A Poverty Measurement Method Incorporating Spatial Correlation: A Case Study in Yangtze River Economic Belt, China
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Explanatory Variables
3. Methods
3.1. Model Definition
3.2. Model Structure
3.2.1. SVNN
3.2.2. DNN
3.3. Model Evaluation Metrics
- Root mean square error (RMSE);
- 2.
- Mean absolute error (MAE);
- 3.
- Explained variance score (var)
- 4.
- Coefficient of determination (R2).
3.4. Model Parameters Selection
4. Results
4.1. Model Performance Comparison
- Artificial Neural Network (ANN) [59]: ANN’s network layers adopted an error forward propagation, and the layers are fully connected;
- Back Propagation Neural Network (BPNN) [49]: A neural network trained according to an error back propagation. The basic idea of error back propagation is gradient descent;
4.1.1. Comparison of the Spatial Correlation Structure
4.1.2. Comparison of the Evaluation Metrics
4.1.3. Comparison of the National-Level Poverty County
4.1.4. Comparison of the Poverty Incidence
4.2. Distribution Characteristics of MPI
4.2.1. Statistical Distribution Characteristics
4.2.2. Spatio-Temporal Distribution Characteristics
4.3. Relative Contributions of Explanatory Variables to MPI
5. Discussion
5.1. Poverty Measurement and Identification
5.2. Spatio-Temporal Characteristics of MPI
5.3. Applicability of SVDNN Model
5.4. Policy Application
5.5. Limitations
6. Conclusions
- In the four comparisons of the spatial correlation structure, evaluation metrics, national-level poverty counties and poverty incidence, the SDM exhibited a superior model performance than the SAM and SWAM and is more suitable for the construction of the SVDNN models. The SVDNN model, by incorporating the spatial correlation (SDM, SAM and SWAM) between areas, provided better poverty identification accuracy compared with the three baseline models of DNN, BPNN and ANN. However, the performance of the SVDNN model is optimal.
- The MPIs calculated by various neural network models performed similarly in the frequency distribution and the linear regression of poverty incidence. Such similarity reflected the robustness and applicability of the neural network model in poverty measurement.
- Urban agglomerations in the Yangtze River Delta, the Triangle of Central China, and Chengdu-Chongqing city group were low-value MPI agglomeration areas, and the degree of agglomeration decreased with the scale of urban agglomerations from east to west. The YGGRDA, the WMMA and the FTA have been in a state of deep multidimensional poverty for a long time. The spatio-temporal characteristics of MPI above were consistent with the influence of urban agglomeration and geographical location.
- In the SVDNN model, the mean elevation, proportion of secondary industry, per capita fiscal expenditure, number of welfare institution beds per capita and the proportion of land area with a slope higher than 15° have a higher contribution to MPIs, and they would be reliable explanatory variables for poverty measurement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; UN: New York, NY, USA, 2015.
- Lynch, A.J.; Cowx, I.G.; Fluet-Chouinard, E.; Glaser, S.M.; Phang, S.C.; Beard, T.D.; Bower, S.D.; Brooks, J.L.; Bunnell, D.B.; Claussen, J.E.; et al. Inland fisheries—Invisible but integral to the UN Sustainable Development Agenda for ending poverty by 2030. Glob. Environ. Change 2017, 47, 167–173. [Google Scholar] [CrossRef]
- Mani, A.; Mullainathan, S.; Shafir, E.; Zhao, J. Poverty impedes cognitive function. Science 2013, 341, 976–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haushofer, J.; Fehr, E. On the psychology of poverty. Science 2014, 344, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, Y.; Zhou, Y. Poverty alleviation in rural China: Policy changes, future challenges and policy implications. China Agric. Econ. Rev. 2018, 10, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining satellite imagery and machine learning to predict poverty. Science 2016, 353, 790–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Xu, Y. A geographic identification of multidimensional poverty in rural China under the framework of sustainable livelihoods analysis. Appl. Geogr. 2016, 73, 62–76. [Google Scholar] [CrossRef]
- Xu, Z.; Cai, Z.; Wu, S.; Huang, X.; Liu, J.; Sun, J.; Su, S.; Weng, M. Identifying the Geographic Indicators of Poverty Using Geographically Weighted Regression: A Case Study from Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou, China. Soc. Indic. Res. 2018, 142, 947–970. [Google Scholar] [CrossRef]
- Deininger, K.; Squire, L. A new data set measuring income inequality. World Bank Econ. Rev. 1996, 10, 565–591. [Google Scholar] [CrossRef]
- Ravallion, M.; Chen, S. China’s (uneven) progress against poverty. J. Dev. Econ. 2007, 82, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Brady, D. Rethinking the sociological measurement of poverty. Soc. Forces 2003, 81, 715–751. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.K.; Agrawal, N.K.; Mahapatra, B.; Choudhury, D.; Tuladhar, S.; Holmgren, E.V. Multidimensional poverty and catastrophic health spending in the mountainous regions of Myanmar, Nepal and India. Int. J. Equity Health 2017, 16, 21. [Google Scholar] [CrossRef] [Green Version]
- Sen, A. Poverty: An ordinal approach to measurement. Econometrica 1976, 44, 219–231. [Google Scholar] [CrossRef]
- Lucchini, M.; Butti, C.; Assi, J.; Spini, D.; Bernardi, L. Multidimensional Deprivation in Contemporary Switzerland Across Social Groups and Time. Sociol. Res. Online 2014, 19, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Wagle, U. Rethinking poverty: Definition and measurement. Int. Soc. Sci. J. 2002, 54, 155–165. [Google Scholar] [CrossRef]
- Park, A.; Wang, S.; Wu, G. Regional poverty targeting in China. J. Public Econ. 2002, 86, 123–153. [Google Scholar] [CrossRef]
- Alkire, S. Dimensions of human development. World Dev. 2002, 30, 181–205. [Google Scholar] [CrossRef]
- Alkire, S.; Santos, M.E. Measuring acute poverty in the developing world: Robustness and scope of the multidimensional poverty index. World Dev. 2014, 59, 251–274. [Google Scholar] [CrossRef] [Green Version]
- Arcagni, A.; Elisa, B.D.B.; Fattore, M.; Rimoldi, S.M.L. Multidimensional analysis of deprivation and fragility patterns of migrants in lombardy, using partially ordered sets and self-organizing maps. Soc. Indic Res. 2018, 141, 551–579. [Google Scholar] [CrossRef]
- Alkire, S.; Foster, J. Understandings and misunderstandings of multidimensional poverty measurement. J. Econ. Inequal. 2011, 9, 289–314. [Google Scholar] [CrossRef] [Green Version]
- Alkire, S.; Foster, J. Counting and multidimensional poverty measurement. J. Public Econ. 2011, 95, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.; Greer, J.; Thorbecke, E. The Foster-Greer-Thorbecke (FGT) poverty measures: 25 years later. J. Econ. Inequal. 2010, 8, 491–524. [Google Scholar] [CrossRef]
- Arndt, C.; Mahrt, K.; Hussain, M.A.; Tarp, F. A human rights-consistent approach to multidimensional welfare measurement applied to sub-Saharan Africa. World Dev. 2018, 108, 181–196. [Google Scholar] [CrossRef]
- Bennett, C.J.; Mitra, S. Multidimensional Poverty: Measurement, Estimation, and Inference. Econom. Rev. 2013, 32, 57–83. [Google Scholar] [CrossRef]
- Nowak, D.; Scheicher, C. Considering the Extremely Poor: Multidimensional Poverty Measurement for Germany. Soc. Indic. Res. 2016, 133, 139–162. [Google Scholar] [CrossRef] [Green Version]
- Njoya, E.T.; Seetaram, N. Tourism Contribution to Poverty Alleviation in Kenya: A Dynamic Computable General Equilibrium Analysis. J. Travel Res. 2018, 57, 513–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Hu, S.; Ge, Y.; Heuvelink, G.B.M.; Ren, Z.; Huang, X. Using multiple linear regression and random forests to identify spatial poverty determinants in rural China. Spat. Stat. 2020, 42, 100461. [Google Scholar] [CrossRef]
- Kraay, A.; McKenzie, D. Do Poverty Traps Exist? Assessing the Evidence. J. Econ. Perspect. 2014, 28, 127–148. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Ren, Z.; Fu, Y. Understanding the Relationship between Dominant Geo-Environmental Factors and Rural Poverty in Guizhou, China. ISPRS Int. J. Geo-Inf. 2021, 10, 270. [Google Scholar] [CrossRef]
- Li, T.; Cao, X.; Qiu, M.; Li, Y. Exploring the Spatial Determinants of Rural Poverty in the Interprovincial Border Areas of the Loess Plateau in China: A Village-Level Analysis Using Geographically Weighted Regression. ISPRS Int. J. Geo-Inf. 2020, 9, 345. [Google Scholar] [CrossRef]
- Ravallion, M.; Jalan, J. China’s lagging poor areas. Am. Econ. Rev. 1999, 89, 301–305. [Google Scholar] [CrossRef]
- Cao, S.; Wang, X.; Wang, G. Lessons learned from China’s fall into the poverty trap. J. Policy Model 2009, 31, 298–307. [Google Scholar] [CrossRef]
- Mushongera, D.; Zikhali, P.; Ngwenya, P. A Multidimensional Poverty Index for Gauteng Province, South Africa: Evidence from Quality of Life Survey Data. Soc. Indic. Res. 2015, 130, 277–303. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y. Using VPI to Measure Poverty-Stricken Villages in China. Soc. Indic. Res. 2016, 133, 833–857. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, Y.; Liu, Y. The inequality of educational resources and its countermeasures for rural revitalization in southwest China. J. Mt. Sci. 2020, 17, 47–58. [Google Scholar] [CrossRef]
- Wurm, M.; Taubenböck, H.; Weigand, M.; Schmitt, A. Slum mapping in polarimetric SAR data using spatial features. Remote Sens. Environ. 2017, 194, 190–204. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, X.; Zhou, J.; Pereira, P. Spatiotemporal tradeoffs and synergies in vegetation vitality and poverty transition in rocky desertification area. Sci. Total Environ. 2021, 752, 141770. [Google Scholar] [CrossRef] [PubMed]
- Njuguna, C.; McSharry, P. Constructing spatiotemporal poverty indices from big data. J. Bus. Res. 2017, 70, 318–327. [Google Scholar] [CrossRef]
- Blumenstock, J.; Cadamuro, G.; On, R. Predicting poverty and wealth from mobile phone metadata. Science 2015, 350, 1073–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijaya, D.R.; Ni, L.; Uluwiyah, A.; Rheza, M.; Zahara, A.; Puspita, D.R. Estimating city-level poverty rate based on e-commerce data with machine learning. Electron. Commer. Res. 2020, 1–27. [Google Scholar] [CrossRef]
- Lo, K.; Wang, M. How voluntary is poverty-alleviation resettlement in China? Habitat Int. 2018, 73, 34–42. [Google Scholar] [CrossRef]
- Wurm, M.; Stark, T.; Zhu, X.X.; Weigand, M.; Taubenböck, H. Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2019, 150, 59–69. [Google Scholar] [CrossRef]
- Watmough, G.R.; Atkinson, P.M.; Hutton, C.W. Exploring the links between census and environment using remotely sensed satellite sensor imagery. J. Land Use Sci. 2013, 8, 284–303. [Google Scholar] [CrossRef]
- Li, G.; Chang, L.; Liu, X.; Su, S.; Cai, Z.; Huang, X.; Li, B. Monitoring the spatiotemporal dynamics of poor counties in China: Implications for global sustainable development goals. J. Clean Prod. 2019, 227, 392–404. [Google Scholar] [CrossRef]
- Yin, J.; Qiu, Y.; Zhang, B. Identification of Poverty Areas by Remote Sensing and Machine Learning: A Case Study in Guizhou, Southwest China. ISPRS Int. J. Geo-Inf. 2021, 10, 11. [Google Scholar] [CrossRef]
- Alsharkawi, A.; Al-Fetyani, M.; Dawas, M.; Saadeh, H.; Alyaman, M. Poverty Classification Using Machine Learning: The Case of Jordan. Sustainability 2021, 13, 1412. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Chi, Y.; Zhao, W.; Hu, Z.; Duan, F. Village-level multidimensional poverty measurement in China: Where and how. J. Geogr. Sci. 2018, 28, 1444–1466. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Islam, K.; Yuan, X.; Elhoseny, M. An optimization model for poverty Alleviation fund audit mode based on BP neural network. J. Intell. Fuzzy Syst. 2019, 37, 481–491. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, G.; Deng, X.; Wu, F. Multidimensional measurement of poverty and its spatio-temporal dynamics in China from the perspective of development geography. J. Geogr. Sci. 2021, 31, 130–148. [Google Scholar] [CrossRef]
- Abu Bakar, A.; Hamdan, R.; Sani, N.S. Ensemble Learning for Multidimensional Poverty Classification. Sains Malays. 2020, 49, 447–459. [Google Scholar] [CrossRef]
- Curto, J.D.; Pinto, J.C. The corrected VIF (CVIF). J. Appl. Stat. 2010, 38, 1499–1507. [Google Scholar] [CrossRef]
- Pak, M.; Gulci, S.; Okumus, A. A study on the use and modeling of geographical information system for combating forest crimes: An assessment of crimes in the eastern Mediterranean forests. Environ. Monit. Assess. 2018, 190, 62. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Liu, F.; Hsieh, H.P. U-Air: When Urban Air Quality Inference Meets Big Data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; ACM: New York, NY, USA, 2013; pp. 1436–1444. [Google Scholar]
- Wang, J.; Zhang, X.; Guo, Z.; Lu, H. Developing an early-warning system for air quality prediction and assessment of cities in China. Expert Syst. Appl. 2017, 84, 102–116. [Google Scholar] [CrossRef]
- Zhao, L.; Song, Y.J.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Wang, Z.; Du, Z.; Huang, B.; Zhang, F.; Liu, R. Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships. Int. J. Geogr. Inf. Sci. 2020, 35, 582–608. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Gao, S.; Zhou, C. Differential privacy data publishing in the big data platform of precise poverty alleviation. Soft Comp. 2019, 24, 8139–8147. [Google Scholar] [CrossRef]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.; Mohamed, A.-r.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Guo, J.; Jiang, S.-H.; Li, S.; Guo, Z. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena 2020, 191, 104580. [Google Scholar] [CrossRef]
- Liu, X.; Kang, C.; Gong, L.; Liu, Y. Incorporating spatial interaction patterns in classifying and understanding urban land use. Int. J. Geogr. Inf. Sci. 2015, 30, 334–350. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, X.; Chen, H. Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China. Chin. Geogr. Sci. 2018, 28, 296–312. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, X.; Pan, X.; Ma, X.; Tang, M. The spatial integration and coordinated industrial development of urban agglomerations in the Yangtze River Economic Belt, China. Cities 2020, 104, 102801. [Google Scholar] [CrossRef]
- Talukdar, S.; Pal, S.; Chakraborty, A.; Mahato, S. Damming effects on trophic and habitat state of riparian wetlands and their spatial relationship. Ecol. Indic. 2020, 118, 106757. [Google Scholar] [CrossRef]
- Badii, C.; Nesi, P.; Paoli, I. Predicting Available Parking Slots on Critical and Regular Services by Exploiting a Range of Open Data. IEEE Access 2018, 6, 44059–44071. [Google Scholar] [CrossRef]
- Zuo, Y.; Liu, Z.; Fu, X. Measuring accessibility of bus system based on multi-source traffic data. Geo-Spat. Inf. Sci. 2020, 23, 248–257. [Google Scholar] [CrossRef]
Dimension | Explanatory Variable | Formula | VIF |
---|---|---|---|
Natural | Mean elevation | - | 3.922 |
Proportion of land area with slope higher than 15° | Land area with slope higher than 15°/Total land area | 1.744 | |
Mean annual precipitation | - | 1.604 | |
Cultivated land yield | Total cultivated yield/Total cultivated lands | 2.179 | |
Proportion of primary industry | GRP of primary industry/GRP | 2.710 | |
Economic | Per capital GRP | GRP/Total population | 4.333 |
Night light index | - | 4.021 | |
Per capita household savings | Total household savings/Total population | 3.949 | |
Proportion of secondary industry | GRP of secondary industry/GRP | 3.675 | |
Per capita fiscal expenditure | Total fiscal expenditure/Total population | 3.020 | |
Social | Proportion of agricultural mechanization | Agricultural mechanization areas/Total cultivated areas | 1.751 |
Number of welfare institution beds per capita | Total number of welfare house beds/Total population | 1.446 | |
Number of hospital beds per capita | Total number of hospital beds/Total population | 2.738 | |
Proportion of compulsory education | Total number of primary and secondary students/Total population | 1.836 | |
Proportion of phone access | Total number of phone access households/Total number of households | 4.977 |
Time | Metric | SVDNN | DNN | BPNN | ANN |
---|---|---|---|---|---|
2000 | RMSE | 0.031 | 0.066 | 0.935 | 1.785 |
MAE | 0.028 | 0.042 | 0.093 | 0.151 | |
var | 0.965 | 0.751 | 0.579 | 0.409 | |
R2 | 0.967 | 0.711 | 0.587 | 0.411 | |
2005 | RMSE | 0.025 | 0.087 | 0.924 | 1.386 |
MAE | 0.047 | 0.027 | 0.091 | 0.128 | |
var | 0.982 | 0.932 | 0.607 | 0.494 | |
R2 | 0.984 | 0.930 | 0.607 | 0.495 | |
2010 | RMSE | 0.073 | 0.114 | 0.994 | 1.585 |
MAE | 0.080 | 0.066 | 0.089 | 0.201 | |
var | 0.941 | 0.909 | 0.531 | 0.468 | |
R2 | 0.948 | 0.907 | 0.537 | 0.467 | |
2015 | RMSE | 0.055 | 0.137 | 0.928 | 1.893 |
MAE | 0.079 | 0.061 | 0.091 | 0.135 | |
var | 0.952 | 0.885 | 0.606 | 0.401 | |
R2 | 0.953 | 0.844 | 0.607 | 0.401 |
Dimension | Explanatory Variable | SVDNN | DNN | BPNN | ANN | MEAN |
---|---|---|---|---|---|---|
Natural | Mean elevation | 0.1759 | 0.0673 | 0.0681 | 0.0463 | 0.0894 |
Proportion of land area with a slope higher than 15° | 0.0959 | 0.0916 | 0.1015 | 0.0361 | 0.0545 | |
Mean annual precipitation | 0.0119 | 0.0561 | 0.0391 | 0.1178 | 0.0562 | |
Cultivated land yield | 0.0029 | 0.0484 | 0.1209 | 0.1010 | 0.0683 | |
Proportion of primary industry | 0.0659 | 0.0742 | 0.0829 | 0.1550 | 0.0945 | |
Economic | Per capital GRP | 0.0609 | 0.0783 | 0.1429 | 0.0100 | 0.0730 |
Night light index | 0.0029 | 0.0727 | 0.0281 | 0.0887 | 0.0714 | |
Per capita household savings | 0.0039 | 0.0817 | 0.0453 | 0.1016 | 0.0581 | |
Proportion of secondary industry | 0.1669 | 0.0297 | 0.1138 | 0.0707 | 0.0953 | |
Per capita fiscal expenditure | 0.1429 | 0.0717 | 0.0248 | 0.0866 | 0.0815 | |
Social | Proportion of agricultural mechanization | 0.0559 | 0.0774 | 0.0567 | 0.0444 | 0.0622 |
Number of welfare institution beds per capita | 0.1429 | 0.0623 | 0.0441 | 0.0348 | 0.0710 | |
Number of hospital beds per capita | 0.0049 | 0.0584 | 0.0591 | 0.0026 | 0.0313 | |
Proportion of compulsory education | 0.0269 | 0.0794 | 0.0208 | 0.0199 | 0.0368 | |
Proportion of phone access | 0.0399 | 0.0505 | 0.0521 | 0.0851 | 0.0569 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Chen, N.; Lin, S. A Poverty Measurement Method Incorporating Spatial Correlation: A Case Study in Yangtze River Economic Belt, China. ISPRS Int. J. Geo-Inf. 2022, 11, 50. https://doi.org/10.3390/ijgi11010050
Zhou Q, Chen N, Lin S. A Poverty Measurement Method Incorporating Spatial Correlation: A Case Study in Yangtze River Economic Belt, China. ISPRS International Journal of Geo-Information. 2022; 11(1):50. https://doi.org/10.3390/ijgi11010050
Chicago/Turabian StyleZhou, Qianqian, Nan Chen, and Siwei Lin. 2022. "A Poverty Measurement Method Incorporating Spatial Correlation: A Case Study in Yangtze River Economic Belt, China" ISPRS International Journal of Geo-Information 11, no. 1: 50. https://doi.org/10.3390/ijgi11010050
APA StyleZhou, Q., Chen, N., & Lin, S. (2022). A Poverty Measurement Method Incorporating Spatial Correlation: A Case Study in Yangtze River Economic Belt, China. ISPRS International Journal of Geo-Information, 11(1), 50. https://doi.org/10.3390/ijgi11010050