Boba, R. The Integration of Crime Analysis into Law Enforcement Agencies. Police Q. 2007, 10, 154–169. [Google Scholar] [CrossRef]
Source | Data Type | Study Context | Spatial Scale | Temporal Scale |
---|---|---|---|---|
[54,64] | Number of unique phone calls, extrapolated to general population based on market share of the network in each cell | London, UK | Unknown; 124,119 cells | Hourly data for a three-week period |
[65] | Footfall count entries (not further specified) | London, UK | 23,164 grid cells of varying size (210 m × 210 m for inner London, 425 m × 425 m for outer London) | Hourly data for a three-week period |
[48] | Mobile phone activity | London, UK | 4835 Lower Super Output Areas | Hourly data for a one-week period |
[63] | Konzatsu Tokei ® data from mobile phones with enabled auto-GPS function | Osaka City, Japan | Grid cells of approximately 250 m × 250 m | Hourly data for a 12-month period |
[61] | Cellular signaling information: general 2G and 3G mobile phone activity | “ZG City,” China (203 km2, >10,000,000 inhabitants) | Grid cells of 1 km × 1 km | Hourly data for a one-week period |
[60] | Cellular signaling data: general 4G mobile phone activity | “ZG City,” China (>3000 km2, >5,000,000 inhabitants) | 1616 census units (1.62 km2 on average) | Hourly data for a one-day period |
[66,67] | Mobile phone origin destination dataset | Greater Manchester, UK | 501 spatial units, distributed across 1673 Lower Super Output Areas | 17 hourly time bins and a single time bin between 23:00 h and 05:59 h, for a 19-day period |
[62] | Spatially referenced mobile phone data: user’s information and activity | Xi’an, China | Grid cells of 306 m × 306 m | Hourly data for a four-month period |
Crime Type | Month | Residential Population | Ambient Population | Correlation Difference |
---|---|---|---|---|
Aggressive theft | Oct | 0.24 *** | 0.36 *** | 0.12 |
Nov | 0.15 * | 0.35 *** | 0.20 * | |
Dec | 0.26 *** | 0.23 *** | 0.03 | |
Battery | Oct | 0.19 ** | 0.46 *** | 0.27 * |
Nov | 0.18 * | 0.44 *** | 0.26 * | |
Dec | 0.23 ** | 0.41 *** | 0.18 * | |
Bicycle theft | Oct | 0.30 *** | 0.56 *** | 0.26 * |
Nov | 0.31 *** | 0.60 *** | 0.29 * | |
Dec | 0.26 *** | 0.55 *** | 0.29 * |
Crime Type | Month | Residential Population | Ambient Population | Correlation Difference |
---|---|---|---|---|
Aggressive theft | Oct | 0.12 *** | 0.16 *** | 0.04 * |
Nov | 0.08 *** | 0.18 *** | 0.10 * | |
Dec | 0.12 *** | 0.13 *** | 0.01 * | |
Battery | Oct | 0.23 *** | 0.26 *** | 0.03 * |
Nov | 0.23 *** | 0.25 *** | 0.02 * | |
Dec | 0.21 *** | 0.22 *** | 0.01 * | |
Bicycle theft | Oct | 0.34 *** | 0.47 *** | 0.13 * |
Nov | 0.27 *** | 0.41 *** | 0.14 * | |
Dec | 0.23 *** | 0.35 *** | 0.12 * |
Sector ID | Characteristics and Nearby Landmarks | Ambient Crime Rate (Standardized) | Residential Crime Rate (Standardized) |
---|---|---|---|
Aggressive theft | |||
C72 Muidebrug | High poverty level, high-traffic area | 3.617 | 0.228 |
Battery | |||
A00 Kuip | City center, nightlife area, high concentration of bars, restaurants and shops | 2.979 | 5.613 |
A321 Sint-Pieters | Nightlife area, student quarter | 4.622 | 6.704 |
A46 Blaarmeersen | Nature, sports and recreation domain | 0.149 | 7.541 |
A542 Groendreef | Park, police station | 3.578 | 0.358 |
B452 Sint-Alois | Concentration of schools | 4.428 | 6.705 |
B472 Groothandelsmarkt | Football stadium (Ghelamco), close to hospital | 0.079 | 8.536 |
C72 Muidebrug | High poverty level, high-traffic area | 3.617 | 0.228 |
C772 Vormingsstation-Oost | Train depot, close to large train station | 0.072 | 5.232 |
J172 Bugten | Event hall (Flanders Expo) | 0.512 | 3.815 |
J197 Maria Middelares | Hospital, close to event hall (Flanders Expo) | 0.334 | 3.453 |
K622 Heilig Huizeken | Close to nature reserve (Hoge Lake) | 2.156 | 0.145 |
Bicycle theft | |||
A00 Kuip | City center, nightlife area, high concentration of bars, restaurants and shops | 6.514 | 11.796 |
A35 Station | Large train station | 8.074 | 4.574 |
A45 Groene vallei | Park, close to prison, police station | 8.922 | 0.909 |
A46 Blaarmeersen | Nature, sports and recreation domain | −0.029 | 4.936 |
A50 Drongensesteenweg | Node of multiple main roads | 2.480 | 0.410 |
A542 Groendreef | Park | 2.256 | 0.147 |
E32 Dampoort | Large train station | 6.500 | 1.793 |
K613 Oude Wee | Sports hall, football field, golf club | 3.306 | 0.392 |
K022 Oude Abdij | Small train station | 8.294 | 2.032 |
Recall | Precision | F1-Score | AIC | |
---|---|---|---|---|
Aggressive theft (N crime events = 20, N predictions = 20) | ||||
Residential population model | 5.00% | 4.00% | 0.044 | 281 |
Ambient population model | 25.00% | 8.00% | 0.121 | 246 |
Battery (N crime events = 97, N predictions = 100) | ||||
Residential population model | 10.31% | 8.00% | 0.090 | 1206 |
Ambient population model | 40.21% | 10.00% | 0.160 | 1198 |
Bicycle theft (N crime events = 100, N predictions = 150) | ||||
Residential population model | 20.00% | 10.67% | 0.139 | 2002 |
Ambient population model | 61.00% | 22.67% | 0.386 | 1718 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rummens, A.; Snaphaan, T.; Van de Weghe, N.; Van den Poel, D.; Pauwels, L.J.R.; Hardyns, W. Do Mobile Phone Data Provide a Better Denominator in Crime Rates and Improve Spatiotemporal Predictions of Crime? ISPRS Int. J. Geo-Inf. 2021, 10, 369. https://doi.org/10.3390/ijgi10060369
Rummens A, Snaphaan T, Van de Weghe N, Van den Poel D, Pauwels LJR, Hardyns W. Do Mobile Phone Data Provide a Better Denominator in Crime Rates and Improve Spatiotemporal Predictions of Crime? ISPRS International Journal of Geo-Information. 2021; 10(6):369. https://doi.org/10.3390/ijgi10060369
Chicago/Turabian StyleRummens, Anneleen, Thom Snaphaan, Nico Van de Weghe, Dirk Van den Poel, Lieven J. R. Pauwels, and Wim Hardyns. 2021. "Do Mobile Phone Data Provide a Better Denominator in Crime Rates and Improve Spatiotemporal Predictions of Crime?" ISPRS International Journal of Geo-Information 10, no. 6: 369. https://doi.org/10.3390/ijgi10060369
APA StyleRummens, A., Snaphaan, T., Van de Weghe, N., Van den Poel, D., Pauwels, L. J. R., & Hardyns, W. (2021). Do Mobile Phone Data Provide a Better Denominator in Crime Rates and Improve Spatiotemporal Predictions of Crime? ISPRS International Journal of Geo-Information, 10(6), 369. https://doi.org/10.3390/ijgi10060369