Water Yield Modelling, Sensitivity Analysis and Validation: A Study for Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The InVEST Annual Water Yield Model
2.3. Data
2.4. Sensitivity Analysis
2.5. Validation
3. Results and Discussion
3.1. Meteorological Data Analysis
3.2. Dryness Index and Evaporative Index Outcomes
3.3. Corine LULC Changes
3.4. Sensitivity Analysis
3.5. Model Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; ISBN 9783947851133. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, P.A.; Vörösmarty, C.J.; Harrison, I.; Farrell, T.; Sáenz, L.; Fekete, B.M. Freshwater ecosystem services supporting humans: Pivoting from water crisis to water solutions. Glob. Environ. Chang. 2015, 34, 108–118. [Google Scholar] [CrossRef]
- Wei, P.; Chen, S.; Wu, M.; Deng, Y.; Xu, H.; Jia, Y.; Liu, F. Using the invest model to assess the impacts of climate and land use changes on water yield in the upstream regions of the shule river basin. Water 2021, 13, 1250. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.; Yang, X.; Chen, R.; Chen, R.; Chen, R.; Meadows, M.E.; Meadows, M.E.; Ji, G.; Ji, G.; et al. Modelling water yield with the InVEST model in a data scarce region of northwest China. Water Sci. Technol. Water Supply 2020, 20, 1035–1045. [Google Scholar] [CrossRef]
- The Global Risks Report 2018, 13th ed.; Insight Report; World Economic Forum: Geneva, Switzerland, 2018; ISBN 9781944835156.
- Jafarzadeh, A.A.; Mahdavi, A.; Shamsi, S.R.F.; Yousefpour, R. Annual water yield estimation for different land uses by GISBased InVEST model (Case study: Mish-khas Catchment, Ilam Province, Iran). J. Rangel. Sci. 2019, 9, 1–12. [Google Scholar]
- Liquete, C.; Maes, J.; Notte, A.; Bidoglio, G. Securing water as a resource for society: An ecosystem services perspective. Ecohydrol. Hydrobiol. 2011, 11, 247–259. [Google Scholar] [CrossRef]
- Vogt, J.; Soille, P.; de Jager, A.; Rimavičiūte, E.; Mehl, W.; Foisneau, S.; Bódis, K.; Dusart, J.; Paracchini, M.L.; Haastrup, P.; et al. A Pan-European River and Catchment Database; EU Publications Office: Luxembourg, 2007; ISBN 9789279069413. [Google Scholar]
- Addams, L. Charting Our Water Future: Economic Frameworks to Inform Decision-Making; Routledge: Abingdon, UK, 2009; Volume 21. [Google Scholar]
- Second River Basin Management Plans—Member State: Portugal Report from the Commission to the European Parliament and the Council on the Implementation of the Water Framework Directive (2000/60/EC) and the Floods Directive (2007/60/EC); European Parliament: Brussels, Belgium, 2019.
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef] [Green Version]
- Posner, S.; Verutes, G.; Koh, I.; Denu, D.; Ricketts, T. Global use of ecosystem service models. Ecosyst. Serv. 2016, 17, 131–141. [Google Scholar] [CrossRef]
- Hoyer, R.; Chang, H. Assessment of freshwater ecosystem services in the tualatin and Yamhill basins under climate change and urbanization. Appl. Geogr. 2014, 53, 402–416. [Google Scholar] [CrossRef]
- Sánchez-Canales, M.; López Benito, A.; Passuello, A.; Terrado, M.; Ziv, G.; Acuña, V.; Schuhmacher, M.; Elorza, F.J. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Sci. Total Environ. 2012, 440, 140–153. [Google Scholar] [CrossRef]
- Terrado, M.; Acuña, V.; Ennaanay, D.; Tallis, H.; Sabater, S. Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin. Ecol. Indic. 2014, 37, 199–209. [Google Scholar] [CrossRef]
- Hamel, P.; Guswa, A.J. Uncertainty analysis of a spatially explicit annual water-balance model: Case study of the Cape Fear basin, North Carolina. Hydrol. Earth Syst. Sci. 2015, 19, 839–853. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Eurostat/Regions and Cities Illustrated (RCI). Available online: https://ec.europa.eu/eurostat/cache/RCI/ (accessed on 10 July 2021).
- Pereira, H.M.; Domingos, T.; Vicente, L. Portugal Millennium Ecosystem Assessment: State of the Assessment Report; Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa: Lisbon, Portugal, 2004; pp. 1–68. [Google Scholar]
- Miranda, P.M.A.; Coelho, F.E.S.; Tomé, A.R.; Valente, M.A.; Carvalho, A.; Pires, C.; Pires, H.O.; Pires, V.C.; Ramalho, C. 20th Century Portuguese Climate and Climate Scenarios. In Climate Change in Portugal. Scenarios, Impacts and Adaptation Measures; Gradiva Publishers: Lisbon, Portugal, 2002; pp. 23–83. [Google Scholar]
- Abreu Lopes, H. Combating desertification—The Portuguese Tribunal de Contas auditing the National Action Program to Combat Desertification. Clim. Chang. Audit. J. 2020. Available online: https://medium.com/ecajournal/combating-desertification-the-portuguese-tribunal-de-contas-auditing-the-national-action-program-529391c468c3 (accessed on 16 July 2021).
- De Lima, M.I.P.; Santo, F.E.; Ramos, A.M.; Trigo, R.M.; Isabel de Lima, M.P.; Espírito Santo, F.; Ramos, A.M.; Trigo, R.M. Trends and correlations in annual extreme precipitation indices for mainland Portugal, 1941–2007. Theor. Appl. Climatol. 2014, 119, 55–75. [Google Scholar] [CrossRef]
- Belo-Pereira, M.; Dutra, E.; Viterbo, P. Evaluation of global precipitation data sets over the Iberian Peninsula. J. Geophys. Res. Atmos. 2011, 116, 1–16. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Novo, M.E.; Lobo Ferreira, J.P. Models to predict the impact of the climate changes on aquifer recharge. In Water in Celtic Countries: Quantity, Quality and Climate Variability; IAHS Publishing: Wallingford, UK, 2007; pp. 103–110. [Google Scholar]
- UNEP. Hydropolitical Vulnerability and Resilience along International Waters; UNEP: Nairobi, Kenya, 2009; ISBN 9789280730364. [Google Scholar]
- EEA. Catchments and Rivers Network System ECRINS v1.1—Rationales, Building and Improving for Widening Uses to Water Accounts and WISE Applications; EU Publications Office: Luxembourg, 2012; ISBN 9789292133207. [Google Scholar] [CrossRef]
- Ramos, T.B.; Horta, A.; Gonçalves, M.C.; Pires, F.P.; Duffy, D.; Martins, J.C. The INFOSOLO database as a first step towards the development of a soil information system in Portugal. Catena 2017, 158, 390–412. [Google Scholar] [CrossRef]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. WISE—Water Framework Directive Database. Available online: https://www.eea.europa.eu/data-and-maps/data/wise-wfd-4 (accessed on 10 July 2021).
- Yin, G.; Wang, X.; Zhang, X.; Fu, Y.; Hao, F.; Hu, Q. InVEST model-based estimation of water yield in North China and its sensitivities to climate variables. Water 2020, 12, 1692. [Google Scholar] [CrossRef]
- Sharp. Annual Water Yield—InVEST 3.8.9.post10+ug.gf658986 Documentation. Available online: http://releases.naturalcapitalproject.org/invest-userguide/latest/reservoirhydropowerproduction.html#limitations-and-simplifications (accessed on 10 July 2021).
- Xu, J.; Xiao, Y.; Xie, G.; Jiang, Y. Ecosystem Service Flow Insights into Horizontal Ecological Compensation Standards for Water Resource: A Case Study in Dongjiang Lake Basin, China. Chin. Geogr. Sci. 2019, 29, 214–230. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Trabucco, A.; Zomer, R.J. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. CGIAR Consort. Spat. Inf. 2018, 10. [Google Scholar] [CrossRef]
- SNIRH. Sistema Nacional de Informação de Recursos Hídricos. Available online: https://snirh.apambiente.pt/ (accessed on 10 July 2021).
- CGLS Copernicus Global Land Service. Available online: https://land.copernicus.eu/global/ (accessed on 10 July 2021).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.; Ab, W. FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar] [CrossRef]
- Cabral, P.; Feger, C.; Levrel, H.; Chambolle, M.; Basque, D. Assessing the impact of land-cover changes on ecosystem services: A first step toward integrative planning in Bordeaux, France. Ecosyst. Serv. 2016, 22, 318–327. [Google Scholar] [CrossRef] [Green Version]
- O’Geen, A.T. Soil Water Dynamics. Nature Education Knowledge. Available online: https://www.nature.com/scitable/knowledge/library/soil-water-dynamics-103089121/ (accessed on 10 July 2021).
- Dalgliesh, N.; Foale, M. Soil Matters; Cranbrook Press: Toowoomba, Australia, 2005. [Google Scholar]
- Climate Change Portal. Available online: http://portaldoclima.pt/en/ (accessed on 10 July 2021).
- Gomes, S.; Deus, R.; Nogueira, M.; Viterbo, P.; Miranda, M.; Antunes, S.; Silva, A.; Miranda, P. The Portuguese Climate Portal. Geophys. Res. Abstr. EGU Gen. Assem. 2016, 18, 16517. [Google Scholar]
- IPMA Portuguese Institute for Sea and Atmosphere. Available online: https://www.ipma.pt/en/produtoseservicos/index.jsp?page=dataset.pt02.xml (accessed on 10 July 2021).
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impacton humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Mallants, D.; Bekele, E.; Schmid, W.; Miotlinski, K. Human and Environmental Exposure Conceptualisation: Soil to Shallow Groundwater Pathways; Office of Water Science Department of the Environment and Energy: Canberra, Australia, 2017. [Google Scholar]
- Refsgaard, J.C. Parameterisation, calibration and validation of distributed hydrological models. J. Hydrol. 1997, 198, 69–97. [Google Scholar] [CrossRef]
- Sargent, R.G. Validation and verification of simulation models. In Proceedings of the Winter Simulation Conference, Washington, DC, USA, 5–8 December 2004. [Google Scholar]
- Ferreira, A.M.P.J. Caracterização de Portugal Continental. In Dados Geoquímicos de Base de Sedimentos Fluviais de Amostragem de Baixa Densidade de Portugal Continental: Estudo de Factores de Variação Regional; Universidade de Aveiro: Aveiro, Portugal, 2000; pp. 19–61. [Google Scholar]
- Gunkel, A.; Lange, J. Water scarcity, data scarcity and the Budyko curve—An application in the Lower Jordan River Basin. J. Hydrol. Reg. Stud. 2017, 12, 136–149. [Google Scholar] [CrossRef]
- Bassi, A.M.; Gallagher, L.A.; Helsingen, H. Green Economy Modelling of Ecosystem Services along the “Road to Dawei”. Environments 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Preparatory Action—Development of Prevention Activities to Halt Desertification in Europe—Service Contract to Contribute to the Building of Water and Ecosystem Accounts at EU Level. Water Accounts System and Results; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; Mcdonnell, J.; Mcguire, K.; Caissie, D.; Shanley, J.; et al. Inter-comparison of hydro-climatic regimes across northern catchments: Synchronicity, resistance and resilience. Hydrol. Processes 2010, 3602, 3591–3602. [Google Scholar] [CrossRef]
Sector | RBD | Name | Total Area (km2) |
---|---|---|---|
NPT | PTRH1 | Minho and Lima | 2465 |
PTRH2 | Cávado, Ave and Leça | 3584 | |
PTRH3 | Douro | 19,219 | |
PTRH4A | Vouga, Mondego and Lis | 16,981 | |
SPT | PTRH5A | Tejo and Ribeiras do Oeste | 25,665 |
PTRH6 | Sado and Mira | 12,149 | |
PTRH7 | Guadiana | 11,611 | |
PTRH8 | Ribeiras do Algarve | 5511 |
WYM Parameters | Data Source | Temporal Scale | Spatial Scale | Test 1 (T1) | Test 2 (T2) | Test 3 (T3) | Test 4 (T4) |
---|---|---|---|---|---|---|---|
Average Annual precipitation (mm) | P1 (WorldClim-CSI); P2 (SNIRH) | Annual | P1 (Global); P2 (National) | P1; P2 | P1; P2 | P1; P2 | P1; P2 |
Seasonality coefficient (Z) | Z1 (Portal do Clima PROJECT); Z2 (IPMA) | Annual | Z1; Z2 (National) | Z1; Z2 | Z1; Z2 | Z1; Z2 | Z1; Z2 |
Land use/land cover (LULC) | LULC (Copernicus) | 1990; 2000; 2006; 2012; 2018 | Europe | LULC | LULC | LULC | LULC |
Average annual evapotranspiration (mm) | E1 (WorldClim-CSI); E2 (SNIRH) | Annual | E1 (Global); E2 (National) | E1 | E1 | E1 | E2 |
Plant available water content fraction | PAWC1 (ESDAC); PAWC2 (ESDAC Reclassified) | 2013 | Europe | PAWC2 | PAWC2 | PAWC1 | PAWC1 |
Watersheds | EEA-WISE | 2020 | Europe | RBD | RBD | RBD | RBD |
Root restricting layer depth (mm) | ESDAC | 2013 | Europe | ESDAC | ESDAC | ESDAC | ESDAC |
Biophysical Table | B1 (Referential Biophysical Table—FAO); B2 (Modified Referential Biophysical Table—FAO) | 1990; 2000; 2006; 2012; 2018 | National | B2 | B1 | B1 | B1 |
Sector | NPT | SPT | ||||||
---|---|---|---|---|---|---|---|---|
Best Performance/Sector | Z2P2T4 | Z1P1T4 | ||||||
RBD | PTRH1 | PTRH2 | PTRH3 | PTRH4A | PTRH5A | PTRH6 | PTRH7 | PTRH8 |
area (ha) | 246,500 | 358,400 | 1,921,900 | 1,698,100 | 2,566,500 | 1,214,900 | 1,161,100 | 551,100 |
WY_Est_2018 (m3/ha) | 4746 | 2037 | 159 | 224 | 31 | 468 | 449 | 2323 |
WY_Obs_2018 (m3/ha) | 4851 | 2280 | 492 | 1801 | −176 | 1455 | −1368 | 1033 |
error/RBD (m3/ha) | −105 | −243 | −333 | −1577 | 207 | −988 | 1817 | 1290 |
Mean error/sector | −56.5 mm/ha/year | 58.1 mm/ha/year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, B.; Cabral, P. Water Yield Modelling, Sensitivity Analysis and Validation: A Study for Portugal. ISPRS Int. J. Geo-Inf. 2021, 10, 494. https://doi.org/10.3390/ijgi10080494
Almeida B, Cabral P. Water Yield Modelling, Sensitivity Analysis and Validation: A Study for Portugal. ISPRS International Journal of Geo-Information. 2021; 10(8):494. https://doi.org/10.3390/ijgi10080494
Chicago/Turabian StyleAlmeida, Bruna, and Pedro Cabral. 2021. "Water Yield Modelling, Sensitivity Analysis and Validation: A Study for Portugal" ISPRS International Journal of Geo-Information 10, no. 8: 494. https://doi.org/10.3390/ijgi10080494
APA StyleAlmeida, B., & Cabral, P. (2021). Water Yield Modelling, Sensitivity Analysis and Validation: A Study for Portugal. ISPRS International Journal of Geo-Information, 10(8), 494. https://doi.org/10.3390/ijgi10080494