Multi-Scale Coal Fire Detection Based on an Improved Active Contour Model from Landsat-8 Satellite and UAV Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Data
2.2.1. Satellite Data
2.2.2. UAV Data
2.3. Methods
2.3.1. LST Inversion
2.3.2. FCM Algorithm
2.3.3. Improved Active Contour Model
3. Results and Analysis
3.1. Results and Analysis Based on Satellite Data
3.2. Results and Analysis Based on UAV Data
4. Discussion
5. Conclusions
- (1)
- Compared with the global threshold, K-means clustering, and traditional active contour model methods, the improved active contour model can provide better coal fire detection results. It eliminates false alarms caused by solar radiation, topographic undulation, surface features, etc. This method can greatly reduce the workload of field verification and improve the efficiency of coal fire detection.
- (2)
- Satellite data can be used for large-scale coal fire detection. These data can help in the preliminary detection of the range of a coal fire, which greatly reduces the blindness of firefighting work. However, due to their low resolution, the accuracy of detecting small-area and deep coal fires is limited.
- (3)
- High-resolution UAV data can be used to detect some target coal fire areas. The results based on UAV data extraction are validated using field surveys. There is good correlation between UAV results and field surveys. More importantly, UAV data can help detect extract both burning and potential coal fire areas.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuenzer, C.; Zhang, J.; Sun, Y.; Jia, Y.; Dech, S. Coal fires revisited: The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities. Int. J. Coal Geol. 2012, 102, 75–86. [Google Scholar] [CrossRef]
- Kruszewski, L.; Fabiańska, M.J.; Segit, T.; Kusy, D.; Motyliński, R.; Ciesielczuk, J.; Deput, E. Carbon nitrogen compounds, alcohols, mercaptans, monoterpenes, acetates, aldehydes, ketones, SF6, PH3, and other fire gases in coal-mining waste heaps of Upper Silesian Coal Basin (Poland)-are-investigation by means of in situ FTIR external database approach. Sci. Total Environ. 2020, 698, 1–16. [Google Scholar] [CrossRef]
- Oliveira, M.L.S.; Navarro, O.G.; Crissien, T.J.; Tutikian, B.F.; da Boit, K.; Teixeira, E.C.; Cabello, J.J. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls. Environ. Res. 2017, 158, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Guha, A.; Kumar, K.V. An approach of surface coal fire detection from ASTER and Landsat-8 thermal data: Jharia coal field, India. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 120–127. [Google Scholar] [CrossRef]
- Engle, M.A.; Olea, R.A.; O’Keefe, J.M.K.; Hower, J.C.; Geboy, N.J. Direct estimation of diffuse gaseous emissions from coal fires: Current methods and future directions. Int. J. Coal Geol. 2013, 112, 164–172. [Google Scholar] [CrossRef]
- Ellyett, C.D.; Fleming, A.W. Thermal infrared imagery of The Burning Mountain coal fire. Remote Sens. Environ. 1974, 3, 79–86. [Google Scholar] [CrossRef]
- Zhang, J.; Kuenzer, C. Thermal surface characteristics of coal fires 1 results of in-situ measurements. J. Appl. Geophys. 2007, 63, 117–134. [Google Scholar] [CrossRef]
- Shao, Z.L.; Wang, D.M.; Wang, Y.M.; Zhong, X.X. Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China. J. Appl. Geophys. 2014, 104, 64–74. [Google Scholar] [CrossRef]
- Huo, H.Y.; Jiang, X.G.; Song, X.F.; Li, Z.L.; Ni, Z.Y.; Gao, C.X. Detection of Coal Fire Dynamics and Propagation Direction from Multi-Temporal Nighttime Landsat SWIR and TIR Data: A Case Study on the Rujigou Coalfield, Northwest (NW) China. Remote Sens. 2014, 6, 1234–1259. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Wang, D.; Wang, Y.; Zhong, X.; Tang, X.; Hu, X. Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China. Nat. Hazards 2015, 75, 1833–1852. [Google Scholar] [CrossRef]
- Wang, G.; Cao, F.; Shan, B.; Meng, M.; Wang, W.; Sun, R.Y. Sources and Assessment of Mercury and Other Heavy Metal Contamination in Soils Surrounding the Wuda Underground Coal Fire Area, Inner Mongolia, China. Bull. Environ. Contam. Toxicol. 2019, 103, 828–833. [Google Scholar] [CrossRef]
- Liu, J.L.; Wang, Y.J.; Li, Y.; Dang, L.B.; Liu, X.X.; Zhao, H.F.; Yan, S.Y. Underground Coal Fires Identification and Monitoring Using Time-Series InSAR With Persistent and Distributed Scatterers: A Case Study of Miquan Coal Fire Zone in Xinjiang, China. IEEE Access 2019, 7, 164492–164506. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, H. Experimental investigation on microstructure evolution and spontaneous combustion properties of secondary oxidation of lignite. Process Saf. Environ. Prot. 2019, 124, 143–150. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, C.; Li, Y.; Huang, Y.; Zhang, J.; Zhang, Y.; Li, Q. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion. Fuel 2019, 242, 287–294. [Google Scholar] [CrossRef]
- Zhou, F.; Ren, W.X.; Wang, D.M.; Song, T.L. Application of three-phase foam to fight an extraordinarily serious coal mine fire. Int. J. Coal Geol. 2006, 67, 95–100. [Google Scholar] [CrossRef]
- Szurgacz, D.; Tutak, M.; Brodny, J.; Sobik, L.; Zhironkina, O. The Method of Combating Coal Spontaneous Combustion Hazard in Goafs—A Case Study. Energies 2020, 13, 4538. [Google Scholar] [CrossRef]
- Biswal, S.S.; Gorai, A.K. Change detection analysis in coverage area of coal fire from 2009 to 2019 in Jharia Coalfield using remote sensing data. IJRS 2020, 41, 9545–9564. [Google Scholar] [CrossRef]
- Syed, T.H.; Riyas, M.J.; Kuenzer, C. Remote sensing of coal fires in India: A review. Earth-Sci. Rev. 2018, 187, 338–355. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval from Landsat Thermal-Infrared Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef]
- Gautam, A.; Gautam, R.S.; Saxena, N. An intelligent wavelet transform-based framework to detect subsurface fires with NOAA-AVHRR images. IJRS 2012, 33, 1276–1295. [Google Scholar] [CrossRef]
- Wu, J.J.; Liu, X.C. Risk assessment of underground coal fire development at regional scale. Int. J. Coal Geol. 2011, 86, 87–94. [Google Scholar] [CrossRef]
- Song, Z.Y.; Claudia, K. Coal fires in China over the last decade: A comprehensive review. Int. J. Coal Geol. 2014, 72–99. [Google Scholar] [CrossRef]
- Song, Z.Y.; Kuenzer, C.; Zhu, H.Q.; Zhang, Z.; Jia, Y.R.; Sun, Y.L.; Zhang, J.Z. Analysis of coal fire dynamics in the Wuda syncline impacted by fire-fighting activities based on in-situ observations and Landsat-8 remote sensing data. Int. J. Coal Geol. 2015, 141–142, 91–102. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, H.D.; Dang, L.B. Monitoring coal seam fires in Xinjiang using comprehensive thermal infrared and time series InSAR detection. IJRS 2020, 42, 2220–2245. [Google Scholar] [CrossRef]
- Jiang, W.; Jia, K.; Chen, Z.; Deng, Y.; Rao, P. Using spatiotemporal remote sensing data to assess the status and effectiveness of the underground coal fire suppression efforts during 2000–2015 in Wuda, China. J. Clean. Prod. 2017, 142, 565–577. [Google Scholar] [CrossRef]
- Li, F.; Yang, W.; Liu, X.; Sun, G.; Liu, J. Using high-resolution UAV-borne thermal infrared imagery to detect coal fires in Majiliang mine, Datong coalfield, Northern China. Remote Sens. Lett. 2017, 9, 71–80. [Google Scholar] [CrossRef]
- Leira, F.S.; Johansen, T.A.; Fossen, T.I. Automatic detection, classification and tracking of objects in the ocean surface from UAVs using a thermal camera. IEEE Aerosp. Conf. Proc. 2015, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Qian, A.; Sun, G.; Wang, Q. Estimation of Annual CO2 Emission from Coal Fires in Majiliang Mine, Datong, Northen China Using UAVs Thermal Infrared Remote Sensing Technology. IEEE 2018, 18, 1–4. [Google Scholar] [CrossRef]
- He, X.; Yang, X.; Luo, Z.; Guan, T. Application of unmanned aerial vehicle (UAV) thermal infrared remote sensing to identify coal fires in the Huojitu coal mine in Shenmu city, China. Sci. Rep. 2020, 10, 13895. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Li, Y.; Deng, R.; Wang, D.; Zhong, X. Three-dimensional-imaging thermal surfaces of coal fires based on UAV thermal infrared data. IJRS 2021, 42, 672–692. [Google Scholar] [CrossRef]
- Liu, J.L.; Wang, Y.J.; Yan, S.Y.; Zhao, F.; Li, Y.; Dang, L.B.; Liu, X.X.; Shao, Y.Q.; Peng, B. Underground Coal Fire Detection and Monitoring Based on Landsat-8 and Sentinel-1 Data Sets in Miquan Fire Area, XinJiang. Remote Sens. 2021, 13, 1141. [Google Scholar] [CrossRef]
- Shao, Z.; Jia, X.; Zhong, X.; Wang, D.; Wei, J.; Wang, Y.; Chen, L. Detection, extinguishing, and monitoring of a coal fire in Xinjiang, China. Environ. Sci. Pollut. Res. 2018, 25, 26603–26616. [Google Scholar] [CrossRef] [PubMed]
- Biswal, S.S.; Raval, S.; Gorai, A.K. Delineation and mapping of coal mine fire using remote sensing data—A review. IJRS 2019, 40, 6499–6529. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. IJRS 2001, 18, 456–466. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Y.; Yao, Y. Comparison of Three Algorithms for the Retrieval of Land Surface Temperature from Landsat 8 Images. Sensors 2019, 19, 5049. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Li, W.; Gao, M.; Zhang, H. Estimation of Land Surface Emissivity for Landsat TM6 and its Application to Lingxian Region in North China. SPIE 2006, 636618.1–636618.8. [Google Scholar] [CrossRef]
- Dunn, J.C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Cybern. Syst. 1973, 3, 32–57. [Google Scholar] [CrossRef]
- Bezdek, J.C. A physical interpretation of fuzzy ISODATA. IEEE Trans. Systems. 1976, SMC-6, 387–389. [Google Scholar] [CrossRef]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, Y. Active contour model by combining edge and region information discrete dynamic systems. Adv. Mech. Eng. 2017, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Osher, S.; Sethian, A.J. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Hazra, R. Active contours driven by modified LoG energy term and optimized penalty term for image segmentation. Inst. Eng. Technol. 2020, 14, 3232–3242. [Google Scholar] [CrossRef]
- Fang, J.; Liu, H.; Zhang, L.; Liu, J.; Liu, H. Region-edge-based active contours driven by hybrid and local fuzzy region-based energy for image segmentation. Inf. Sci. 2021, 546, 397–419. [Google Scholar] [CrossRef]
- Yu, X.; Qi, Y.; Lu, Z.; Hu, N. Implicit Active Contours Driven by Local and Global Image Fitting Energy for Image Segmentation and Target Localization. J. Sens. 2013, 1, 1–8. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Z.; Li, M. Active Contour-Based Method for Finger-Vein Image Segmentation. IEEE 2020, 69, 8656–8665. [Google Scholar] [CrossRef]
- Pandey, B.; Agrawal, M.; Singh, S. Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmos. Pollut. Res. 2014, 5, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Kass, A.W.D.T. Snakes: Active Contour Models. J. Comput. Phys. 1987, 1, 321–332. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.; Liu, J.; Wang, Q.; Qian, A. Remote Sensing Monitoring Research for Coal Fire in Wuda Coal Mining Using ASTER Thermal Infrared Images. In Proceedings of the 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Guangzhou, China, 4–6 July 2016; Volume 193, pp. 47–51. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Env. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Pádua, L.; Guimarães, N.; Adão, T.; Sousa, A.; Peres, E.; Sousa, J. Effectiveness of Sentinel-2 in Multi-Temporal Post-Fire Monitoring When Compared with UAV Imagery. Int. J. Geo-Inf. 2020, 9, 225. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Guisuraga, J.; Sanz-Ablanedo, E.; Suárez-Seoane, S.; Calvo, L. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges. Sensors 2018, 18, 586. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Hao, M.; Wang, Y.; Dang, L.; Guo, Y. Multi-Scale Coal Fire Detection Based on an Improved Active Contour Model from Landsat-8 Satellite and UAV Images. ISPRS Int. J. Geo-Inf. 2021, 10, 449. https://doi.org/10.3390/ijgi10070449
Gao Y, Hao M, Wang Y, Dang L, Guo Y. Multi-Scale Coal Fire Detection Based on an Improved Active Contour Model from Landsat-8 Satellite and UAV Images. ISPRS International Journal of Geo-Information. 2021; 10(7):449. https://doi.org/10.3390/ijgi10070449
Chicago/Turabian StyleGao, Yanyan, Ming Hao, Yunjia Wang, Libo Dang, and Yuecheng Guo. 2021. "Multi-Scale Coal Fire Detection Based on an Improved Active Contour Model from Landsat-8 Satellite and UAV Images" ISPRS International Journal of Geo-Information 10, no. 7: 449. https://doi.org/10.3390/ijgi10070449
APA StyleGao, Y., Hao, M., Wang, Y., Dang, L., & Guo, Y. (2021). Multi-Scale Coal Fire Detection Based on an Improved Active Contour Model from Landsat-8 Satellite and UAV Images. ISPRS International Journal of Geo-Information, 10(7), 449. https://doi.org/10.3390/ijgi10070449