Vulnerability Analysis of Geographical Railway Network under Geological Hazard in China
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Materials
3.1.1. Railway Network
3.1.2. Influence Factors of Geological Hazards
3.1.3. Geological Hazards along the Railway
3.2. Geographical Railway Network Modeling
3.3. Vulnerability Evaluation of Geographical Railway Network under Geological Hazards
3.3.1. Susceptibility Evaluation of Geological Hazards
- 1.
- Susceptibility evaluation of earthquakes
- 2.
- Susceptibility evaluation of collapses, landslides and debris flows
- 3.
- Susceptibility evaluation of integrated geological hazards
3.3.2. Vulnerability Evaluation of Geographical Railway Network
4. Results and Analysis
4.1. Spatial Distribution Analysis of Geographical Railway Network
4.2. Time–Space Analysis of Geological Hazards along the Railway
4.3. Susceptibility Analysis of Geological Hazards
4.4. Vulnerability Analysis of Geographical Railway Network
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ouyang, M.; Zhao, L.J.; Hong, L.; Pan, Z.Z. Comparisons of complex network-based models and real train flow model to analyze Chinese railway vulnerability. Reliab. Eng. Syst. Saf. 2014, 123, 38–46. [Google Scholar] [CrossRef]
- Hong, L.; Ouyang, M.; Peeta, S.; He, X.Z.; Yan, Y.Z. Vulnerability assessment and mitigation for the Chinese railway system under floods. Reliab. Eng. Syst. Saf. 2015, 137, 58–68. [Google Scholar] [CrossRef]
- Farooq, A.; Xie, M.; Stoilova, S.; Firoz Ahmad, F. Multicriteria evaluation of transport plan for high-speed rail: An application to Beijing-Xiongan. Math. Probl. Eng. 2019, 2019, 8319432. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.H.; Hu, F.N.; Wang, S.L.; Dai, Y.; Wang, Y.X. Structural vulnerability and intervention of high-speed railway networks. Phys. A Stat. Mech. Appl. 2016, 462, 743–751. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Xia, C.Y. Improved centrality indicators to characterize the nodal spreading capability in complex networks. Appl. Math. Comput. 2018, 334, 388–400. [Google Scholar] [CrossRef]
- Farooq, A.; Xie, M.; Stoilova, S.; Ahmad, F.; Guo, M.; Williams, E.J.; Gahlot, V.K.; Yan, D.; Issa, A.M. Transportation planning through GIS and multicriteria analysis: Case study of Beijing and XiongAn. J. Adv. Transp. 2018, 2018, 2696037. [Google Scholar] [CrossRef]
- Ministry of Transport. Statistical Bulletin on the Development of the Transport Industry. 2020. Available online: https://zjhy.mot.gov.cn/zzhxxgk/jigou/zhghc/202105/t20210520_3595561.html (accessed on 25 September 2021).
- National Railway Administration. Notice on the Issuance of the “Medium- and Long-Term Railway Network Planning”. 2016. Available online: http://www.nra.gov.cn/xxgkml/xxgk/xxgkml/201908/t20190830_87801.shtml (accessed on 10 April 2019).
- Wu, W.J.; Liang, Y.T.; Di, W. Evaluating the Impact of China’s Rail Network Expansions on Local Accessibility: A Market Potential Approach. Sustainability 2016, 8, 512. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Khan, S.A. Specification and verification of safety properties along a crossing region in a railway network control. Appl. Math. Model. 2013, 37, 5162–5170. [Google Scholar] [CrossRef]
- Yin, L.Z.; Wang, Y.F. Network Characteristics and Vulnerability Analysis of Chinese Railway Network under Earthquake Disasters. ISPRS Int. J. Geo-Inf. 2020, 9, 697. [Google Scholar] [CrossRef]
- Szymula, C.; Bešinović, N. Passenger-centered vulnerability assessment of railway networks. Transp. Res. Part B Methodol. 2020, 136, 30–61. [Google Scholar] [CrossRef]
- Chen, X.Z.; Lu, Q.C.; Peng, Z.R.; Ash, J.E. Analysis of transportation network vulnerability under flooding disasters. Transp. Res. Rec. 2015, 2532, 37–44. [Google Scholar] [CrossRef]
- Li, W.; Zhu, J.; Fu, L.; Zhu, Q.; Xie, Y.; Hu, Y. An augmented representation method of debris flow scenes to improve public perception. Int. J. Geogr. Inf. Sci. 2021, 35, 1521–1544. [Google Scholar] [CrossRef]
- Eleutério, J.; Hattemer, C.; Rozan, A. A systemic method for evaluating the potential impacts of floods on network infrastructures. Nat. Hazards Earth Syst. Sci. 2013, 13, 983–998. [Google Scholar] [CrossRef]
- Koseki, J.; Koda, M.; Matsuo, S.; Takasaki, H.; Fujiwara, T. Damage to railway earth structures and foundations caused by the 2011 off the Pacific Coast of Tohoku Earthquake. Soils Found. 2012, 52, 872–889. [Google Scholar] [CrossRef] [Green Version]
- Kellermann, P.; Schöbel, A.; Kundela, G.; Thieken, A.H. Estimating flood damage to railway infrastructure–the case study of the March River flood in 2006 at the Austrian Northern Railway. Nat. Hazards Earth Syst. Sci. 2015, 15, 2485–2496. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.W.; Xia, S.; Xu, C. Damage and Emergency Recovery of the Transportation Systems after Wenchuan Earthquake. Technol. Earthq. Disaster Prev. 2008, 3, 243–250. [Google Scholar]
- Zheng, Q.; Shen, S.L.; Zhou, A.N.; Cai, H. Investigation of Landslides that Occurred in August on the Chengdu–Kunming Railway, Sichuan, China. Geosciences 2019, 9, 497. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.W.; Li, Y.; Han, Z.; Li, M. Brief Analysis on the Establishment of Major Linear Engineering Geological Safety Monitoring and Early Warning System from the Derailment Accident of Train T179. Urban Geol. 2020, 15, 137–140. [Google Scholar]
- Margat, J. Vulnerability of Groundwater to Pollution; BRGM: Orléans, France, 1968; pp. 6–7.
- Timmerman, P. Vulnerability, Resilience and the Collapse of Society: A Review of Models and Possible Climatic Application; Institute for Environmental Studies: Toronto, ON, Canada, 1981; pp. 7–9. [Google Scholar]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob. Environ. Chang. 2005, 15, 151–163. [Google Scholar] [CrossRef]
- Birkmann, J.; Cardona, O.D.; Carreño, M.L.; Barbat, A.H.; Pelling, M.; Schneiderbauer, S.; Kienberger, S.; Keiler, M.; Alexander, D.; Zeil, P.; et al. Framing vulnerability, risk and societal responses: The MOVE framework. Nat. Hazards 2013, 67, 193–211. [Google Scholar] [CrossRef]
- Bell, M.G.H.; Kanturska, U.; Schmöcker, J.D.; Fonzone, A. Attacker–defender models and road network vulnerability. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 1893–1906. [Google Scholar] [CrossRef]
- Berdica, K. An introduction to road vulnerability: What has been done, is done and should be done. Transp. Policy 2002, 9, 117–127. [Google Scholar] [CrossRef]
- Hu, X.H.; Liu, Y. Traffic Vulnerability Analysis of the Road with Reserved Public Transportation Lane. J. Transp. Eng. Inf. 2006, 4, 128–133. [Google Scholar]
- Erath, A.; Birdsall, J.; Axhausen, K.W.; Rade, H. Vulnerability assessment of the Swiss road network. In Proceedings of the 88th Transportation Research Board Annual Meeting, Washington, DC, USA, 11–15 January 2009; pp. 1–17. [Google Scholar]
- Mattsson, L.G.; Jenelius, E. Vulnerability and resilience of transport systems–A discussion of recent research. Transp. Res. Part A Policy Pract. 2015, 81, 16–34. [Google Scholar] [CrossRef]
- Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 378–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S. Breakdown of the internet under intentional attack. Phys. Rev. Lett. 2001, 86, 3682–3685. [Google Scholar] [CrossRef] [Green Version]
- Berche, B.; von Ferber, C.J.; Holovatch, T.; Holovatch, Y. Resilience of public transport networks against attacks. Eur. Phys. J. B 2009, 71, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Gao, Z.; Sun, H. Complexity and efficiency of Beijing transit network. Int. J. Mod. Phys. B 2006, 20, 2129–2136. [Google Scholar] [CrossRef]
- Kermanshah, A.; Derrible, S. A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes. Reliab. Eng. Syst. Saf. 2016, 153, 39–49. [Google Scholar] [CrossRef]
- Candelieri, A.; Galuzzi, B.G.; Giordani, I.; Archetti, F. Vulnerability of public transportation networks against directed attacks and cascading failures. Public Transp. 2019, 11, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Pant, R.; Hall, J.W.; Blainey, S.P. Vulnerability assessment framework for interdependent critical infrastructures: Case-study for Great Britain’s rail network. Eur. J. Transp. Infrastruct. Res. 2016, 16, 174–194. [Google Scholar]
- Meesit, R.; Andrews, J. Vulnerability assessment modelling for railway networks. In Proceedings of the 10th IMA International Conference on Modelling in Industrial Maintenance and Reliability, Manchester, UK, 13–15 June 2018. [Google Scholar] [CrossRef] [Green Version]
- Khademi, N.; Balaei, B.; Shahri, M.; Mirzaei, M.; Sarrafi, B.; Zahabiun, M.; Mohaymany, A.S. Transportation network vulnerability analysis for the case of a catastrophic earthquake. Int. J. Disaster Risk Reduct. 2015, 12, 234–254. [Google Scholar] [CrossRef]
- Binti Sa’adin, S.L.; Kaewunruen, S.; Jaroszweski, D. Heavy rainfall and flood vulnerability of Singapore-Malaysia high speed rail system. Aust. J. Civ. Eng. 2016, 14, 123–131. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, K.; Wang, M. Exposure analysis of Chinese railways to multihazards based on datasets from 2000 to 2016. Geomat. Nat. Hazards Risk 2020, 11, 272–287. [Google Scholar] [CrossRef] [Green Version]
- Calzada-Infante, L.; Adenso-Díaz, B.; Carbajal, S.G. Analysis of the European international railway network and passenger transfers. Chaos Solitons Fractals 2020, 141, 110357. [Google Scholar] [CrossRef]
- Cats, O.; Koppenol, G.J.; Warnier, M. Robustness assessment of link capacity reduction for complex networks: Application for public transport systems. Reliab. Eng. Syst. Saf. 2017, 167, 544–553. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Zhang, Z.; Du, J.; Zhang, L.; Song, Y.; Sun, G. Multi-geohazards susceptibility mapping based on machine learning—A case study in Jiuzhaigou, China. Nat. Hazards 2020, 102, 851–871. [Google Scholar] [CrossRef]
- Wang, J.J.; Li, Y.S.; Liu, J.Y.; He, K.; Wang, P. Vulnerability analysis and passenger source prediction in urban rail transit networks. PLoS ONE 2013, 8, e80178. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, R.K.; AlAwadh, M.A.; Islam, S.; Khan, R.A.; Qureshi, M.N. GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Environ. Earth Sci. 2018, 77, 276. [Google Scholar] [CrossRef]
- Sun, C.S.; Cai, H.W. Developing and distributing characteristics of collapses and landslides during strong historic earthquake in China. J. Nat. Disaster 1997, 6, 25–30. [Google Scholar]
- Matthews, M.V.; Ellsworth, W.L.; Reasenberg, P.A. A Brownian model for recurrent earthquakes. Bull. Seismol. Soc. Am. 2002, 92, 2233–2250. [Google Scholar] [CrossRef]
- Vermeesch, P. On the visualization of detrital age distributions. Chem. Geol. 2012, 312, 190–194. [Google Scholar] [CrossRef]
- Spencer, C.J.; Yakymchuk, C.; Ghaznavi, M. Visualising data distributions with kernel density estimation and reduced chi-squared statistic. Geosci. Front. 2017, 8, 1247–1252. [Google Scholar] [CrossRef]
- Nandi, A.; Shakoor, A. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng. Geol. 2010, 110, 11–20. [Google Scholar] [CrossRef]
- Bednarik, M.; Magulová, B.; Matys, M.; Marschalko, M. Landslide susceptibility assessment of the Kraľovany–Liptovský Mikuláš railway case study. Phys. Chem. Earth Parts A/B/C 2010, 35, 162–171. [Google Scholar] [CrossRef]
- Galve, J.; Gutiérrez, F.; Remondo, J.; Bonachea, J.; Lucha, P.; Cendrero, A. Evaluating and comparing methods of sinkhole susceptibility mapping in the Ebro Valley evaporite karst (NE Spain). Geomorphology 2009, 111, 160–172. [Google Scholar] [CrossRef]
- Zhou, G.; Yan, H.; Chen, K.; Zhang, R. Spatial analysis for susceptibility of second-time karst sinkholes: A case study of Jili Village in Guangxi, China. Comput. Geosci. 2016, 89, 144–160. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, X.; Guan, Z.; Luo, W.; Wang, Y. AHP-based evaluation of the karst collapse susceptibility in Tailai Basin, Shandong Province, China. Environ. Earth Sci. 2018, 77, 436. [Google Scholar] [CrossRef]
- Sharma, L.P.; Patel, N.; Ghose, M.K.; Debnath, P. Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Nat. Hazards 2015, 75, 1555–1576. [Google Scholar] [CrossRef]
- Zhao, H.L.; Yao, L.H.; Mei, G.; Liu, T.Y.; Ning, Y.S. A fuzzy comprehensive evaluation method based on AHP and entropy for a landslide susceptibility map. Entropy 2017, 19, 396. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, V. Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. J. Mt. Sci. 2018, 15, 808–824. [Google Scholar] [CrossRef]
- Latora, V.; Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 2001, 87, 198701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, S.B.; Jiang, D.B.; Fan, G.Z. Seasonality of Precipitation over China Chinese. J. Atmos. Sci. 2017, 41, 1191–1203. [Google Scholar]
- Mas, J.-F.; Filho, B.S.; Pontius, R.G.; Gutiérrez, M.F.; Rodrigues, H. A suite of tools for ROC analysis of spatial models. ISPRS Int. J. Geo-Inf. 2013, 2, 869–887. [Google Scholar] [CrossRef]
- Erkan, T.E.; Elsharida, W.M. Combining AHP and ROC with GIS for airport site selection: A case study in Libya. ISPRS Int. J. Geo-Inf. 2020, 9, 312. [Google Scholar] [CrossRef]
Train No. | Sequence | Station Name | Arrival Time | Departure Time | Stop Time (min) | Longitude | Latitude |
---|---|---|---|---|---|---|---|
C1001 | 1 | Changchun | ---- | 5:47 | ---- | 125.33 | 43.92 |
2 | Jilin | 6:27 | 6:29 | 2 | 126.58 | 43.86 | |
3 | Dunhua | 7:23 | 7:25 | 2 | 128.25 | 43.39 | |
4 | Yanji West | 8:04 | 8:04 | ---- | 129.42 | 42.91 |
Influence Factors | Data Name | Sources |
---|---|---|
Geological hazards data such as earthquakes, collapses, landslides, and debris flows | Resource and Environment Science and Data Center | |
Elevation, Slope, Aspect | SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) 90 m data | Geospatial Data Cloud |
Lithology, Geology, Distance to faults | 1:1,000,000 digital geological map data | Geoscientific Data & Discovery Publishing System |
Distance to roads, Distance to railways, Distance to rivers | 1:1,000,000 basic geographic information data public version (2021) | National Catalogue Service for Geographic Information |
Land cover | 30 m global surface cover data | National Catalogue Service for Geographic Information |
NDVI | Annual 1 km NDVI spatial distribution dataset of China | Resource and Environment Data Cloud Platform |
Seismic peak ground acceleration | Seismic peak ground acceleration data | Global Seismic Hazard Assessment Program |
Annual average precipitation, Monthly precipitation variation coefficient, Annual average ≥ 50 mm rainstorm days | Meteorological data | National Meteorological Resources Sharing Service Platform |
Influence Factors | Classification | Information Value (Collapse) | Information Value (Landslide) | Information Value (Debris Flow) | Influence Factors | Classification | Information Value (Collapse) | Information Value (Landslide) | Information Value (Debris Flow) |
---|---|---|---|---|---|---|---|---|---|
DEM | <500 | 0.65 | 0.56 | −0.52 | Slope | 0–1 | −1.24 | −2.10 | −1.84 |
500–1000 | 0.08 | 0.39 | −0.23 | 1–6 | −0.14 | −0.38 | −0.43 | ||
1000–2000 | −0.27 | −0.18 | 0.15 | 6–12 | 0.44 | 0.51 | 0.31 | ||
2000–3000 | −0.02 | −0.03 | 1.00 | 12–18 | 0.46 | 0.65 | 0.52 | ||
3000–4000 | −0.80 | −1.56 | 0.67 | 18–24 | 0.31 | 0.61 | 0.54 | ||
4000–5000 | −1.68 | −2.95 | 0.03 | 24–40 | 0.23 | 0.29 | 0.71 | ||
5000–6000 | −4.04 | −4.87 | −2.85 | 40–45 | 0.60 | 0.09 | 0.89 | ||
6000–7000 | 0.00 | 0.00 | 0.00 | 45–90 | 0.42 | −0.21 | 0.44 | ||
7000–8000 | 0.00 | 0.00 | 0.00 | Lithology | others | −0.21 | −0.47 | −0.47 | |
>8000 | 0.00 | 0.00 | 0.00 | Sedimentary rock1 | −0.20 | −0.07 | −0.18 | ||
Aspect | −1 | −0.43 | −0.49 | −0.55 | Hypabyssal rock | 0.37 | 0.31 | 0.41 | |
0–22.5, 337.5–360 | −0.06 | −0.08 | −0.12 | Magmatic rock | −0.17 | 0.19 | 0.22 | ||
22.5–67.5 | 0.01 | −0.01 | 0.08 | Sedimentary rock2 | 0.34 | 0.15 | 0.13 | ||
67.5–112.5 | 0.13 | 0.15 | 0.26 | Metamorphic rock | 0.26 | 0.39 | 0.68 | ||
112.5–157.5 | 0.17 | 0.19 | 0.30 | Plutonic rock | 0.53 | 0.04 | 0.21 | ||
157.5–202.5 | 0.11 | 0.06 | 0.22 | Water | −0.76 | −0.45 | −1.34 | ||
202.5–247.5 | 0.00 | −0.05 | −0.05 | Distance to faults | 0–3000 | 0.19 | 0.29 | 0.44 | |
247.5–292.5 | −0.15 | −0.09 | −0.39 | 3000–6000 | 0.10 | 0.08 | 0.09 | ||
292.5–337.5 | −0.17 | −0.12 | −0.49 | 6000–9000 | −0.04 | −0.09 | −0.08 | ||
Geology | others | 0.17 | 0.10 | 0.66 | 9000–12,000 | −0.18 | −0.24 | −0.28 | |
Quaternary | −0.97 | −1.25 | −0.73 | 12,000–15,000 | −0.31 | −0.31 | −0.43 | ||
Neogene | −0.97 | −0.93 | −0.43 | >15,000 | −0.28 | −0.46 | −1.06 | ||
Paleogene | −2.07 | −1.43 | 0.56 | Distance to railways | 0–2000 | 0.45 | 0.42 | 0.45 | |
Cretaceous | 0.10 | 0.47 | 0.01 | 2000–4000 | −0.32 | −0.14 | −0.40 | ||
Jurassic | 0.72 | 0.50 | 0.14 | 4000–6000 | −0.80 | −0.67 | −0.65 | ||
Triassic | −0.11 | 0.21 | 0.54 | 6000–8000 | −1.39 | −1.77 | −1.21 | ||
Permian | −0.04 | 0.25 | −0.03 | 8000–10,000 | −1.93 | −3.33 | −1.90 | ||
Carboniferous | 0.23 | −0.38 | −0.50 | >10,000 | −3.41 | −5.60 | −2.98 | ||
Devonian | 0.60 | 0.46 | 0.33 | 0–30,000 | 0.37 | 0.34 | 0.12 | ||
Silurian | 0.61 | 1.02 | 0.28 | 3,000–60,000 | 0.15 | 0.29 | 0.09 | ||
Ordovician | 0.46 | 0.42 | 0.17 | 60,000–90,000 | −0.14 | −0.08 | −0.01 | ||
Cambrian | 0.87 | 0.98 | 0.12 | 90,000–120,000 | −1.12 | −0.66 | −0.17 | ||
Sinian | 1.45 | 1.32 | 0.75 | 120,000–150,000 | −1.26 | −1.18 | −0.16 | ||
Distance to rivers | 0–2000 | 0.25 | 0.24 | 0.27 | >150,000 | −1.58 | −2.28 | −0.34 | |
2000–4000 | −0.36 | −0.18 | −0.49 | Land cover | Cultivated Land | 0.38 | 0.45 | 0.08 | |
4000–6000 | −0.74 | −0.85 | −0.59 | Forest | 0.60 | 0.78 | 0.28 | ||
6000–8000 | −0.93 | −1.77 | −1.10 | Grassland | −0.47 | −0.77 | 0.25 | ||
8000–10,000 | −1.32 | −2.77 | −1.57 | Shrubland | −0.18 | −0.21 | 0.44 | ||
>10,000 | −3.34 | −7.83 | −3.67 | Wetland | −1.15 | −2.20 | −0.88 | ||
NDVI | 0–0.1 | −2.13 | −5.51 | −1.98 | Water Bodies | 0.00 | −0.10 | −0.36 | |
0.1–0.3 | −1.20 | −3.49 | −0.59 | Artificial Surfaces | 0.47 | 0.04 | 0.00 | ||
0.3–0.5 | −0.35 | −1.32 | 0.31 | Bareland | −1.71 | −4.28 | −1.29 | ||
0.5–0.7 | 0.23 | −0.14 | 0.54 | Permanent Snow &Ice | −3.06 | −4.55 | −2.37 | ||
0.7–0.9 | 0.42 | 0.61 | 0.19 | PGA | 0.0–0.5 | 0.49 | 0.71 | −0.62 | |
>0.9 | −4.13 | −4.46 | −2.87 | 0.5–1.0 | −0.61 | −1.38 | −0.53 | ||
Precipitation | 0–10 | −1.06 | −2.36 | −0.68 | 1.0–1.5 | −0.03 | −0.66 | 0.24 | |
10–15 | −0.92 | −1.36 | 0.46 | 1.5–2.0 | −0.30 | −0.36 | 0.34 | ||
15–25 | −0.34 | −0.83 | 0.28 | 2.0–2.5 | −0.24 | −0.40 | 0.43 | ||
25–35 | 0.71 | 1.04 | 0.56 | 2.5–3.0 | −0.18 | −0.36 | 0.57 | ||
35–45 | 0.09 | 0.85 | −0.75 | 3.0–3.5 | −0.35 | −0.56 | 0.62 | ||
>45 | 1.44 | 1.46 | −0.24 | 3.5–4.0 | −0.50 | −0.42 | 0.62 | ||
Rainstorm days | 0.3–1.0 | −0.79 | −0.77 | 1.86 | 4.0–4.5 | −0.53 | −0.30 | 0.66 | |
1.0–3.0 | −0.20 | −0.11 | −0.04 | >4.5 | −0.63 | −0.24 | 0.66 | ||
3.0–5.0 | 0.74 | 0.49 | −0.03 | Variation | 0.5–1.0 | 0.81 | 1.02 | −0.26 | |
5.0–7.0 | 0.51 | 0.17 | 0.05 | 1.0–1.5 | −0.33 | −0.60 | 0.32 | ||
>7.0 | 0.15 | 0.00 | −1.48 | 1.5–2.0 | −1.60 | −4.14 | −0.92 | ||
2.0–2.5 | −0.90 | −3.41 | −0.77 |
No. | Railway | Segment | Train Number (Day) | Type | |
---|---|---|---|---|---|
1 | Chongqing–Guiyang Railway | Qiezixi–Honghuayuan | 2 | Normal-Speed | 4.5 |
2 | Lanzhou–Lianyungang Railway | Tianshui–Hejiadian | 74 | Normal-Speed | 4.0 |
3 | Chengdu–Kunming Railway | Ebian–Xide | 15 | Normal-Speed | 2.7 |
4 | Chengdu–Guiyang High-Speed Railway | Leshan–Yibin West | 30 | High-Speed | 2.6 |
5 | Beijing–Harbin Railway | Harbin–Wopi | 109 | Normal-Speed | 2.3 |
6 | Harbin–Manzhouli Railway | Harbin–Shangjia | 51 | Normal-Speed | 2.3 |
7 | Baoji–Chengdu Railway | Yangpingguan–Jiangyoubei | 32 | Normal-Speed | 2.2 |
8 | Shijiazhuang–Taiyuan Railway | Taiyuan–Shijiazhuang | 99 | Normal-Speed | 2.2 |
9 | Lanzhou–Xinjiang Railway | Urumqi–Shanshan | 66 | Normal-Speed | 2.0 |
10 | Southern Xinjiang Railway | Heshuo–Yu’ergou | 34 | Normal-Speed | 1.9 |
No. | Station | Vi | No. | Station | Vi |
---|---|---|---|---|---|
1 | Harbin | 0.0239 | 11 | Chengdu East | 0.0039 |
2 | Xining | 0.0150 | 12 | Zhenzi Street | 0.0038 |
3 | Qilongxing | 0.0061 | 13 | Harbin North | 0.0036 |
4 | Minfusi | 0.0055 | 14 | Taiyuan | 0.0036 |
5 | Xiaba | 0.0050 | 15 | Yuci | 0.0034 |
6 | Taiyuan South | 0.0049 | 16 | Ganshui | 0.0034 |
7 | Qijiang | 0.0046 | 17 | Neijiang | 0.0034 |
8 | Huaihua | 0.0043 | 18 | Shijiazhuang North | 0.0032 |
9 | Sanjiang | 0.0041 | 19 | Shimenkan | 0.0031 |
10 | Guangyuan | 0.0041 | 20 | Muzhuhe | 0.0028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Zhu, J.; Li, W.; Wang, J. Vulnerability Analysis of Geographical Railway Network under Geological Hazard in China. ISPRS Int. J. Geo-Inf. 2022, 11, 342. https://doi.org/10.3390/ijgi11060342
Yin L, Zhu J, Li W, Wang J. Vulnerability Analysis of Geographical Railway Network under Geological Hazard in China. ISPRS International Journal of Geo-Information. 2022; 11(6):342. https://doi.org/10.3390/ijgi11060342
Chicago/Turabian StyleYin, Lingzhi, Jun Zhu, Wenshu Li, and Jinhong Wang. 2022. "Vulnerability Analysis of Geographical Railway Network under Geological Hazard in China" ISPRS International Journal of Geo-Information 11, no. 6: 342. https://doi.org/10.3390/ijgi11060342
APA StyleYin, L., Zhu, J., Li, W., & Wang, J. (2022). Vulnerability Analysis of Geographical Railway Network under Geological Hazard in China. ISPRS International Journal of Geo-Information, 11(6), 342. https://doi.org/10.3390/ijgi11060342