Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau
Abstract
:1. Introduction
2. Study Areas
3. Materials and Methods
3.1. Single Inundation Value—TWL Approach
3.1.1. Astronomical Tide
3.1.2. Storm Surge
3.1.3. Sea-Level Rise Scenarios
3.1.4. Total Water Level
3.2. Terrain Elevation Data
3.2.1. TanDEM-X Datasets
3.2.2. TanDEM-X Processing
3.2.3. Flood Mapping
3.3. Land Cover
4. Results
5. Discussion
Implications for the Study Area
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, R.J.T.; Nicholls, R.J. Coastal Zones. In Handbook on Methods for Climate Change Impact Assessment and Adaptation Strategies; 1998; p. 464. Available online: https://wedocs.unep.org/handle/20.500.11822/32746 (accessed on 8 August 2020).
- De Sherbinin, A.; Schiller, A.; Pulsipher, A. The vulnerability of global cities to climate hazards. Environ. Urban. 2007, 19, 39–64. [Google Scholar] [CrossRef] [Green Version]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Hanson, S.; Nicholls, R.; Ranger, N.; Hallegatte, S.; Corfee-Morlot, J.; Herweijer, C.; Chateau, J. A global ranking of port cities with high exposure to climate extremes. Clim. Change 2011, 104, 89–111. [Google Scholar] [CrossRef] [Green Version]
- Ruckert, K.L.; Oddo, P.C.; Keller, K. Impacts of representing sea-level rise uncertainty on future flood risks: An example from San Francisco Bay. Schumann GJ-P, editor. PLoS ONE 2017, 12, e0174666. [Google Scholar] [CrossRef] [Green Version]
- Jevrejeva, S.; Jackson, L.P.; Riva, R.E.M.; Grinsted, A.; Moore, J.C. Coastal sea level rise with warming above 2 °C. Proc. Natl. Acad. Sci. USA 2016, 113, 13342–13347. [Google Scholar] [CrossRef] [Green Version]
- Kopp, R.E.; DeConto, R.M.; Bader, D.A.; Hay, C.C.; Horton, R.M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; Strauss, B.H. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earths Future 2017, 5, 1217–1233. [Google Scholar] [CrossRef] [Green Version]
- Sweet, W.V.K.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.; Horton, R.M.; Thieler, E.R.; Zervas, C. Global and Regional Sea Level Rise Scenarios for the United States. National Oceanic and Atmospheric Administration. 2017. Available online: https://ntrs.nasa.gov/search.jsp?R=20180001857 (accessed on 22 May 2019).
- Vafaee, F.; Harati, S.A.N.; Sabbaghian, H. Investigation of Coastal Inundation Due to a Rise in Sea Level (Temporary and Permanent). Pol. J. Environ. Stud. 2012, 21, 209–217. [Google Scholar]
- Jackson, L.P.; Grinsted, A.; Jevrejeva, S. 21st Century Sea-Level Rise in Line with the Paris Accord. Earths Future 2018, 6, 213–229. [Google Scholar] [CrossRef] [Green Version]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding-A Global Assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [Green Version]
- Marfai, M.A.; King, L. Potential vulnerability implications of coastal inundation due to sea level rise for the coastal zone of Semarang city, Indonesia. Environ. Geol. 2008, 54, 1235–1245. [Google Scholar] [CrossRef]
- Heberger, M.; Cooley, H.; Herrera, P.; Gleick, P.H.; Moore, E. The Impacts of Sea-Level Rise on the California Coast. California Climate Change Center Report No.: CEC-500-2009-024-F. 2009. Available online: https://tamug-ir.tdl.org/bitstream/handle/1969.3/29130/sea-level-rise.pdf?sequence=1 (accessed on 22 September 2018).
- Schumann, G.J.P.; Bates, P.D.; Neal, J.C.; Andreadis, K. Fight floods on a global scale. Nature 2014, 507, 169. [Google Scholar] [CrossRef] [PubMed]
- Archer, L.; Neal, J.C.; Bates, P.D.; House, J.I. Comparing TanDEM-X Data With Frequently Used DEMs for Flood Inundation Modeling. Water Resour. Res. 2018, 54, 10205–10222. [Google Scholar] [CrossRef]
- Hawker, L.; Neal, J.; Bates, P. Accuracy assessment of the TanDEM-X 90 Digital Elevation Model for selected floodplain sites. Remote Sens. Environ. 2019, 232, 111319. [Google Scholar] [CrossRef]
- Rabah, M.; El-Hattab, A.; Abdallah, M. Assessment of the most recent satellite based digital elevation models of Egypt. NRIAG J Astron. Geophys. 2017, 6, 326–335. [Google Scholar] [CrossRef]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- DLR. TanDEM-X Ground Segment, Announcement of Opportunity: TanDEM-X Science Phase. German Aerospace Center, Microwaves and Radar Institute TD-PD-PL-0032. 2014. Available online: https://tandemx-science.dlr.de/pdfs/TD-PD-PL_0032TanDEM-X_Science_Phase.pdf (accessed on 8 August 2020).
- GeoService. The TanDEM-X 90m Digital Elevation Model. 2020. Available online: https://geoservice.dlr.de/web/dataguide/tdm90/ (accessed on 8 August 2020).
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Horritt, M.; Bates, P. Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 2002, 268, 87–99. [Google Scholar] [CrossRef]
- Da Silva, A.O. Dimensão Ecológica e Sócio económica das Zonas Húmidas da Guine Bissau. Rev. Soronda. 2002, 3, 51–56. [Google Scholar]
- República da Guiné-Bissau. Programa de Acção Nacional de Adaptação às Mudanças Climáticas. 2006; (Report with private access). [Google Scholar]
- UEMOA, IUCN. Etude Régionale Pour le Suivi du Trait de côte et L’élaboration D’un Schéma Directeur du Littoral de l’afrique de l’Ouest: Plan Regional de Prevention des Risques Cotiers en Afrique de L’ouest. Union Economique et Monétaire Ouest Africaine/Union Internationale Pour la Conservation de la Nature Report No.: 2. 2010. Available online: https://www.iucn.org/sites/dev/files/import/downloads/prediagnostic_regional_uemoa_uicn.pdf (accessed on 8 August 2020).
- De Sherbinin, A.; Chai-Onn, T.; Jaiteh, M.; Pistolesi, L.; Schnarr, E.; Mara, V. Mapping the Exposure of Socioeconomic and Natural Systems of West Africa to Coastal Climate Stressors; U.S. Agency for International Development (USAID): Burlington, VT, USA, 2014.
- Fandé, M.B.; Ponte Lira, C.; Antunes, C.; Penha-Lopes, G. Quantificação e cartografia da extensão de inundação costeira em Bissau, Guiné-Bissau: Perspetiva em cenário de alterações climáticas. Comun. Geológicas 2020, 107, 109–113. [Google Scholar]
- MADR. Atlas da Vulnerabilidade da Guiné-Bissau: Resultados dos Ateliers da Vulnerabilidade Estrutural Realizados em Todos os Sectores da Guiné-Bissau–2008; Ministério da Agricultura e do Desenvolvimento Rural: Maputo City, Mozambique, 2008. [Google Scholar]
- NOAA. Technical Considerations for Use of Geospatial Data in Sea Level Change Mapping and Assessment. National Oceanic and Atmospheric Administration. 2010. Available online: https://www.ngs.noaa.gov/PUBS_LIB/Technical_Use_of_Geospatial_Data_2010_TM_NOS_01.pdf (accessed on 19 June 2017).
- Murdukhayeva, A.; August, P.; Bradley, M.; LaBash, C.; Shaw, N. Assessment of Inundation Risk from Sea Level Rise and Storm Surge in Northeastern Coastal National Parks. J. Coast. Res. 2013, 291, 1–16. [Google Scholar] [CrossRef]
- Schmid, K.; Hadley, B.; Waters, K. Mapping and Portraying Inundation Uncertainty of Bathtub-Type Models. J. Coast. Res. 2014, 30, 548–561. [Google Scholar] [CrossRef]
- RGB. Second National Communication on Climate Changes in Guiea-Issau; Final Report; Secretary of State for Environment and Sustainable Development: Bissau, Guinea Bissau, 2011. [Google Scholar]
- CILSS. Landscapes of West Africa-A Window on a Changing World. Ouagadougou, Burkina Faso: Comité Permanent Inter-états de Lutte contre la Sécheresse dans le Sahel. 2016. Available online: https://eros.usgs.gov/westafrica (accessed on 12 November 2019).
- INM-GB. Perfil Climático-Guiné-Bissau (1981–2010); Instituto Nacional de Meteorologia da Guiné-Bissau: Bissau, Guinea Bissau, 2016. [Google Scholar]
- INEC. Recenseamento Geral da População e Habitação; Instituto Nacional de Estatística e Censos: Bissau, Guinea Bissau, 2009. [Google Scholar]
- Serafin, K.A.; Ruggiero, P. Simulating extreme total water levels using a time-dependent, extreme value approach. J. Geophys. Res. Oceans 2014, 119, 6305–6329. [Google Scholar] [CrossRef] [Green Version]
- Instituto Hidrográfico. Informação Suplementar sobre Marés. In Tabela das Marés; Instituto Hidrográfico: Lisboa, Portugal, 2015; Volume 2, Available online: http://horus.hidrografico.pt/content/produtos/tabelasmare/Tabelas_Mare_Vol2_Capitulo3_Suplementar_2016.pdf (accessed on 11 December 2019).
- McInnes, K.L.; Macadam, I.; Hubbert, G.; O’Grady, J. An assessment of current and future vulnerability to coastal inundation due to sea-level extremes in Victoria, southeast Australia. Int. J. Climatol. 2013, 33, 33–47. [Google Scholar] [CrossRef]
- Kang, L.; Ma, L.; Liu, Y. Evaluation of farmland losses from sea level rise and storm surges in the Pearl River Delta region under global climate change. J. Geogr. Sci. 2016, 26, 439–456. [Google Scholar] [CrossRef] [Green Version]
- GDACS. Storm surge for tropical cyclone FRED15. Green alert for storm surge impact in Guinea Bissau. Glob Desaster Alert Coord Syst. 2016. Available online: http://www.gdacs.org/Cyclones/Stormsurge.aspx?eventtype=TC&eventid=1000205&episodeid=3 (accessed on 20 February 2016).
- Gornitz, V. Global coastal hazards from future sea level rise. Glob. Planet. Change 1991, 3, 379–398. [Google Scholar] [CrossRef]
- Bell, R.G.; Hume, T.M.; Hicks, D.M. Planning for Climate Change Effects on Coastal Margins: A Report Prepared for the Ministry for the Environment as Part of the New Zealand Climate Change Programme; Ministry for the Environment: Wellington, New Zealand, 2001. [Google Scholar]
- Goussard, J.-J.; Ducrocq, M. West African Coastal Area: Challenges and Outlook. In The Land/Ocean Interactions in the Coastal Zone of West and Central Africa; Diop, S., Barusseau, J.-P., Descamps, C., Eds.; Springer: Cham, Switzerland, 2014; pp. 9–21. [Google Scholar] [CrossRef]
- Fuss, S.; Canadell, J.G.; Peters, G.P.; Tavoni, M.; Andrew, R.M.; Ciais, P.; Jackson, R.B.; Jones, C.D.; Kraxner, F.; Nakicenovic, N.; et al. Betting on negative emissions. Nat. Clim. Change 2014, 4, 850–853. [Google Scholar] [CrossRef]
- BP. BP Statistical Review of World Energy 2018. 2018. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf (accessed on 7 June 2019).
- IEA. Global Energy and CO2 Status Report 2018: The latest Trends in Energy and Emissions in 2018. France: International Energy Agency. 2019. Available online: https://webstore.iea.org/download/direct/2461?fileName=Global_Energy_and_CO2_Status_Report_2018.pdf (accessed on 6 June 2019).
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B.; et al. Global Carbon Budget 2017. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef] [Green Version]
- Mercer, J.H. West Antarctic ice sheet and CO2 greenhouse effect: A threat of disaster. Nature 1978, 271, 321. [Google Scholar] [CrossRef]
- Oppenheimer, M. Global warming and the stability of the West Antarctic Ice Sheet. Nature 1998, 393, 325–332. [Google Scholar] [CrossRef]
- Hansen, J.E. Scientific reticence and sea level rise. Environ. Res. Lett. 2007, 2, 024002. [Google Scholar] [CrossRef]
- Vaughan, D.G. West Antarctic Ice Sheet collapse–the fall and rise of a paradigm. Clim. Change 2008, 91, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Hanson, S.E.; Lowe, J.A.; Warrick, R.A.; Lu, X.; Long, A.J. Sea-level scenarios for evaluating coastal impacts: Sea-level scenarios for evaluating coastal impacts. Wiley Interdiscip. Rev. Clim. Change 2014, 5, 129–150. [Google Scholar] [CrossRef]
- Poumadère, M.; Mays, C.; Pfeifle, G.; Vafeidis, A.T. Worst case scenario as stakeholder decision support: A 5- to 6-m sea level rise in the Rhone delta, France. Clim. Change 2008, 91, 123–143. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Lemckert, C. Extreme sea-level rise and adaptation options for coastal resort cities: A qualitative assessment from the Gold Coast, Australia. Ocean Coast. Manag. 2012, 64, 1–14. [Google Scholar] [CrossRef]
- Boateng, I. An assessment of the physical impacts of sea-level rise and coastal adaptation: A case study of the eastern coast of Ghana. Clim Change 2012, 114, 273–293. [Google Scholar] [CrossRef]
- Dawson, R.J.; Hall, J.W.; Bates, P.D.; Nicholls, R.J. Quantified Analysis of the Probability of Flooding in the Thames Estuary under Imaginable Worst-case Sea Level Rise Scenarios. Int. J. Water Resour. Dev. 2005, 21, 577–591. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Tol, R.S.J.; Vafeidis, A.T. Global estimates of the impact of a collapse of the West Antarctic ice sheet: An ap-plication of FUND. Clim. Change 2008, 91, 171–191. [Google Scholar] [CrossRef]
- Wessel, B. TanDEM-X Ground Segment–DEM Products Specification Document. Oberpfaffenhofen, Germany: EOC, DLR Public Document TD-GS-PS-0021. 2018. Available online: https://tandemx-science.dlr.de/ (accessed on 2 December 2019).
- EGM. Raster grid of Geoid Undulations (Geoid Heights) from Earth Gravitational Model 2008. 2008. Available online: http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html (accessed on 8 October 2019).
- Khojasteh, D.; Hottinger, S.; Felder, S.; De Cesare, G.; Heimhuber, V.; Hanslow, D.J.; Glamore, W. Estuarine tidal response to sea level rise: The significance of entrance restriction. Estuar. Coast. Shelf. Sci. 2020, 244, 106941. [Google Scholar] [CrossRef]
- Buchhorn, M.; Smets, B.; Bertels, L.; De Roo, B.; Lesiv Tsendbazar, N.-E.; Herold, M.; Fritz, S. Zenodo. Copernicus Global Land Service: Land Cover 100m: Collection 3: Epoch 2019: Globe (V3.0.1) Dataset. 2020. Available online: https://doi.org/10.5281/zenodo.3939050 (accessed on 5 March 2022).
- Muis, S.; Verlaan, M.; Winsemius, H.C.; Aerts JC, J.H.; Ward, P.J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 2016, 7, 11969. [Google Scholar] [CrossRef] [Green Version]
- Paprotny, D.; Morales-Nápoles, O.; Vousdoukas, M.I.; Jonkman, S.N.; Nikulin, G. Accuracy of pan-European coastal flood mapping. J. Flood Risk Manag. 2019, 12, e12459. [Google Scholar] [CrossRef]
- Vaan de Sante, B.; Lansen, J.; Claartje, H. Sensitivity of coastal flood risk assessments to digital elevationmodels. Water 2012, 4, 568–579. [Google Scholar] [CrossRef]
- Yunus, A.P.; Avtar, R.; Kraines, S.; Yamamuro, M.; Lindberg, F.; Grimmond, C.S.B. Uncertainties in Tidally Adjusted Estimates of Sea Level Rise Flooding (Bathtub Model) for the Greater London. Remote Sens. 2016, 8, 366. [Google Scholar] [CrossRef] [Green Version]
- NOAA–Coastal Flood Exposure Mapper. Available online: https://coast.noaa.gov/digitalcoast/tools/flood-exposure.html (accessed on 5 March 2022).
- Avtar, R.; Yunus, A.P.; Kraines, S.; Yamamuro, M. Evaluation of DEM generation based on interferometricSAR using TanDEM-X data in Tokyo.Phys. Chem. Earth Parts A/B/C 2015, 83–84, 166–177. [Google Scholar] [CrossRef]
- Hayakawa, Y.S.; Oguchi, T.; Lin, Z. Comparison of new and existing global digital elevation models: ASTERG-DEM and SRTM-3. Geophys. Res. Lett. 2008, 35, L17404. [Google Scholar] [CrossRef]
- Wang, W.; Yang, X.; Yao, T. Evaluation of ASTER GDEM and SRTM and their suitability in hydraulicmodelling of a glacial lake outburst flood in Southeast Tibet. Hydrol. Process. 2012, 26, 213–225. [Google Scholar] [CrossRef]
- Acioly, C.C., Jr. Planejamento Urbano, Habitação e Autoconstrução: Experiências com Urbanização de Bairros na Guiné-Bissau; Publikatieburo Faculteit Bouwkunde: Delft, The New Netherlands, 1993. [Google Scholar]
- Nango, B. Águas Salgadas Estragam Bolanhas das Tabancas de Elalab e Djobél. 2015. Available online: http://www.odemocratagb.com/?p=6313 (accessed on 27 September 2018).
- Pittock, A.B. Clmate Change. In the Science, Impacts and Solutions, 2nd ed.; CSIRO PBLISHING: Collingwood, Australia, 2009. [Google Scholar]
Characteristics | Study Area | ||
---|---|---|---|
Bissau | Bubaque | Suzana | |
Total area (excluding water bodies) (km2) | 94.90 | 63.03 | 319.67 |
Area below 5 m above MSL (%) | 28.85 | 24.08 | 32.82 |
Area below 10 m above MSL (%) | 41.23 | 40.90 | 65.23 |
Maximum elevation (m) above MSL | 58.00 | 50.05 | 45.00 |
Coastline (km) | 13.07 | 44.78 | 51.30 |
Average annual rainfall (mm) * | 1250–1750 | 1750–2000 | 1250–1500 |
Population ** | 365,097 | 6427 | 6701 |
Main economic activities | Services, trade | Agriculture, fishing, trade, tourism, craft | Agriculture, fishing |
Land occupation | Urban | Urban/rural | Rural |
Coast type | River Geba Estuary, sandy/slimy floodplain, swamps, mangrove, ports | Island, sandy beaches, cliffs of yellow-reddish sand, mangrove | Mostly open to the Atlantic Ocean and without mangrove, small rivers with mangrove, dunes and sandy beaches, cliffs of reddish-yellow sand, barrier islands |
Bissau | Bubaque | Caió | Djogue | Suzana | |
---|---|---|---|---|---|
MaxT (m—HZ) | 5.84 | 4.93 | 3.64 | 1.9 | - |
HZ (m) | 2.89 | 2.54 | 1.9 | 1.02 | - |
AT (m—MSL) | 2.95 | 2.39 | 2.74 | 0.88 | 1.81 |
SLR Scenarios (Year) | TWL (m) | ||
---|---|---|---|
Bissau | Bubaque | Suzana | |
2041 | 3.59 | 3.03 | 2.45 |
2083 | 4.47 | 3.91 | 3.33 |
2100 | 5.20 | 4.64 | 4.06 |
2100 * | 8.25 | 7.69 | 7.11 |
Year | Bissau km2 (%) | Bubaque km2 (%) | Suzana km2 (%) |
---|---|---|---|
2041 | 12 (13) | 7 (11) | 107 (28) |
2083 | 25 (27) | 10 (17) | 163 (42) |
2100 | 27 (29) | 13 (21) | 200 (52) |
2100 * | 34 (37) | 20 (34) | 256 (67) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fandé, M.B.; Ponte Lira, C.; Penha-Lopes, G. Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau. ISPRS Int. J. Geo-Inf. 2022, 11, 225. https://doi.org/10.3390/ijgi11040225
Fandé MB, Ponte Lira C, Penha-Lopes G. Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau. ISPRS International Journal of Geo-Information. 2022; 11(4):225. https://doi.org/10.3390/ijgi11040225
Chicago/Turabian StyleFandé, Morto Baiém, Cristina Ponte Lira, and Gil Penha-Lopes. 2022. "Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau" ISPRS International Journal of Geo-Information 11, no. 4: 225. https://doi.org/10.3390/ijgi11040225
APA StyleFandé, M. B., Ponte Lira, C., & Penha-Lopes, G. (2022). Using TanDEM-X Global DEM to Map Coastal Flooding Exposure under Sea-Level Rise: Application to Guinea-Bissau. ISPRS International Journal of Geo-Information, 11(4), 225. https://doi.org/10.3390/ijgi11040225