A Tourist Behavior Analysis Framework Guided by Geo-Information Tupu Theory and Its Application in Dengfeng City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study and Data Source
2.2. Methods
2.2.1. Establishment of Spatiotemporal Database Based on Digital Footprint Data
2.2.2. Spatial Pattern Analysis of Tourist Flow
2.2.3. Tourism Decision-making Based on Diagnosis Tupu
3. Results
3.1. Establishment of Spatiotemporal Database
3.2. Tourist Flow Analysis
3.2.1. Spatial Patterns of Tourist Flow
- (1)
- Spatial agglomeration pattern analysis of tourist flow: gravity center model
- (2)
- Spatial diffusion pattern analysis of tourist flow: three-dimensional density analysis
3.2.2. Network Structures of Tourist Flow
- (1)
- Single node structure analysis: structural holes and centrality indicators
- (2)
- Overall network structure analysis: core–periphery indicator
3.3. Tourism Decision Making
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Zhang, J.; Li, N.; Liang, Y.; Liu, Z. An analysis on spatial field effect of domestic tourist flows in China. Geogr. Res. 2005, 24, 293–303. [Google Scholar]
- Li, Q.; Chen, Y.; Luan, X. Tourism Flow Network Structures of Different Types of tourists Using Online Travel Notes: A Case study of Yunnan Province. Geomat. Inf. Sci. Wuhan Univ 2022, 1–14. Available online: https://kns.cnki.net/kcms/detail/42.1676.TN.20210915.1006.005.html (accessed on 19 January 2022).
- McGrath, J.M.; Primm, D.; Lafe, W. Heritage tourism’s economic contribution: A Pennsylvania case study. Tour. Econ. 2017, 23, 1131–1137. [Google Scholar] [CrossRef]
- Dezsi, S.; Rusu, R.; Ilies, M.; Ilies, G.; Badarau, A.S.; Rosian, G. The Role of Rural Tourism in The Social and Economic Revitalisation of Lapus Land (Maramures County, Romania). In Proceedings of the 14th International Multidisciplinary Scientific Geoconference (SGEM), Albena, Bulgaria, 17–26 June 2014; pp. 783–790. [Google Scholar]
- McKercher, B.; Wong, C.; Lau, G.K.K. How tourists consume a destination. J. Bus. Res. 2006, 59, 647–652. [Google Scholar] [CrossRef]
- Smallwood, C.B.; Beckley, L.E.; Moore, S.A. An analysis of visitor movement patterns using travel networks in a large marine park, north-western Australia. Tour. Manag. 2012, 33, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Myshlyavtseva, S.E. Analysis of Tourist Flows in Southern Europe (Using the Example of Spain). Geogr. Vestn. 2015, 3, 111–114. [Google Scholar] [CrossRef]
- Chen, C.; Liu, J.; Mao, H.; Wang, R.; Zhou, B.; Chen, N. Spatial network structure of inter-provincial farmer tourist flows in China. Acta Geogr. Sin. 2013, 68, 547–558. [Google Scholar]
- Liu, F.; Zhang, J.; Chen, D. The Characteristics and Dynamical Factors of Chinese Inbound Tourist Flow Network. Acta Geogr. Sin. 2010, 65, 1013–1024. [Google Scholar]
- Mou, N.X.; Yuan, R.Z.; Yang, T.F.; Zhang, H.C.; Tang, J.W.; Makkonen, T. Exploring spatio-temporal changes of city inbound tourism flow: The case of Shanghai, China. Tour. Manag. 2020, 76, 103955. [Google Scholar] [CrossRef]
- Hyo-Yeun, P.; Sooyeop, S. A Study on Domestic Individual Tourists’ Behavior and Patterns in Online Tourism Information Usage: Focusing on the Difference of Travel Stages. J. Tour. Leis. Res. 2019, 31, 5–22. [Google Scholar]
- Leung, X.Y.; Wang, F.; Wu, B.H.; Bai, B.; Stahura, K.A.; Xie, Z.H. A Social Network Analysis of Overseas Tourist Movement Patterns in Beijing: The Impact of the Olympic Games. Int. J. Tour. Res. 2012, 14, 469–484. [Google Scholar] [CrossRef]
- Choi, S.; Lehto, X.Y.; Morrison, A.M. Destination image representation on the web: Content analysis of Macau travel related websites. Tour. Manag. 2007, 28, 118–129. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Hu, X.; Huang, Z.; Lyu, L. Characteristics of Tourists Flow in Scenic Spots Based on Weibo Check-in Big Data: A Case Study of Zhongshan Scenic Spot in Nanjing City. Econ. Geogr. 2018, 38, 206–214. [Google Scholar]
- Su, X.; Spierings, B.; Hooimeijer, P.; Scheider, S. Where day trippers and tourists go: Comparing the spatio-temporal distribution of Mainland Chinese visitors in Hong Kong using Weibo data. Asia Pac. J. Tour. Res. 2020, 25, 505–523. [Google Scholar] [CrossRef]
- Ye, Z.; Newing, A.; Clarke, G. Understanding Chinese tourist mobility and consumption-related behaviours in London using Sina Weibo check-ins. Environ. Plan. B Urban Anal. CIty Sci. 2021, 48, 2436–2452. [Google Scholar] [CrossRef]
- Kovacs, Z.; Vida, G.; Elekes, A.; Kovalcsik, T. Combining Social Media and Mobile Positioning Data in the Analysis of Tourist Flows: A Case Study from Szeged, Hungary. Sustainability 2021, 13, 2926. [Google Scholar] [CrossRef]
- Sveda, M.; Krizan, F.; Barlik, P. Utilizing mobile positioning data in tourism: Who are the foreign visitors in Slovakia? When do they come and where they stay? Geogr. Cas. Geogr. J. 2019, 71, 203–225. [Google Scholar] [CrossRef]
- Caruso, M.C.; Giuliano, R.; Pompei, F.; Mazzenga, F. Mobility management for Smart Sightseeing. In Proceedings of the 2017 International Conference of Electrical and Electronic Technologies for Automotive, Torino, Italy, 15–16 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Gallo, G.; Signorello, G.; Farinella, G.M.; Torrisi, A. Exploiting Social Images to Understand Tourist Behaviour. In Proceedings of the 19th International Conference on Image Analysis and Processing (ICIAP), Catania, Italy, 11–15 September 2017; pp. 707–717. [Google Scholar]
- Scholz, J.; Jeznik, J. Evaluating Geo-Tagged Twitter Data to Analyze Tourist Flows in Styria, Austria. ISPRS Int. J. Geo-Inf. 2020, 9, 681. [Google Scholar] [CrossRef]
- Domenech, A.; Mohino, I.; Moya-Gomez, B. Using Flickr Geotagged Photos to Estimate Visitor Trajectories in World Heritage Cities. ISPRS Int. J. Geo-Inf. 2020, 9, 646. [Google Scholar] [CrossRef]
- Chen, Q.; Weifeng, L.; Dongyuan, Y.; Bin, R.; Feng, L. Measuring spatial distribution of tourist flows based on cellular signalling data: A case study of Shangha. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 2584–2590. [Google Scholar] [CrossRef]
- Chua, A.; Servillo, L.; Marcheggiani, E.; Moere, A.V. Mapping Cilento: Using geotagged social media data to characterize tourist flows in southern Italy. Tour. Manag. 2016, 57, 295–310. [Google Scholar] [CrossRef]
- Asakura, Y.; Iryo, T. Analysis of tourist behaviour based on the tracking data collected using a mobile communication instrument. Transp. Res. Pt. A Policy Pract. 2007, 41, 684–690. [Google Scholar] [CrossRef]
- Jiang, Y.; Wen, X.; Liu, Y. Evolutionary characteristics of China’s outbound tourism flow in rank-size distribution from 2001 to 2015. Acta Geogr. Sin. 2018, 73, 2468–2480. [Google Scholar]
- Chung, M.G.; Herzberger, A.; Frank, K.A.; Liu, J.G. International Tourism Dynamics in a Globalized World: A Social Network Analysis Approach. J. Travel Res. 2020, 59, 387–403. [Google Scholar] [CrossRef]
- Casanueva, C.; Gallego, A.; Garcia-Sanchez, M.R. Social network analysis in tourism. Curr. Issues Tour. 2016, 19, 1190–1209. [Google Scholar] [CrossRef]
- Shih, H.Y. Network characteristics of drive tourism destinations: An application of network analysis in tourism. Tour. Manag. 2006, 27, 1029–1039. [Google Scholar] [CrossRef]
- Zeng, B.D. Pattern of Chinese tourist flows in Japan: A Social Network Analysis perspective. Tour. Geogr. 2018, 20, 810–832. [Google Scholar] [CrossRef]
- Han, H.; Park, B. A Study on The Tourist Network in Chinese Inbound Tourist by Using Social Network Analysis. J. Hotel Resort 2017, 16, 135–150. [Google Scholar]
- Sauer, M.; Vystoupil, J.; Novotna, M.; Widawski, K. Central European Tourist Flows: Intraregional Patterns and Their Implications. Morav. Geogr. Rep. 2021, 29, 278–291. [Google Scholar] [CrossRef]
- Xue, H.; Ma, Y.; Huang, Y.; Fang, C.; Wu, C. The Spatial-Temporal Evolution of Inbound Tourist Flow Quality Using an ESDA-GIS Framework. Resour. Sci. 2014, 36, 1860–1869. [Google Scholar]
- Rang-qun, Z. Approaches of research on geo—Information TuPu. Sci. Surv. Mapp. 2009, 34, 14–16. [Google Scholar]
- Chen, Y.; Qi, Q.-W.; Yang, G.-S. Basic Theories of Geo-Info-TUPU. Sci. Geogr. Sin. 2006, 26, 306–310. [Google Scholar]
- Zhang, H.; Wang, Q.; Lu, X.; Li, H. On Geographic Framework of Geo-information Tupu Method. Geo-Inf. Sci. 2003, 5, 101–103. [Google Scholar]
- Yang, C. The Idea of Geo-information Tupu and its Practices. J. Geo-Inf. Sci. 2020, 22, 697–704. [Google Scholar]
- Du, G.; Zhang, R.; Liang, C.a.; Hu, M. Remote sensing extraction and spatial pattern analysis of cropping patterns in black soil region of Northeast China at county level. Trans. Chin. Soc. Agric. Eng. 2021, 37, 133–141. [Google Scholar]
- Zhang, H.; Zhou, C.; Lv, G.; Wu, Z.; Lu, F.; Wang, J.; Yue, T.; Luo, J.; Ge, Y.; Qin, C. The Connotation and Inheritance of Geo-information Tupu. J. Geo-Inf. Sci. 2020, 22, 653–661. [Google Scholar]
- Liu, A.; Tu, Q.; Liu, M.; Liu, F. Evolution characteristics and mechanism of tourism commercialization development in a religious heritage site: A case study of Shaolin Temple Scenic Area. Geogr. Res. 2015, 34, 1781–1794. [Google Scholar]
- Mou, N.; Zheng, Y.; Makkonen, T.; Yang, T.; Tang, J.; Song, Y. Tourists’ digital footprint: The spatial patterns of tourist flows in Qingdao, China. Tour. Manag. 2020, 81, 104151. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X. The Cognition and Practice of Geo-information Science. Geo-Inf. Sci. 2004, 6, 4–10. [Google Scholar]
- Chen, H.; Lu, L.; Zheng, S. The Spatial Network Structure of the Tourism Destinations in Urban Agglomerations Based on Tourist Flow:A Case Study of the Pearl River Delta. Acta Geogr. Sin. 2011, 66, 257–266. [Google Scholar]
- Shao, Y.H.; Huang, S.S.; Wang, Y.Y.; Li, Z.Y.; Luo, M.Z. Evolution of international tourist flows from 1995 to 2018: A network analysis perspective. Tour. Manag. Perspect. 2020, 36, 100752. [Google Scholar] [CrossRef]
- Zhao, J.Y. Study on Structure of Inbound Tourism Network of Key Tourist cities in Henan Province. In Proceedings of the 7th International Conference on Education, Management, Information and Mechanical Engineering (EMIM), Shenyang, China, 28–30 April 2017; pp. 673–680. [Google Scholar]
- Borgatti, S.P.; Everett, M.G. Models of core/periphery structures. Soc. Netw. 1999, 21, 375–395. [Google Scholar] [CrossRef]
- Chen, W.; Cai, J.; Fan, Z. Study on Temporal-spatial Behavior of Domestic Tourists in Mount Wuyi Based on Tourism Digital Footprints. Tour. Forum 2020, 13, 47–59. [Google Scholar]
- Zhang, G.M.; Zhu, A.X. The representativeness and spatial bias of volunteered geographic information: A review. Ann. GIS 2018, 24, 151–162. [Google Scholar] [CrossRef]
- Feihua, Y.; Zhu, A.X.; Ichii, K.; White, M.A.; Hashimoto, H.; Nemani, R.R. Assessing the representativeness of the AmeriFlux network using MODIS and GOES data. J. Geophys. Res. Biogeosci. 2008, 113, G04036. [Google Scholar] [CrossRef]
- Li, C. Analysis of the Current Situation and Countermeasures of Tourism Development in Dengfeng City. Tour. Overv. 2016, 8, 100–101. [Google Scholar]
- Pulido-Fernandez, J.I.; Casado-Montilla, J.; Carrillo-Hidalgo, I. Introducing olive-oil tourism as a special interest tourism. Heliyon 2019, 5, e02975. [Google Scholar] [CrossRef] [Green Version]
- LaMondia, J.; Snell, T.; Bhat, C.R. Traveler Behavior and Values Analysis in the Context of Vacation Destination and Travel Mode Choices European Union Case Study. Transp. Res. Record 2010, 2156, 140–149. [Google Scholar] [CrossRef] [Green Version]
Field | Explanation | Type | Example |
---|---|---|---|
ID | Tourists’ nicknames on travel websites | Varchar (100) | Intoxicated Evening Breeze (Qidong) |
DATE | Time of the tour | Varchar (4) | 2018 |
NODE | Attractions visited | Varchar (100) | San Dengfeng Village; Pagoda Forest; Shaolin Temple |
Field | Explanation | Type | Example |
---|---|---|---|
NAME | Attraction name | Varchar (100) | Shaolin Temple |
LON | Longitude of the attraction | Decimal (18.8) | 112.93523381 |
LAT | Latitude of the attraction | Decimal (18.8) | 34.5082926 |
Field | Explanation | Type | Example |
---|---|---|---|
NAME | Attraction name | Varchar (100) | Shaolin Temple |
2015 | The number of tourists who visited the attraction in 2015 | Int (4) | 63 |
2016 | The number of tourists who visited the attraction in 2016 | Int (4) | 88 |
2017 | The number of tourists who visited the attraction in 2017 | Int (4) | 91 |
2018 | The number of tourists who visited the attraction in 2018 | Int (4) | 98 |
ID | DATE | NODE |
---|---|---|
Intoxicated evening breeze (Qidong) | 2018 | San Dengfeng Village, Pagoda Forest, Shaolin Temple |
Listen to the spring breeze (Zhejiang) | 2018 | San Dengfeng Village, Pagoda Forest, Shaolin Temple; Songyang Academy, Junji Peak, Fawang Temple, Songyang Academy |
Tian Xingjian (Zhengzhou) | 2018 | Fawang Temple, Junji Peak |
Mafengwo.com | Qunar.com | Ctrip.com | |
---|---|---|---|
Mafengwo.com | - | 0.939 ** | 0.927 ** |
Qunar.com | 0.939 ** | - | 0.973 ** |
Ctrip.com | 0.927 ** | 0.973 ** | - |
Year | True Number of Tourists (Thousand) | Number of Online Travel Diaries | Number of Valid Online Travel Diaries |
---|---|---|---|
2015 | 11,040 | 177 | 62 |
2016 | 12,000 | 248 | 98 |
2017 | 13,530 | 299 | 111 |
2018 | 15,307 | 321 | 133 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Liu, Y.; Wang, Y.; Wu, L. A Tourist Behavior Analysis Framework Guided by Geo-Information Tupu Theory and Its Application in Dengfeng City, China. ISPRS Int. J. Geo-Inf. 2022, 11, 250. https://doi.org/10.3390/ijgi11040250
Tian Z, Liu Y, Wang Y, Wu L. A Tourist Behavior Analysis Framework Guided by Geo-Information Tupu Theory and Its Application in Dengfeng City, China. ISPRS International Journal of Geo-Information. 2022; 11(4):250. https://doi.org/10.3390/ijgi11040250
Chicago/Turabian StyleTian, Zhihui, Yi Liu, Yongji Wang, and Lili Wu. 2022. "A Tourist Behavior Analysis Framework Guided by Geo-Information Tupu Theory and Its Application in Dengfeng City, China" ISPRS International Journal of Geo-Information 11, no. 4: 250. https://doi.org/10.3390/ijgi11040250
APA StyleTian, Z., Liu, Y., Wang, Y., & Wu, L. (2022). A Tourist Behavior Analysis Framework Guided by Geo-Information Tupu Theory and Its Application in Dengfeng City, China. ISPRS International Journal of Geo-Information, 11(4), 250. https://doi.org/10.3390/ijgi11040250