Spatial Distribution of Displaced Population Estimated Using Mobile Phone Data to Support Disaster Response Activities
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Methods
2.2.1. Voronoi Tesselation of the Study Area
2.2.2. Estimation of Mobile Phone Users Home Location before Disaster
- the daily most frequently used cell-towers during the night time are selected (candidates’ home locations),
- candidates’ home locations are aggregated for the entire period of analysis (before the disaster),
- the most frequent candidate home location is selected ast the user’s home location before the disaster.
2.2.3. Estimation of Mobile Phone Users Home Location after Disaster
2.2.4. Assigning Home Location to Users before and after Disaster at Neighborhood Level
- is the intersection area between Voronoi polygon data and neighborhood administrative boundaries; and
- represents total area of in the example.
- represents the percentages of ; and
- is the total number of users that were found to be living in the voronoi polygon .
2.2.5. Estimation of Displacement Matrix of Mobile Phone Users
2.2.6. Scaling up Mobile Phone Users’ Displacement Matrix
- is the ratio of the flow of mobile phone users from origin o to destination d;
- () represents the combined number of mobile phone users at o and d; and
- () represents the combined population at origin O and destination D.
2.2.7. Validation Process
- represents the scale ratio; and
- represents the superlinear effect of arrival form DTM () on the arrival from CDRs ().
3. Data
Mobile Call Detail Records
4. Experimental Results, Validation, Discussion
4.1. Experimental Results
4.2. Validation of Results
4.3. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mawson, A.R. Understanding mass panic and other collective responses to threat and disaster. Psychiatry Interpers. Biol. Process. 2005, 68, 95–113. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Kwan, M.-P.; Li, Q.; Chen, J. A model for evacuation risk assessment with consideration of pre-and post-disaster factors. Comput. Environ. Urban Syst. 2012, 36, 207–217. [Google Scholar] [CrossRef]
- Yu, J.; Wen, J. Multi-criteria satisfaction assessment of the spatial distribution of urban emergency shelters based on high-precision population estimation. Int. J. Disaster Risk Sci. 2016, 7, 413–429. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhai, G.; Ren, C.; Shi, Y.; Zhang, J. Urban resources selection and allocation for emergency shelters: In a multi-hazard environment. Int. J. Environ. Res. Public Health 2018, 15, 1261. [Google Scholar] [CrossRef] [Green Version]
- Vorst, H.C. Evacuation models and disaster psychology. Procedia Eng. 2010, 3, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Zhu, R.; Li, N.; Becerik-Gerber, B. How occupants respond to building emergencies: A systematic review of behavioral characteristics and behavioral theories. Saf. Sci. 2020, 122, 104540. [Google Scholar] [CrossRef]
- Hamilton, K.; Demant, D.; Peden, A.E.; Hagger, M.S. A systematic review of human behaviour in and around floodwater. Int. J. Disaster Risk Reduct. 2020, 47, 101561. [Google Scholar] [CrossRef] [Green Version]
- Yore, R.; Walker, J.F. Early warning systems and evacuation: Rare and extreme vs. frequent and small-scale tropical cyclones in the philippines and dominica. Disasters 2020. [Google Scholar] [CrossRef] [PubMed]
- Avwunudiogba, A.; Dung, E.J. The spatial distribution of internally displaced persons (idps) in africa. In The Challenges of Refugees and Internally Displaced Persons in Africa; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–43. [Google Scholar]
- Internal Displacement Monitoring Centre. Global Estimates 2015. People Displaced by Disasters; IDMC: Geneva, Switzerland, 2015. [Google Scholar]
- Hori, M.; Schafer, M.J.; Bowman, D.J. Displacement dynamics in southern louisiana after hurricanes katrina and rita. Popul. Res. Policy Rev. 2009, 28, 45–65. [Google Scholar] [CrossRef]
- Gray, C.; Frankenberg, E.; Gillespie, T.; Sumantri, C.; Thomas, D. Studying displacement after a disaster using large-scale survey methods: Sumatra after the 2004 tsunami. Ann. Assoc. Am. Geogr. 2014, 104, 594–612. [Google Scholar] [CrossRef] [Green Version]
- DTM. Displacement Tracking Matrix. 2020. Available online: Https://dtm.iom.int/ (accessed on 2 December 2020).
- IOM; INGC. Mozambique: Tropical Cyclone Idai Baseline Assessment—Sofala Province. 2019. Available online: https://www.iom.int/sites/default/files/dtm/baseline_assessment_sofala_province.pdf (accessed on 25 May 2020).
- Osaragi, T. Modeling a spatiotemporal distribution of stranded people returning home on foot in the aftermath of a large-scale earthquake. Nat. Hazards 2013, 68, 1385–1398. [Google Scholar] [CrossRef]
- Hu, Z.-H.; Sheu, J.-B.; Xiao, L. Post-disaster evacuation and temporary resettlement considering panic and panic spread. Transp. Res. Part B Methodol. 2014, 69, 112–132. [Google Scholar] [CrossRef]
- Yabe, T.; Tsubouchi, K.; Sudo, A.; Sekimoto, Y. Estimating evacuation hotspots using gps data: What happened after the large earthquakes in kumamoto, japan. In Proceedings of the 5th International Workshop on Urban Computing, San Francisco, CA, USA, 14 August 2016. [Google Scholar]
- Kubíček, P.; Konečnỳ, M.; Stachoň, Z.; Shen, J.; Herman, L.; Řezník, T.; Staněk, K.; Štampach, R.; Leitgeb, Š. Population distribution modelling at fine spatio-temporal scale based on mobile phone data. Int. J. Digit. Earth 2018. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.; Chen, J. Fine-grained dynamic population mapping method based on large-scale sparse mobile phone data. In Proceedings of the 2019 20th IEEE International Conference on Mobile Data Management (MDM), Hong Kong, China, 10–13 June 2019; pp. 473–478. [Google Scholar]
- Wang, Y.; Li, J.; Zhao, X.; Feng, G.; Luo, X.R. Using mobile phone data for emergency management: A systematic literature review. Inf. Syst. Front. 2020, 22, 1–21. [Google Scholar] [CrossRef]
- Zhang, G.; Rui, X.; Poslad, S.; Song, X.; Fan, Y.; Wu, B. A method for the estimation of finely-grained temporal spatial human population density distributions based on cell phone call detail records. Remote Sens. 2020, 12, 2572. [Google Scholar] [CrossRef]
- Balistrocchi, M.; Metulini, R.; Carpita, M.; Ranzi, R. Dynamic maps of human exposure to floods based on mobile phone data. Nat. Hazards Earth Syst. Sci. 2020, 20, 3485–3500. [Google Scholar] [CrossRef]
- Bengtsson, L.; Lu, X.; Thorson, A.; Garfield, R.; Von Schreeb, J. Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in haiti. PLoS Med. 2011, 8, e1001083. [Google Scholar] [CrossRef]
- Lu, X.; Bengtsson, L.; Holme, P. Predictability of population displacement after the 2010 haiti earthquake. Proc. Natl. Acad. Sci. USA 2012, 109, 11576–11581. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; Zu Erbach-Schoenberg, E.; Albert, M.; Power, D.; Tudge, S.; Gonzalez, M.; Guthrie, S.; Chamberlain, H.; Brooks, C.; Hughes, C.; et al. Rapid and near real-time assessments of population displacement using mobile phone data following disasters: The 2015 nepal earthquake. PLoS Curr. 2016, 8. [Google Scholar] [CrossRef]
- Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S.N. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 501. [Google Scholar]
- Calabrese, F.; Di Lorenzo, G.; Liu, L.; Ratti, C. Estimating Origin-Destination Flows Using Opportunistically Collected Mobile Phone Location Data from One Million Users in Boston Metropolitan Area. IEEE Pervasive Comput. 2011, 10, 36–44. [Google Scholar] [CrossRef]
- Flowerdew, R.; Green, M.; Kehris, E. Using areal interpolation methods in geographic information systems. Pap. Reg. Sci. 1991, 70, 303–315. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Choudhury, C.F.; Wang, P.; González, M.C. Development of origin–destination matrices using mobile phone call data. Transp. Res. Part Emerg. Technol. 2014, 40, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Nkamate, C.; Quiteria, A. Plano de Reassentamento e Deslocalização de Infraestruturas da área do goto: Adenda ii–Infraestruturas Verdes do rio Chiveve; Technical Report; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- REACH. Mozambique—Beira City—Population 2017 by Neighborhood (20 March 2019). 2019. Available online: https://reliefweb.int/map/mozambique/mozambique-beira-city-population-2017-neighborhood-20-march-2019\-enpt (accessed on 17 May 2020).
- Forquilha, S. Beira—Clivagens PartidÁRias E ABSTENÇÃO ELEITORAL. 2017. Available online: https://www.iese.ac.mz/wp-content/uploads/2017/05/Forquilha-2017-Beira-%E2%80%93-Clivagens-Partid%C3%A1rias-e-Absten%C3%A7%C3%A3o-Eleitoral.pdf (accessed on 20 March 2021).
- Swisher, R. Neighbourhood. 2016. Available online: https://www.britannica.com/topic/neighborhood-sociology (accessed on 31 May 2021).
- World Population Review. Mozambique Population 2020 (Live). 2020. Available online: https://worldpopulationreview.com/countries/mozambique-population (accessed on 20 March 2020).
- BEIRA. Beira—Municipal Recovery and Resilience Plan—A Roadmap to Building Beira Back Better. 2019. Available online: https://www.dutchwatersector.com/sites/default/files/2019-06/Summary%20Beira%20Munici\pal%20Recovery%20and%20Resilience%20Plan.pdf (accessed on 3 March 2020).
- Devi, S. Cyclone idai: 1 month later, devastation persists. Lancet 2019, 393, 1585. [Google Scholar] [CrossRef]
- HDX. Mozambique Admin Level 4—Beira and Dondo Neighborhood Boundaries. 2020. Available online: https://data.humdata.org/dataset/mozambique-admin-level-4-beira-and-dondo-neighborhood-boundaries (accessed on 3 March 2020).
- Deville, P.; Linard, C.; Martin, S.; Gilbert, M.; Stevens, F.R.; Gaughan, A.E.; Blondel, V.D.; Tatem, A.J. Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. USA 2014, 111, 15888–15893. [Google Scholar] [CrossRef] [Green Version]
- Cumbane, S.P.; Gidófalvi, G. Review of big data and processing frameworks for disaster response applications. ISPRS Int. J. Geo-Inf. 2019, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Maloa, J.M. A urbanização moçambicana contemporânea: Sua característica, sua dimensão e seu desafio. Urbe Revista Brasileira de Gestão Urbana 2019, 11, e20180101. [Google Scholar] [CrossRef] [Green Version]
- JICA. Comprehensive Urban Transport Master Plan for the Greater Maputo. 2014. Available online: https://openjicareport.jica.go.jp/pdf/12152609.pdf (accessed on 4 March 2020).
- REACH. Mozambique—Idai Response Area Based Assessment. 2019. Available online: https://www.reachresourcecentre.info/country/mozambique/theme/multi-sector-assessments/cy\cle/687/#cycle-687 (accessed on 4 April 2020).
- IOM. Mozambique—Baseline Assessment—Cyclone Idai—Round 6. 2019. Available online: https://displacement.iom.int/reports/mozambique-%E2%80%94-baseline-assessment-cyclone-idai-round-6 (accessed on 25 March 2020).
- Hoteit, S.; Secci, S.; Sobolevsky, S.; Ratti, C.; Pujolle, G. Estimating human trajectories and hotspots through mobile phone data. Comput. Netw. 2014, 64, 296–307. [Google Scholar] [CrossRef] [Green Version]
- Conti, M.; Giordano, S. Mobile ad hoc networking: Milestones, challenges, and new research directions. IEEE Commun. Mag. 2014, 52, 85–96. [Google Scholar] [CrossRef]
- Säe, J.; Lempiäinen, J. Maintaining mobile network coverage availability in disturbance scenarios. Mob. Inf. Syst. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- DTM. Mozambique—Baseline Assessment—Round 1. 2019. Available online: https://displacement.iom.int/datasets/mozambique-baseline-assessment-round-1 (accessed on 30 May 2021).
- Yuan, H.; Gao, X.; Qi, W. Modeling the fine-scale spatiotemporal pattern of earthquake casualties in cities: Application to haidian district, beijing. Int. J. Disaster Risk Reduct. 2019, 34, 412–422. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, P.; Wang, P. Damage assessment of infrastructure based on urban flood inundation simulation. E3S Web Conf. 2020, 194, 05056. [Google Scholar]
Attribute | Value |
---|---|
IMEI-CALLER (anonymized) | 3bd78673f3084c4bcc564580c028b83367c5f8489dc5ba63a68afb3383f0d2ce |
IMEI-CALLEE (anonymized) | 450325fa618ca1d370b69f54c5c1f485b05a2599273c94187ca3682582653211 |
IMSI-CALLER (anonymized) | 1d68927da0e0681a887a0ac721af3c911aa71d965f1706d83c61bcc82d59e856 |
IMSI-CALLEE (anonymized) | 674f6ebeb6d350e69326af7ca86335e7d55b7fe89731d2a135cb53eb2ba1b743 |
START TIME OF ACTIVITY | 2019-03-09 21:39:42 |
DURATION (seconds) | 320 |
LAC-CALLER | 5800 |
CELL-ID-CALLER | 694,715 |
LAC-CALLEE | 620 |
CELL-ID-CALLEE | 705,688 |
ACITIVY-TYPE | CALL |
CONNECTION-TYPE | 3G |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cumbane, S.P.; Gidófalvi, G. Spatial Distribution of Displaced Population Estimated Using Mobile Phone Data to Support Disaster Response Activities. ISPRS Int. J. Geo-Inf. 2021, 10, 421. https://doi.org/10.3390/ijgi10060421
Cumbane SP, Gidófalvi G. Spatial Distribution of Displaced Population Estimated Using Mobile Phone Data to Support Disaster Response Activities. ISPRS International Journal of Geo-Information. 2021; 10(6):421. https://doi.org/10.3390/ijgi10060421
Chicago/Turabian StyleCumbane, Silvino Pedro, and Győző Gidófalvi. 2021. "Spatial Distribution of Displaced Population Estimated Using Mobile Phone Data to Support Disaster Response Activities" ISPRS International Journal of Geo-Information 10, no. 6: 421. https://doi.org/10.3390/ijgi10060421
APA StyleCumbane, S. P., & Gidófalvi, G. (2021). Spatial Distribution of Displaced Population Estimated Using Mobile Phone Data to Support Disaster Response Activities. ISPRS International Journal of Geo-Information, 10(6), 421. https://doi.org/10.3390/ijgi10060421